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Abstract

We study the quantum eigenstates and eigenvalues on a toroidal two dimensional phase-
space. To each eigenfunction is associated an integer, the Chern index, which tests the
localization of the eigenfunction as some periodicity conditions are changed. The Chern
index is a topological invariant which can only change when a spectral degeneracy occurs.
We compute these topological numbers for three different models: two having an underlying
regular dynamics, the third-one having a chaotic dynamics. We discuss the role played by
the separatrix-states, the effects of quantum tunneling (symmetry effects) and of a classically
chaotic dynamics in the spectrum of the Chern indices. The values taken by those indices
are interpreted in terms of a phase-space distribution function.

I) Introduction.
In 1980, K. von Klitzing et al showed the remarkable result about the (integer) quantization
of the Hall conductivity 0y for 2D electrons. In the following years, several explanations of
this effect were proposed. In particular, using a single-particle model of electrons in a periodic
potential V{(z,y) (the crystal lattice) and subjected to a transverse magnetic field, Thouless et
al [1] demonstrated that sy is quantized in integer multiples of e2/h whenever the Fermi level
lies in a spectral gap. Their explanation is topological in nature, since they related the averaged
Kubo-formula for the conductivity to a Chern index, which is invariant under perturbations.

For high magnetic fields, the coupling between the different Landau levels can be neglected
(Lowest Landau Level approximation) and the electron’s motion is described by an effective
one-dimensional hamiltonian H (p, ¢) periodic in position as well as in momentum, For example,
if V(z,y) = cos(2rz) + acos(2ry), then the effective Hamiltonian js H (p,q) = cos(27p) +
acos(2rg) (Harper’s hamiltonian). Working in this approximation, Arovas et al (2] provided
an interpretation of the values of the Hall conductivity in terms of the localization properties
of the eigenstates. Since the system is periodic in both directions p and g, it happens that in
the process of quantization two quantal parameters (61,62) can be introduced, related to the
periodicity of the wave function under translations by an elementary cell. In agreement with
the Thouless interpretation of localization [3], they found that current-cairrying states are highly
sensitive to changes of the boundary conditions.




From a dynamical point of view the LLL dynamics is integrable, since it corresponds to a
one-dimensional motion and the energy is conserved. For lower magnetic fields we expect the
electron’s motion to obey chaotic solutions. An effective way to include the chaoticity into the
electron’s dynamics and at the same time remain in a doubly-periodic two-dimensional phase
space is to consider maps instead of hamiltonians. The map can be considered as a Poincaré
surface of section of the full electron’s dynamics taking place on a four-dimensional phase space,
In Ref.[4] it was shown how Chern indices can be adapted to maps in order to study the structure
of eigenstates in the fully chaotic regime as well as the quantum-mechanical transition when the
underlying classical dynamics changes from integrable to chaotic.

The quantization of chaotic maps offers the opportunity to analyze the quantum mechanics
of a classically chaotic motion while minimizing the mathematical complexities. The purpose
of this paper is to study the behaviour of eigenvalues and eigenstates of classically integrable
and chaotic systems under changes of the boundary conditions (8y,82), following the approach
of Ref.[4]. For this purpose, we will combine two different objects: the Chern indices and the
Husimi functions. The Chern index characterizes the sensitivity of eigenfunctions to changes
of the boundary conditions. A zero Chern index means weak dependence (no sensitivity), and
we said that the wave function is localized. On the contrary, when the Chern index is different
from zero then the wave function is delocalized. Wave functions of quantized fully chaotic maps
were found to have (generically) a non-zero Chern index [4]. -

On the other hand, the Husimi function, which provides a phase-space representation of
quantum states, complements the information provided by the Chern index. This is because i)
it can often be directly compared with classical distributions in phase space and ii) it allows a
direct phase-space visualization of the modifications induced on an eigenstate by changes of the
boundary conditions.

Tn sections II, TII and TV we briefly introduce the quanturn mechanics associated to a two-
dimensional toroidal phase space, the coherent-state representation (which allows to introduce
the Husimi function) and the definition of the Chern index with some of its properties, respec-
tively. Then we consider integrable systems. In this case, for trajectories which don’t turn
around the toroidal phase space (i.e. trajectories contractible to a point), W.K.B. theory gives a
semi-classical expression for the eigenfunctions with an exponentially small sensitivity to changes
of (81, 02). The quantum particle remains, for arbitrary boundary conditions, exponentially lo-
calized around the quantized classical trajectory. This implies the vanishing of the Chern index
for those states [4]. In section V, we will consider a model in which the state having a non zero
Chern index is associated to a non contractible separatrix, whose energy changes as a parameter
is varied.

However, we find in general that even for integrable systems the Chern indices are not zero

whenever the quantized hamiltonian is invariant under "smaller” translations Tgl m ! ™' with
integers n,n’ < m,m’ (for example, the hamiltonian H (p,q) = cos(4mp)+ acos(2rq) is invariant
under T;,/ 2, See below the definition of the operators TQ and Tp). Contrarily to the preceding
case, due to a resonance effect between degenerate trajectories (related to tunneling) the Chern
index is non-zero for all the eigenstates. In section VI we study, in a model with three wells,



how this resonance effect disappears as the "smaller” symmetry is broken.

Finally, in section VII we also study some consequences of the existence of "smaller” sym-
metries on quantized chaotic maps. These topics are treated briefly. More extensive analytical
as well as numerical results will be published elsewhere [5].

II) Quantum mechanics on the torus.

We consider a one-degree-of-freedom Hamiltonian on the plane, periodic with period € in
position and P in momentum

H{q,p)=H(g+Q,p)=H(g,p+ P). (1)

By identifying all the domains of sides (Q, P), the classical mechanics can be restricted to a
torus. Quantum mechanically, Eq.(1) reads

[TQfﬂ] = [TP’fI] =0, (2)
where (Tq, Tp) are the translations operators in position and momentum, respectively
ij — ¢~ '9B/A Tp = e'Pilh,

‘The three operators H, TQ,TP commute if in addition {Tq,f’p] = 0, which is equivalent to
QP = Nh with N ¢ IN. The latter equation, which we henceforth assume to be true, has
a geometrical interpretation: the total volume of the classical phase space must be an integer
multiple of Planck’s constant. N is therefore interpreted as the number of quantum states in
Hilbert space. Such a relation, which holds exactly in the case of a toroidal geometry, generally
-occurs when we deal with quantum mechanics on a compact phase space and is reminiscent of
the Weyl or Thomas-Fermi semiclassical approximation of the number of states up to energy F.
Correspondingly, the classical limit is obtained when N — co.
A state [¥ > is an eigenvector of the unitary operator TQ and Tp if:

To|® >= 1| >
; 6 (3)
Tpl‘I’ >= et QI'J] >,

In this way, a couple of parameters (8;,8;) € [0;2x]? characterizes the N-dimensional Hilbert
space Hy(8y,02). Equations (2) guarantee the invariance of that space under the time evolution.
Therefore for a given classical dynamies on the torus with hamiltonian H (p, ), there are several
quantum dynamics, one for each (81,8} € [0; 27]? acting on the Hilbert space Hy (01,8;). The
stationary Schrédinger equation in Hn(f,8:) can be written

H|9,(6,,0:) >= En(8:,05)|9,,(8,,6,) > n=1-N.

In the case of maps, quantum-mechanically the system is defined by a one-step evolution operator
U. The eigenvalue problem now takes the form

U|€,(81,6,) >= e En08)|g, (5,,0,) > n=1- N, (4



where E, € [—m;x]is the quasi-energy.
1I1) Coherent-state representation.

A coherent state |gp > of the plane is a gaussian wave packet with mean-values:
<j>=¢q, <p>=p, AgAp=h/2 (<.>=<gp||gp>), givenby [6, 7]

sat 1 .
lgp >= |z >=¢€"*"[0> z= ﬁ(q—zp)-

The family of all coherent states |z > forms an over-complete basis and defines the Fock-
Bargmann representation of a state |¥ > :

P(z) =< z(¥ > : analytic function of .

For a state |¥ >¢€ Hy (01, 82), 1(2) is a Jacobi theta-function with exactly N zeros ({zx{01, 02))k=1-N)
on the torus [8]. The Husimi distribution of the state |¥ > represents a quasi-probability density

on the phase space (it is not a probability density because coherent states are not orthogonal,

but they tend to be so in the classical limit):

< qpl® > |?

IV) The Chern index.

When (6, 8;) are varied, E,(61,92) defines a band, and | @, (6,,02) > defines a surface in
the space of states - the canonical complex line bundle with a U (1) fiber corresponding to the
phase [9] - whose topology can be characterized by an integer, the Chern index, provided no
degeneracy occurs {9, 10]:

Co = if/ 40,8y (< B, CnlBs, Tn > — < D5, ¥ 5, Ty >), n=1-N. (5

An interpretation of the Chern index in terms of the behaviour of its associated Husimi
function is the following: if there is a point (go, o) in phase space for which Wy g, 62){q0s Po)
is never zero when the parameters {0y, 0;) are varied, then C,, = 0. We say in this case that
the wave function is localized (in phase space; in fact, the same argument can be employed in
any other representation). Thus eigenstates of guantized classically integrable systems, whose
Husimi distribution is localized on a contractible trajectory, will generically have zero Chern
index. In general, the Chern index counts the algebraic number of times the zeros of the wave
function cover each point z; of the phase space (+1 or -1 according to the orientation of the
mapping zx (61, 82), and the result doesn’t depend on the point z chosen) (11, 2].

The Chern index of a given quantum state |¥, > can only change when a spectral degen-
eracy between bands occur. For a conical intersection, the Chern index changes by x1. For
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a one-parameter hamiltonian H (7), level-crossings can only happen at isolated points of the
parameter space (6,6;,7). But the sum of the Chern numbers of the (generically two) touching
bands is conserved [10]. This implies that the total sum of the Chern indices is conserved, and

N

can be shown to be one 3} C,, = 1. Away from degeneracies, the Chern index of each band
n=1

remains constant. In the quantum Hall effect, C,, measures the conductivity of the band when

a weak electric field is applied to the system (the linear response approximation) [1}. In this
context, a non zero Chern index (delocalized state) is synonymous of a conducting state.

V) Separatrix and delocalized states.

As we said before, for an integrable dynamics eigenstates associated with trajectories con-
tractible to a point will have generically a zero Chern index. We say generically because in the
next section we will see an example where, due to an additional symmetry, trajectories are in

N
resonance, and all quantum states have a non-zero Chern index. Furthermore, >* €, = 1. This
n=1
means that if for example we take the Harper model, whose phase-space energy curves are shown

in Fig.1, then only the quantum states associated with the separatrix (which is not contractible
to a point) is expected to have C, = 1 and therefore to be delocalized. For odd N , only one
‘state will be associated to the separatrix.

In order to stress this association between a non-contractible separatrix and a non-zero Chern
index, we now consider a modified Harper hamiltonian depending on a parameter D ¢ [0;1], in
order to move up the energy of the classical separatrix and force the Chern index equal to one
to pass from one eigenstate to another with higher energy. This "hopping” of the Chern index
;can only happen through spectral degeneracies between the bands.

' The Harper-like hamiltonian is:

H(p,q) = — cos(2xq) — cos(2rp) — D cos(2m(g — p)). (6)

Figure 2 shows some energy bands and their associated Chern indices for N = 21 as a function
of D. Each band is represented by two lines, its upper and lower values in {61, 6,)-space. To be
able to identify neighbouring bands, we have alternated between continuous and dashed-lines
to represent them. Degeneracies between neighbouring bands are indicated by a short vertieal
segment joining the degenerate bands. The values for the Chern indices indicated in the Figure
hold for each band in the whole D-interval between degeneracies. When not explicitly indicated,
it must be assumed that C,, = 0.

Our first observation is that, for all energies, there is always a state that follows the non-
contractible separatrix, whose energy is represented by a dashed-line going upwards in energy
as a function of D. This is done through a series of degeneracies between neighbouring bands.
In this way, the energy of the state having C = 1 increases, and closely following the classical
energy curve of the separatrix. The second separatrix, appearing at D = 0.5 and represented
by a dashed line going downwards in energy in Fig.2, is contractible to a peint and does not
support a state with C # 0 (cf section VII). Secondly, the bands with C,, = 0 are associate:




with quantized trajectories contractible to a point. The narrowness of these bands, far away
from the separatrix, is explained by the fact that in this case the WKB expression for the energy
has an exponentially small dependence on (6, 6;) {12].

In Figure 3 we plot the Husimi function of the delocalized state ¥;3 (C13 = 1) for D = 0.5,
N = 21 and for several values of (81, 8;). The plot uses a grey scale, with higher (lower) inten-
sities in black (white}. The small stars indicate the position of the 21 zeros of that state. As
the parameters {f, ;) are varied, a zero passes through each point of phase space once [2] (see
Figure 4). '

VI) A three-well hamiltonian,

In the previous model, only the separatrix was responsible for a non-zero Chern index. We
now consider an integrable model in which all the Chern indices are non-zero. This behaviour
is related to a resonant effect between different degenerate classical trajectories. A discussion of
this resonant effect as well as a computation of the Chern indices can also be found in [1].

The following Hamiltonian has, for V = 0, three wells with a T};./ 3 symmetry
T 1 T
H(g,p) = - cos(2rq) — cos(6mp) — V cos(87p + E) -3 cos(2mq + Z) (7)

The classical phase-space trajectories are shown in Fig.5. A simple semiclassical analysis (ue-
glecting tunneling effects) fails in this case because it would give three degenerate bands. In
fact, there is an exponentially small splitting between them (as in the ordinary tunnelling effect
between two symmetric wells), and the eigenfunction of each band can have (depending on the
value of (#),6,)) a non-zero amplitude in each of the three wells. Because the three wells are
symmetric under translation, the tunneling effect creates a non-contractible loop joining the
three wells in the p direction, and this creates a strong dependence of each band on (#;,9,).
This dependence makes the Husimi distribution of a given band to oscillate between the three
wells as a function of (84, 82), thus producing a non-zero Chern index.

The energy bands and the Chern indices are shown in Fig.6 for N = 11 as a function of
V (see the caption of Figure 2). We restrict our discussion to the states ¥y, ¥1p, ¥y, (Fig.6b),
corresponding to states located in the three wells in the center of the phase space. When
V = 0, we observe non-zero Chern indices {whose value has been analytically expressed by
Thouless et al. [1] and are given, for N = 11, by -1,2,-1,-1,2,-1,2,-1,-1,2,-1for n =
1,---,11, respectively). As 6, is varied, the states g, ¥y5, ¥;; oscillate between the three wells,
in correspondence with the value of the Chern index (see Figures 7-8). In Fig.8 we show how
the quantum particle in the state ¥;; tunnels from one well to the other as a function of &; in
the Husimi representation. For a given value of 8, the wave function is concentrated on one of
two wells. The only values of §; where the amplitude is shared between two wells are around
the transition lines indicated in Figure 7,
As V increases, the symmetry is broken, and the states Wg, ¥, ¥, get localized in one well for
arbitrary (6;,8;) (the well 1,2,3, respectively) and get a zero Chern index. This behaviour is
expected away from the separatrix because if there is a sufficient asymmetry between the thre=



wells, then WKB theory {without tunneling) gives a good approximation for the individual states
and, as discussed before, the quantum state is exponentially localized on the quantized classical
orbit and the Chern indices are zero. The transition between non-zero and zero Chern indices
is made through two successive degeneracies (figure 6b). Figure 9 shows the Husimi density of
the state ¥1p as a function of (f,6,) for a phase-space point located in the well number two.
Before the first degeneracy Cip = 2, and correspondingly the density gets zero twice with the
same algebraic number as (4,,8;) are varied. After the first degeneracy, Cjo = 1 and the density
gets zero only once. Finally, after the second degeneracy, the density is always positive.

The resonance effect observed for V' = 0 making all the Chern indices different from zero is
due to the existence of a special symmetry T,lg/ °. As the symmetry is broken (V # 0), the effect
disappears and we recover the generic situation for integrable systems in which all the states
(except the separatrix states) have a zero Chern index. For an arbitrary (random} Hamiltonian
on the torus, Y. Huo et al [13] have shown that statistically the Chern indices are zero except
for a thin range in the middle of the spectrum (whose width tends to zero in the semiclassical
limit N — oo) where the Chern indices are non-zero and are therefore responsible for the con-
ductivity. This result is in accordance with the results obtained in the two previous models.

VII) Chaotic dynamics: the kicked Harper model

We introduce a chaotic dynamics by adding a time-dependent term to a Hamiltonian. If
the perturbation is periodic in time, then in general we can integrate the classical equations of
motion over one period and obtain a map of the torus onto itself. By Floquet’s theorem, the
unitary evolution operator that quantizes the map will have N stationary states given by Eq.(4).
As before, a Chern index can be associated to each band {4]. Our purpose now is to study their
Behaviour when the classical motion is no longer integrable.

We consider the kicked Harper hamiltonian [4]

H(t) = - cos(2xp) — cos(2rg) K (t)
where K(t) = Tn%% §(t — nT).

Classically, we obtain the stroboscopic map between two successive kicks by integrating the
equations of motion over one period T

'} Tagr =T +ysin(27y,) (8)
Ynt1 = Yn — ¥sin(27z, 1)

withy = 2rT/QP, =z =¢q/Q, y=p/P. When v is varied, the system undergoes a transition
from a regular to a chaotic dynamics (Figure 10).
The quantum propagator is given by

U= T(e_"_;fﬂTH(t)dt) = exp(iNy cos(27&)) exp(i Ny cos(27§)) (9)

with eigenvalue problem (4). In Figure 11 we show the bands and the Chern indices for N = 11
as a function of 4. It must be noted that the variation of the Chern index at degeneracies s
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often more than one. This is a nongeneric behaviour which is due to the symmetries of the
kicked Harper model.

In Figure 11, we observe three different regimes:

- In the first one, for v € [0;0.16(~ 5% )] the classical dynamics is mostly regular, and the Chern
indices coincide with those of the unperturbed Harper model.

- In the second regime, for ¥ € [0.16; 0.4], classically the dynamics is mixed. Now the quasi-energy
bands cross each-other. The Chern indices remain unchanged before and after the crossing. In
fact, we find that when two quasi-energies are crossing, two degeneracies change the Chern
indices of the colliding bands on a very short range of v (this width is related to the width
of the bands), except for ¥, ¥1; because of the symmetry of the spectrum. For example, the
bands ¥, ¥, has two degeneracies at ¥ = 0.194557 and v = 0.194572, and between them the
Chern index is C = +1. The same happens between the bands ¥3, ¥4 for v = 0.2637 — 0.2651.
Figure 12 shows a detail of the latter crossing, and the Husimi plot of ¥3 for v = 0.2645 and
for several values of (8;,6;). Because of the narrowness of the y-interval, most of these small
resonances between crossing bands in the mixed regime were not detected nor indicated in the
original computation of the Chern indices for the kicked Harper model in [4].

As in section VI, this effect is connected to a resonance between quantized classically in-

variant tori (tunneling between the two tori). Without symmetries, there would have been an
exponentially small repulsion between the bands, no degeneracies and no resonance effect.
- In the third regime, for ¥ > 0.4, the classical dynamies is dominated by a chaotic motion. Now
there are many crossings between the bands, and for sufficiently high -, all the Chern indices
are different from zero. The width of the bands has considerably increased if compared to the
two preceding regimes.

F.F. gratefully acknowledges the hospitality of the Institut de Physique Nucléaire at Orsay
during his visits.
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Figure 1: Phase-space energy contour-lines of the Hamiltonian (6). The separatrix is repre-
sented by a the solid line. A bifurcation and a new separatrix appears at D = 0.5. (a): D=0
(b): D = 0.75.

Figure 2: Energy bands and their associated Chern indices for the spectrum of the Hamilto-
nian (6) for N = 21, in the neighbourhood of the separatrix. Each band is represented by two
lines (upper and lower bound), alternatively plotted using a continuous or a dotted line. The
energy of the classical separatrix is indicated by a dashed line. Vertical segments indicate the
occurrence of degeneracies.

Figure 3: Hamiltonian (6). The Husimi distribution of the band ¥3 with a Chern index equal
to one, for D = 0.5 and N = 21, for different value of (6,,8;). The stars correspond to the zeros
of the distribution. We are using a grey scale with high (low) intensity regions in black (white).
(a): (81,82) = (x,7). There is large intensity on the unstable fix points.

(b): {61,82) = (0,7). A zerois located at the unstable fix point (g,p) = (0,0.5).

(c): (61,02) = (m,0). A zero is located at the other unstable fix point (g,p) = (0.5,0).

Figure 4: Quasi-probability density of ¥,3 at the unstable fix points as a function of (61, 0;)
(see caption to Figure 3). We observe that as (8, ,) are varied, the density goes to zero once;
this is because the Chern index is one [2}.

(a): {(¢,p) = (0.5,0) (b): (g,p) = (0,0.5)

Figure 5: Energy-contour lines of the Hamiltonian {7).

(a): for V = 0, the three wells of maximum energy are symmetric under translation by 1/3 in
the p direction.

(b): for V = 0.2, the symmetry is broken.

Figure 6: Bands and Chern indices for the spectrum of the hamiltonian (7} for N = 11.

(a) The total spectrum.

(b) Detail of the spectrum for the bands ¥y, ¥1g, ¥y near V = 0, showing two degeneracies
(vertical lines).

Figure 7: The well number (see Fig.5) where @y, ¥y, ¥, are localized as &, is varied, for
V = 0 and N = 11. For example, ¥, makes twice the cycle 2 — 1 — 3; correspondingly, its
Chern number is C = +2. '

Figure 8: Husimi distribution of ¥y, for N = 11, V = 0 for several values of (81,82)-
(a): ;=5 (b): =1 (c): ;=3
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Figure 9: Probability density of the state ¥ g in the well number 2 for N = 11 as a function
(6, 82) for several values of V.

(a)V = 0.01: before the first degeneracy. The Husimi function vanishes twice in the (1,8:)-
plane (the zeros are marked by stars); correspondingly, the Chern index is two.

(b)V = 0.065: between the two degeneracies. The Husimi function vanishes once in the (61, 82)-
plane; correspondingly, the Chern index is one.

{c) V = 0.14: after the degeneracies. The Husimi function is strictly positive in all the (81,862)-
plane; correspondingly, the Chern index is zero.

Figure 10: Phase-space trajectories of the classical map (8) for:
(a)y — 0: integrable regime.

(b)ry = 0.3: mixed regime.

(c):y = 0.7: chaotic regime.

Figure 11: Quasi-energy bands and Chern indices for the propagator (9) for v € [0; 0.8]. As be-
fore, vertical segments indicate the occurrence of degeneracies between two neighbouring bands.
The spectrum is symmetric with respect to F = 0.

Figure 12: The resonance between ¥3 and ¥, at v = 0.2645, N = 11,

(a) Detail of the spectrum.
Husimi distribution of ¥ for (b): (81,82) = (0,0)  (c): (61,62) = (1,1) (d): (61,8) = (=, 7).
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