This short text presents the list of papers given below, following a thematic description. This series of papers concern the hyperbolic dynamical systems, i.e. “chaotic dynamics” with high sensitivity to initial conditions, also called more precisely “Anosov dynamics”. The point of view here (following David Ruelle, R. Bowen and others), is to consider not evolution of individual trajectories that look like random, but the evolution of a probability distribution that appears to be more predictable. The tools are spectral analysis of the linear pull back operator: the flow (or the map) acting on functions (or sections of bundles) composition. Since chaotic dynamics generates oscillations with high frequencies that get larger and larger with time, it appears necessary to use microlocal analysis and symplectic geometry on cotangent bundle to study these operators.

**Motivation:**the motivation to study these topics came after the study of quantum chaos (see below) that consists of quantization of some “chaotic classical dynamics”. In quantum chaos, the quantization is not unique in general (except for some algebraic dynamics as the linear cat map or geodesic flow on constant negative surfaces) so the questions of quantum chaos may seem to be not well defined. By studying directly the**pull back operator of dynamical systems**, the surprise has been to observe a “natural quantization” (and so unique). The first step is to consider the “Ruelle discrete spectrum” of the pull back operator.**“Ruelle discrete spectrum”:**In the paper (2.) we simply consider expanding map on ${S}^{1}$ and hyperbolic map on ${T}^{2}$, introducing the technics of “escape function” to construct “anisotropic Sobolev spaces” and reveal the “Ruelle discrete spectrum”. An other very simple “matrix model” that explains this approach is given in the appendix of paper (14.). In (3.), we show how to use microlocal analysis to extend this approach to general Anosov diffeomorphisms and to general Anosov flows in (5.). In (14.) we present a similar approach using a sligthly different technics of microlocal analysis (wave-packets transform), that is more geometric and allows to improve the escape function, and finally improve some bounds on the resolvent operator.**“Natural quantization”, “Emergence of quantum dynamics in contact Anosov dynamics”:**In the paper (1.) we study the Ruelle spectrum of the contact extension of a linear symplectic Anosov map on ${T}^{2}$ (also called prequantum cat map). This is a partially hyperbolic dynamical systems. We show that the long time behavior is governed by an effective operator isomorphic to the “quantum cat map”, i.e. quantum dynamics appears dynamically without an “ad hoc” quantization procedure as usual. In spectral terms, the Ruelle spectrum contains the quantum spectrum as an external band (or annulus). This phenomena exists more generally for the contact extension of any symplectic Anosov diffeomorphism (6.). Under some assumptions, this extension exists and is almost unique so intrinsic. This can also be done for contact Anosov flows 16. , announced in (7.). In (9.) we study a contact Anosov flow acting on a special line bundle $det{\left({E}_{s}\right)}^{1/2}$called “semiclassical bundle”, and shows that the first band of eigenvalues concentrates on the imaginary axis and are the zeroes of “the semiclassical zeta function of Gutzwiller-Voros”. This “semiclassical” zeta function somehow generalizes the Selberg zeta function (that is for constant negative curvature) to variable negative curvature and more general contact Anosov flows. In (10.) we consider the special case of hyperbolic manifolds (these are dynamical systems constructed from Lie groups as the geodesic flow on surfaces of constant negative curvature but in higher dimensions) and it is observed that the Ruelle spectrum is on vertical lines, using group theory. In (13.) we consider 3 dimensional contact Anosov flow and a different argument to show the band spectrum.**“Partially hyperbolic dynamics”.**The Ruelle spectrum of a simple model that is partially hyperbolic is studied in 4., i.e. there is a neutral direction for the dynamics. We use microlocal analysis and shows the existence of a spectral gap (so exponential decay of correlations) under generic assumptions. A similar study for open partially hyperbolic dynamics is done in (8.) and (11.). It is observed that neutral directions in general implies the existence of larger and larger number of Ruelle eigenvalues in the limit where the frequency in the neutral direction is high (called semiclassical limit). In the paper 12. we study the asymptotic spectral gap and try to improve the estimates using considerations after the Ehrenfest time..**“Pseudo-Anosov dynamics”.**In (15.) we study the Ruelle spectrum of linear pseudo Anosov map, i.e. there are singularities on the surface that are branching points.

, F. Faure, Journal of Modern Dynamics, Vol.1 No.2, 255-285, (2007), Paper, preprint 2006.**2006. "Prequantum chaos: Resonances of the prequantum cat map"**, F. Faure and N. Roy, Nonlinearity Vol. 19, 1233-1252, (2006), Paper, or preprint 2006**2006. "Ruelle-Pollicott resonances for real analytic hyperbolic map"**F. Faure, N. Roy and J. Sjöstrand, Open Math. Journal, vol. 1, 35--81, (2008). Paper, or preprint 2008**2008. "Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances"**F. Faure. Nonlinearity Vol. 24, 1473-1498, (2011), Paper, or preprint 2009. Movies related to this paper.**2009. "Semiclassical origin of the spectral gap for transfer operators of partially expanding map"**F. Faure and J. Sjöstrand, Comm. in Math. Physics, vol. 308, 325-364, (2011) Paper. or preprint 2010**2010. "Upper bound on the density of Ruelle resonances for Anosov flows"**F. Faure and M. Tsujii. Astérisque 375 (2015). preprint 2012. article.**2012. "Prequantum transfer operator for Anosov diffeomorphism"**F. Faure and M. Tsujii. Comptes rendus - Mathématique 351 , 385-391, (2013). paper, preprint 2013.**2013. "Band structure of the Ruelle spectrum of contact Anosov flows"**, J.F. Arnoldi, F.Faure, T. Weich. Ergodic Theory of Dynamical Systems (2015). preprint 2013**2013. "Asymptotic spectral gap and Weyl law for Ruelle resonances of open partially expanding maps"**, F. Faure and M. Tsujii, Invent. math. (2017) 208: 851. paper. preprint 2013**2013. "The semiclassical zeta function for geodesic flows on negatively curved manifolds"**, S. Dyatlov, F. Faure, C. Guillarmou, Analysis & PDE 8 (2015), 923–1000. paper, preprint 2014**2014. "Power spectrum of the geodesic flow on hyperbolic manifolds"**S. Barkhofen, F. Faure, T. Weich, Nonlinearity Vol. 27, 1829, (2014), preprint 2014**2014. "Resonance chains in open systems, generalized zeta functions and clustering of the length spectrum"**F.Faure, T. Weich. Communications in Mathematical Physics 2017, 356(3), 755-822. Paper. preprint 2015**2015. "Asymptotic spectral gap for open partially expanding maps"**C. Guillarmou, F.Faure Math. Res. Lett., Volume 25, Number 5, 1405–1427, 2018, paper,preprint 2017.**2017. "Horocyclic invariance of Ruelle resonant states for contact Anosov flows in dimension 3"**, F. Faure and M. Tsujii. Annales Henri Lebesgue 6 (2023) 331-426, Paper, preprint 2017. Slides. Video talk.**2017. "Fractal Weyl law for the Ruelle spectrum of Anosov flows"**, F. Faure, S. Gouëzel, E. Lanneau, Journal de l’École polytechnique — Mathématiques, Tome 6 (2019) , pp. 811-877. paper, preprint 2018. talk on Youtube by Sebastien Gouezel at I.C.M. 2018.**2018. "Ruelle spectrum of linear pseudo-Anosov maps”**, F. Faure and M. Tsujii. preprint 2021. Slides (long). Slides (short, ICMP 2021). Video talk.**2021. "Micro-local analysis of contact Anosov flows and band structure of the Ruelle spectrum"**

Slides, Roscoff March-2022.

**2009.**(juin 2009)**"Origine de l'irréversibilité en mécanique. Les résonances de Ruelle."**. May 2013. Lectures notes for summer school 13-17 May 2013 at ROMA.**2013. "Semiclassical approach for the Ruelle-Pollicott spectrum of hyperbolic dynamics"**. Slides, for S.F.P. meeting, Marseille, july 2013. Movies related to this talk.**2013. "Mathematical relations between Deterministic classical Chaos and Quantum Chaos via Ruelle resonances"**, talk on Youtube by Masato Tsujii at I.C.M. 2014.**2014. "Resonances for geodesic flows on negatively curved manifolds"**du 21/3/2015.**2015. "Spectre du flot géodésique en courbure négative [d'après F. Faure et M. Tsuji]" exposé de Sébastien Gouezel au séminaire Bourbaki****2018.**. Lectures notes for the school 23-27 April 2018 at the University Cheikh Anta Diop in Dakar, Sénégal. Movies related to the notes.**“Spectrum, traces and zeta functions in hyperbolic dynamics”****2019.**. Lectures notes for the school 22-26 April 2019 at CIRM.**“From classical chaos to quantum chaos”****2019.**. may 2019.**Slides and Video on Youtube “Emergence of quantum dynamics in hyperbolic dynamics”****2019.**. Slides for the school 1-5 july 2019 at CIRM.**“Micro-local analysis of hyperbolic dynamics”****2019.**. Video and slides, october 18th, 2019 at MSRI.**“Micro-local analysis of hyperbolic dynamics”****2024.**. slides,video, february 2th, 2024 at collège de france, Paris.**“From geodesic flow to wave dynamics on an Anosov manifold”**

This short text presents the list of papers given below, following a thematic description. This series of papers concern “quantum chaos”, this means the dynamics of a linear PDE for which, in the limit of small wave length $h\ll 1$, called semiclassical limit, the Hamiltonian dynamics that describes motion of wave packets or rays, is chaotic, e.g. hyperbolic. In quantum chaos, there is a special time called Ehrenfest time ${t}_{E}$ defined as the typical time when small wave length $h$ are amplified to macroscopic size $\sim 1$ under the chaotic dynamics with Lyapunov exponent $\lambda >0$: this gives ${e}^{\lambda {t}_{E}}h\sim 1\leftrightarrow {t}_{E}\sim \frac{1}{\lambda}ln\left(\frac{1}{h}\right)$. Notice that even if $h$ is very small, ${t}_{E}$ is not very large due to $ln\left(\frac{1}{h}\right)$.

- The paper 1. study waves in a wave guide in the semiclassical limit of small wave lenghts. The conductivity of the wave guide (i.e. number of propagating modes) is related to ergodic properties of the rays in the guide.
- In papers 2. and 3. we study the eigenfunctions of the “quantum cat map”, i.e. the quantization of a hyperbolic linear symplectic map on the torus ${T}^{2}$. The surprise is to observe that, under some specific conditions, some eigenfunctions do not equidistribute as we could expect (and as it has been conjectured before under the name Quantum Unique Ergodicity, QUE). This shows the possible existence of “scars” in some uniform hyperbolic system (the only known example up to now) and gives a counter example to the “quantum unique ergodicity conjecture, QUE” in quantum chaos. One interesting feature in this model is the periodic behavior of wave packets: they spend some time to spread along the unstable direction of the dynamics and after some while they surprisingly reconstruct along the stable direction. The period $T$ of this phenomena is always larger than twice the Ehrenfest time, $T\ge 2{t}_{E}$, i.e. the regime where still mysterious interference phenomena are present in quantum chaos. Here are some movies.
- In paper (4.) we try to study long time behavior of wave packets in quantum chaos, i.e. long after the Ehrenfest time. This study has been started with the the “trace formula”. After this paper we have been convinced to consider first the dynamics of pull back operators (Ruelle spectrum, previous section) before continuing quantum chaos.

, F.Faure, J. Phys. A: Math. Gen. 35, 1339-1356, (2002). Paper**2002. "Propagating modes in a periodic wave guide in the semi-classical limit"**, F. Faure, S. Nonnenmacher and S. De Bièvre, Communications in Mathematical Physics ,Vol. 239, 449-492, (2003). Paper, or preprint 2002**2003. "Scarred eigenstates for quantum cat maps of minimal periods"**, F. Faure, S. Nonnenmacher , Communications in Mathematical Physics, Vol 245, 201 - 214, (2004). Paper, or preprint 2003**2003. "On the maximal scarring for quantum cat map eigenstates"**, F. Faure, Annales de l'Institut Fourier, Vol. 57 No.7, p. 2525-2599 (2007)., Paper, or preprint 2006 ., Movies related to this paper.**2006. "Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula"**

. Manuscript lectures notes given in Marburg, september 2012. pdf file.**2012. "Ergodicity of quantum maps"**Lecture notes for I.H.P. School, june 2005. format ps.gz ou pdf**2005. "Long time semiclassical evolution of wave packets in quantum chaos. Example of non quantum unique ergodicity with hyperbolic maps"**(Cours à l'école d'été de Peyresq 2007).**2007. "Introduction au chaos quantique"**(Notes d'exposé pour les journées mathématiques (journées X-UPS) à l'intention des professeurs de math de classes préparatoires, lundi 28 et mardi 29 avril 2014.)**2014. “Introduction au chaos classique et quantique”****2024.**Slides of**“Some aspects of geometric quantization and quantum chaos”.****2024.**Slides of**“Equidistribution in classical and quantum chaos”.**

, A. Ratchov, F. Faure, F. W. J. Hekking , Eur. Phys. J. B. Vol 46, 519-528, (2005). Paper, or preprint**2005. "Loss of quantum coherence in a system coupled to a zero-temperature environment"****2022. “Gravitational lens effect revisited through membrane waves”,**Stefan Catheline, Victor Delattre, Gabrielle Laloy-Borgna, F. Faure, and Mathias Fink, American Journal of Physics 90, 47 (2022).

, Exposé à grenoble 1993.**1993. "Approche géométrique de la limite semi-classique par les états cohérents"**Exposé le juin 1997 à l'institut Fourier. (fichier ps).**1997. "La quantification du champ électromagnétique"**le 27 avril 2000 à l'institut Fourier.**2000. "La quantification géométrique" Exposé**(exposé au magistère de mathématiques, UJF, janvier 2003).**2003. "Introduction à la mécanique quantique et au paradoxe E.P.R"**. Exposé le 5 mai 2017 à l'institut Fourier.**2017. "Exposé sur le théorème adiabatique en mécanique quantique. Description par l'analyse semiclassique"**

This short text presents the list of papers given below, following a thematic description. Before explaining each paper that corresponds to simple and specific examples we describe the abstract general phenomena.

This series of papers concern some “topological phenomena in quantum mechanics”, and more precisely the manifestation of the Atiyah-Singer index formula in quantum physics of slow-fast dynamical systems also called adiabatic systems when a quantum physical system consists of sub-systems that interact together but each with different time scale. Example: small molecules (with few atoms) are quantum objects but quite complicated because electrons are light so move fast, they interact together but also with the atoms that are heavier so slower. These atoms have vibration motions that are still faster then the whole rotationnal motion of the molecule that is still slower. Geometricaly we can describe the global dynamics with different time scale as a bundle $F$ where the fast dynamics takes place in the fibers whereas the slow dynamics takes place on the base.

Of course an isolated molecule should be considered within a quantum description. Experimentally, by spectroscopy and fluorescence, physicists observe the energy levels (i.e. eigenvalues of the Hamiltonian quantum operator). They observe that energy levels of the molecules are discrete but form some groups or clusters (called energy bands). The exact number of energy levels in a cluster is given by the index formula that expresses this number in terms of the topology of a specific vector bundle $F$ that describes the dynamics of the molecule.

We give now more precise informations. As we have said, this clustering structure is due to the coexistence of motions of the molecules with different time of scale: the rotation of the whole molecule is slower than the faster oscillations of the atoms. In heuristic terms (from the uncertainty principle in Fourier transform), we have time scales ${T}_{rotation\mathrm{.}}\gg {T}_{vibration\mathrm{.}}$ that corresponds to separation of energy levels $\Delta {E}_{rot\mathrm{.}}=\frac{\hslash}{{T}_{rot}}\ll \Delta {E}_{vib\mathrm{.}}=\frac{\hslash}{{T}_{vib}}$. Using microlocal analysis we can describe with good accuracy the slow rotationnal motion using a classical mechanics i.e. dynamics on a symplectic manifold ${M}_{rot}$. The fast motion is described in quantum mechanics by a finite rank operator ${H}_{vib}\left(x\right)$ that depends on the point $x\in {M}_{rot}$. This gives a bundle of operators over ${M}_{rot\mathrm{.}}$. Each eigenspace defines a finite rank vector bundle $F$ over ${M}_{rot}$. Each eigenspace $F$ corresponds to an observed cluster in the spectrum. The Atiyah-Singer index formula gives that the exact number of eigenvalues $N$ in a cluster is$$N={\int}_{{M}_{rot}}Todd\left(T{M}_{rot}\right)\wedge Ch\left(F\otimes L\right)$$where $Todd\left(T{M}_{rot}\right)$ is the Todd class of the tangent bundle of ${M}_{rot}$, $L$ is the line bundle over ${M}_{rot}$ whose curvature is the symplectic form ($L$ is called the prequantum line bundle) and $Ch\left(\mathrm{.}\right)$ is the Chern class.

**A simple model with a vector bundle over ${S}^{2}$:**The first appearance of this phenomena explained in (1.,2.,3.) was in the quantum spectrum of small molecules as $C{F}_{4}$. This a simple model where the dynamics of the molecule is described by a bundle of $2\times 2$ matrices over the symplectic sphere ${S}^{2}$. The eigenspaces form a rank 1 vector bundle over ${S}^{2}$ with Chern index $\pm C\in Z$ and the above index formula predicts (in confirmation we experimental observations) that the number of eigenvalues in a cluster is $N=J+1\pm C$ where $J$ is the angular momentum of the molecule.**A model with a rank 2 vector bundle over ${CP}^{2}$ and surprising topological phenomena:**In paper 4. we describe a realistic and more rich situation where the dynamics of the molecule is described by a rank 2 vector bundle over $C{P}^{2}$. In that case the Chern class is polynomial with integer coefficients and algebraic topology gives more subtil rules that are discussed, as topologically coupled bands, when the polynomial can not be factorized in the ring of polynomials with integer coefficients.**Pedagogical presentation and manifestation of the Euclidean index formula in geophysics and quantum physics:**In paper 6. we describe a similar phenomena that has been discovered in a different field of physics, namely geophysical waves (atmospheric or ocean surface waves near the equator). We also give a more pedagogical presentation (in the Arxiv version), and treat a very simple model in any dimension related to the Euclidean index formula of Fedosov-Hörmander.

F. Faure, B. Zhilinskii, Physical Review Letters , 85, 960-963 , (2000). Paper, or preprint.**2000. "Topological Chern indices in molecular spectra"**F. Faure, B. Zhilinskii, Letters in Math. Physics vol 55, 219-238, (2001). Paper or preprint.**2001. "Topological properties of the Born-Oppenheimer approximation and implications for the exact spectrum"**F. Faure and B. Zhilinskií, Acta Appl. Math. 70, 265-282 (2002). Paper in ps.gz .**2002. "Qualitative features of intra-molecular dynamics. What can be learned from symmetry and topology"**F. Faure and B. Zhilinskií, Phys. Letters A, 302, p.242-252, 2002. Paper, or preprint.**2002. "Topologically coupled energy bands in molecules"**M. Hansen, F. Faure, B. Zhilinskii, J. Phys. A: Math. Theor. 40 (2007) 13075-13089. Paper of preprint**2007. "Adiabatically coupled systems and fractional monodromy"**F. Faure, Annales Henri Lebesgue 6 (2023) 449-492, Paper, preprint.**2019. "Manifestation of the topological index formula in quantum waves and geophysical waves"**

. F. Faure, Séminaires d'analyse spectrale de l'Institut Fourier, Vol n°11, 1993. Paper.**1993. "Mécanique quantique sur le tore et dégénérescences dans le spectre"**F. Faure, Journal of Physics A: Math. and gen. 27, (1994), 7519-7532. Paper.**1994. "Generic description of the degeneracies in Harper like models."**F. Faure, B.Parisse, Journal of Mathematical physics, 41, 62-75, (2000). Paper or preprint**2000. "Semi-classical Quantum Hall conductivity"**F. Faure, Journal of physics A: math and general, 33 , 531-555 (2000). Paper or preprint.**2000. "Topological properties of quantum periodic Hamiltonians"**

in Proceedings to workshop in Trieste 1992. Paper.**1992. "Structure of wave functions on the torus characterized by a topological Chern index"**Notes de cours à l'école d'été interdisciplinaire MÉTHODES TOPOLOGIQUES ET GÉOMÉTRIQUES: APPLICATION AUX SYSTÈMES DYNAMIQUES PHYSIQUE, CHIMIE, BIOLOGIE. Dijon, 26-30 juin 2000. (fichier ps).**2000. "Rôle des indices topologiques de Chern en physique du solide et physique moléculaire. Calculs dans des modèles simples."**. Lectures notes for lectures given in:Saclay. Spth., march-april 2002, and M.A.S.I.E. Spring School, Warwick, march 2002. Lecture notes: format ps.gz ou pdf (or 2 pages / page: format ps.gz ou pdf) or html.**2002. "Geometric and topological aspects of slow and fast coupled dynamical systems in quantum and classical dynamics"**Exposé en avril 2003 au Mathematical Science Research Institute (MSRI) Berkeley Vidéo et PDF.**2003. "Topological indices in molecular spectra".**

- 2013-2024: Adaptative just temperament with Magic Malik, Alexandre Ratchov, Maxime Zampieri, Jean Luc Lehr, Bo VanDerWerf, Jozef Dumoulin.

- 2014 Signatures tonales et modes a transposition limites
- 2010 Generalisation des signatures tonales
- 2015 Exposé
du 11 septembre 2015 pour la journée de rentrée de l'institut Fourier.**"Voix mathématiques et musique"** - 2016. Exposé at IRCAM, pdf, le 20 mai 2016. "Musique et mathématiques chez Magic Malik".

- 2013 Signatures tonales de Malik Mezzadri en musique (old version with CGI)
- 2016 “étude des ensembles de notes” d'après Malik Mezzadri (decembre 2016).
- 2019 Signatures tonales de Malik Mezzadri en musique (recent version in construction, in Wasm)
- 2019:
.**“MOLT explorer: with Bo VanDerWerf”**

Thèse de doctorat (2 novembre 1993). pdf**1993. "Approche géométrique de la limite semi-classique par les états cohérents et mécanique quantique sur le tore"**Thèse d'habilitation (17 octobre 2006). pdf**2006. "Aspects topologiques et chaotiques en mécanique quantique"**

- Le groupe physique mathématique à l'institut Fourier
- Seminaire physique - mathematique à Grenoble
- Le groupe "Résonances et décohérence en chaos quantique" (A.N.R. 2005-2008).
- Le groupe "Méthodes spectrales en chaos classique et quantique" (A.N.R. 2009-2012).
- Le Groupement de Recherche (GDR) "Dynamique quantique"

- Afri Math: association de chercheurs en math en afrique
- PLM Lab CNRS
- Journaux à consulter. Séminaires, conférences en vidéos.
- Old Conferences
- Workshop in Peyresq, 4 june 2017 -> 10 june 2017
- articles, livres, Livres et articles via UGA
- Musique: IMSLP partitions gratuites.
- Nadia Faure et Aline Faure
- Liens sur les EDP.
- Software for communication:
- Jitsi,
- Jitsi at IF,
- WebChat par IRC (nickname arbitrary, channel name as #canal),
- Pad with framapad
- Pad with UGA
- Discord.

- Some math conferences online: