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Abstract. The Born—Oppenheimer approximation can generally be applied when a quantum
system is coupled with another comparatively slower system which is treated classically: for a
fixed classical state, one considers a stationary quantum vector of the quantum system.
Geometrically, this gives a vector bundle over the classical phase space of the slow motion.
The topology of this bundle is characterized by integral Chern classes. In the case where the
whole system is isolated with a discrete energy spectrum, we show that these integers have a direct
manifestation in the qualitative structure of this spectrum: the spectrum is formed by groups of
levels and these integers determine the precise number of levels in each group.
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1. Introduction

Many mechanical systems can be considered as a fast dynamical system coupled with
a comparatively slower one. In quantum mechanics this occurs, for example, in mol-
ecular dynamics, where usually the electrons have a fast motion compared to the
motion of nuclei. This is also the case, e.g., for molecules like CD4, where the
vibrational motion of the nuclei is faster than the rotation of the molecule. For these
quantum systems, the Born-Oppenheimer approximation is an appropriate
approach which consists first in treating the slow motion as classical, characterized
by classical dynamical variables X. Then for each fixed value of X, one associates
the instantaneous quantum stationary states of the fast dynamical system
[V, (X)), with energies E,(X) (the index n is usually discrete). When the classical
states X belong to a two-dimensional compact phase space P (this is the case
for a rotational motion which occurs on a sphere), this description gives us a discrete
sequence of energy bands numbered by 7, see Figure 1(a). For a fixed n, the energy
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Figure 1. (a) The semi-quantal band spectrum of the CD4 molecule (taken from [20]). The large-scale three
bands structure comes from the quantization of the fast vibrational motion, while the slower rotational
motion is treated classically, giving a continuous internal structure of the bands. C, is the topological Chern
index of the band n. The value of the integer C, can change when a degeneracy occurs between consecutive
bands (vertical bars).

(b) The exact quantum spectrum. The fine discrete structure of the bands comes from the quantization of
the rotational motion. The number of levels N, in band # is related to the Chern index C, by formula (1).
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varies continuously in the range of X — E,(X), whereas the family of eigenvectors
X — |y,(X)) describes a complex line bundle over P. This line bundle can have
a nontrivial topology, characterized by an integer C, € Z, the Chern index [11, 14].
This integer reveals a possible global twist of the state [y, (X)) when X varies over
P, coming from a strong enough and topologically nontrivial coupling between
the slow and fast motion.

In this paper we would like to show that this somewhat abstract topological index
has a precise and simple manifestation in the exact spectrum. If the total system is
isolated from the outside, it is described by a total Hamiltonian H with a discrete
spectrum E;. These discrete energy levels belong to the continuous energy bands
of the Born—Oppenheimer approximation. When there is no coupling, the number
of levels N, in each band #n is a constant N which comes from the quantization
of the classical variable X. In the case of the slow rotational motion with angular
momentum j, the phase space P is the sphere S?, and this constant is
N =2j+ 1. When there is a coupling, we will show that the bands can have
additional energy levels, in relation with the topological integer:

Nn = (2]+ 1) - Cn- (1)

The strategy we will use to prove this relation, is to observe that N, and C, can
change only when a contact (a degeneracy) occurs between two consecutive bands.
On the one hand, a degeneracy between two bands changes the topology in the
BO approximation by AC,, and on the other hand, some levels of the exact spectrum
pass from one band to the other, giving a redistribution of levels AN,,. We will give a
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normal form for a generic contact and show that AN, = —AC,,. This redistribution of
levels between bands is also well observed on experimental spectra, see Figure 1(b).

In this paper we will discuss this phenomena with a model of two coupled spins, J
and S. The spin S will be the fast variable, whereas J will be slower and treated in the
semi-classical limit. This paper presents more details on the results which have been
presented in [10], where the applications to molecular physics have been emphasized,
and follows after numerous works about qualitative and global analysis of molecular
spectra [5, 12, 16].

In the general case where the classical phase space P is not the two-sphere, we have
to consider vector bundles of any dimension instead of only line bundles, and for-
mula (1) has to be replaced by a more general expression, which is the Atiyah-Singer
index formula. See [4] for this general formulation in deformation quantization, or
[7] in geometric quantization.

2. The Classical Limit of the Angular Momentum Dynamics

In this section, we recall some well known results about the angular momentum
coherent states, and their role to define the classical limit, see [15] and [21]. We would
like to stress the correspondence between the quantum dynamics of an angular
momentum with a fixed modulus j (integer or half integer: 2j € IN), and the classical
dynamics of an angular momentum vector Jg of length 1. Jg belongs to a sphere
noted sz, which is the classical phase space of the angular momentum.

2.1. THE su(2) ALGEBRA AND THE COHERENT STATES

The quantum hermitian operators of the spin Jy, J,, J. form an irreducible represen-
tation of the su(2) algebra, in a Hilbert space H; with dimension 2j 4 1. A basis are
the vectors |m), m=—j,—j+1,...,4+j, eigenvectors of the J, operator:
J.|m) = m|m). An element of the group g € SU(2) is represented by the unitary
operator

R(a) = exp(—io3J.) exp(—iaad,) exp(—ion J), )

acting in H;, where a = (o1, a2, a3) are the Euler angles.

The state [m = —j) corresponds to the classical vector Ji = (0, 0, —1). In order to
obtain a quantum state |J;) associated to the classical vector J with any spherical
coordinates (0, ¢) we only need to apply the rotation operator (2) on |m = —j), with
a= (0,0 — =, @), see Figure 2(a). Such a state |J.) = R(a)| — ) is called a coherent
state. One can show that ([21]):

.02
|(Jlda) = cos? (C;’) ~1-1 4 o), (3)

where © is the angle between J/; and Jg on the sphere.
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Figure 2. (a) Husimi distribution Husy, (J))) = |(J£1|Jcl>|2 of a coherent state |J), with its zeros.
(b) Husimi distribution Hus,,,,(J})) = | < J/,|m)|? of the state |m) with its zeros.

More generally, for every state |yy) € H;, one can define its Husimi distribution [18,
19, 21]:

Husy(Jo) = }(JCIWHZ’

which is a positive function on the sphere.

From (3), we see that in the limit j — oo, the Husimi distribution of a coherent
state |J;) becomes localized on the phase space, at point J, with a width
~1/J/j. Let us also remark that if J/; and Jq are opposite, then the function
|(J1Jc1)| is zero with order 2j.

As a second example, consider the state |m). One obtains that Hus,(Jc) =
|(Ja|m)|? is maximum on the line (Jo).= m/j as expected, with a width of order
~ 1/4/j, and |(J.|m)| has a zero of order (j — m) at point J; = (0,0, 1), and a zero
of order (j +m) in Jg = (0,0, —1).

2.2. EXPECTATION VALUES OF OPERATORS
One can compute [21]:

<Jcl|Jz/j|Jcl> =cosl = Jcl,z,

(JalJx/jlde) = sinOcos @ = Iy x,

1

(JalJ2//?3a) = cos? 0 + 51 cos? ) = (Jau-) '+ - -,
and more generally, the expectation value of an operator O over coherent states gives
a function on the sphere, noted o(Ja), called the Berezin symbol of the operator (or

Normal symbol). The operators constructed from the elementary operators J/j as
above, have a symbol which admits a formal series in power of 1/;:

1
o(Je) = oo(Ja) +J_.‘71(Jcl) +ee
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The map 0— o 1s injective [3], so the symbol characterizes the operator. The first
term oo(J¢) is the principal symbol, or classical observable. In the limit j — oo
the symbols are dense in the space of C* functions on the sphere. See [3, 17]
for the more general ‘deformation quantization’ framework.

3. Coupling Between Two Spins

Let us consider now two spins J and S as above, acting in separate spaces H; and H;
with respective dimensions 2j + 1 and 2s+ 1. These two spins will be coupled
dynamically by an Hamiltonian operator H acting in the total quantum space
Hior = H; ® Hy with dimension (27 4+ 1)(2s +1). We will suppose that H is con-
structed from the elementary operators J/j, and S, because in the sequel, we will
focus on the semi-classical limit j — oco. A general form of H is therefore:

7] 1 a b yc Qd S
H = ; W Ca,h,C,d,E,_f‘]_JOJ+S_S(E;S+7 (4)
a,...f =0

sssss

simple example:
H=(-8. +/1;.S, (5)

where /4 € [0, 1] is a fixed parameter, which allows to consider different types of
dynamics: for 4 = 0, there is no coupling, whereas for A = 1, this is the well known
‘spin-orbit’ coupling.

4. The Born—Oppenheimer or Semiquantal Description

In the limit j — oo, we have seen that it is convenient to consider the classical
dynamics of J, and the ‘semi-quantal’ symbol of H:

Hy(Jo) = (Jal H|Ja),

(‘semiquantal’ because S remains an operator). This is a function on phase space sz
with matrix values: for each value of Jy, Hy(J.) is a Hermitian operator acting
in H,. Its symbol admits a formal power series in 1/j:

. . 1«
I_IS(JCI) = HO(JCI) +}H1(Jcl) + -
We consider the spectrum of its principal symbol:

HyI)lW (o) = E(J)W(Ja)), g=—s.....+s

The idea of Born—Oppenheimer is to stress that because S is a fast variable, its state
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should be an instantaneous stationary state at every time: |{/,(Ja)), when Joi(7) moves
more slowly. Theorem 5.2 below will give a precise formulation of this idea.

Suppose that for a fixed value of g, the eigenvalue E,(J) is isolated, for every
Ja € S/2 (We will discuss this hypothesis in the next section.) Then the range of
energy levels {E,j,, Jo € sz} for fixed g, is called the energy band of the level g.
The associated eigenvector [ (Jq)) is defined up to a multiplicative constant,
but the projector P(J.1) on the eigenspace of E,(Jq) is well defined (globally for
all J € sz):

P(Jcl) = |'//g(Jcl)) (‘Pg(Jcl)L (6)

4.1. DESCRIPTION OF THE FIBER BUNDLE OF THE BAND g

For more information on vector bundles and Chern classes, see, for example, [6, 11,
14].
Let us consider the map on sz given by the rank 1 projectors, defined above (6);

P:J, e S} — P(Jy). (7

The image of the projector P(Jy) associated to the point J is a one-dimensional
complex space L(Jo) = Im(P(Ja)) C Hy (spanned by [,(Jc1))). These spaces define
a complex line bundle L — S} where L(Jy) is the fiber over the point Jg € S7.
See Figure 3.

Since now, we note M = S,2 the base manifold, which could be any oriented
surface. It is clear that the fibers of the Moebius strip have a global nontrivial
topology, a ‘twist’. This is similar for the complex fibers L(J.;) which can also have
a nontrivial topology. This topology is characterized by the first Chern class
c1 € HX(M,7) = 7 which can be labeled by an integer, the Chern index C. We
explain now how to compute C [11]:

4.1.1. Levi-Civita Connection, and Curvature

Fibers L(J.)) are continuously related as J varies. These fibers are subspaces of the
fixed space H,, and the scalar product on H, induces a particular connection between
these fibers, the Levi-Civita connection. One can express it with the covariant deriva-
tive of a section. On an open set U C M, we note A” the space of p-forms defined on
U, and 47(L) the space of p-forms defined on U with values in L. 4 section s € A°(L)
isa C®map:Jgy € U — s(Jq) € L(J) . The covariant derivative D gives information
on whether the section follows or not the connection. D can be expressed explicitly
with the projector P:

s e A%L) — Ds = Pds € A'(L).
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(a) )

Figure 3. (a) The complex line bundle L — S7 A normalized eigenvector |i/,(Ja)) belongs to the fiber L(Ja).
Such a vector is defined up to a phase (a c1rc1e)

(b) Analogous picture for the real line bundle over the circle S'. This is the Moebius strip, with a nontrivial
global topology.

D satisfies the ‘Leibnitz rule’: for s € A°(L), f € C*(U),

D(f.s) =df.s + f.Ds.

(Proof. D(f.s) = Pd(fs) = dfPs + fPds = df .s + f.Ds.)
and ‘compatibility with the metric’:

d(s,s') = (Ds, §') + (s, D).

(Proof. d{s,s’) = (ds,s") + (s, ds’) = (ds, Ps') + (Ps, ds’) = (Pds, s') + (s, Pds’) =
(Ds, s’y + (s, Ds').)

In practice, one chooses a local section » which never vanishes on an open set
U c M. So r gives a local trivialization of L, and we write:

Dr=20,r, 0,eAd', I1-form.

The 1-form 6, characterizes the connection on U, but depends on the choice of r. If r
is normalized, (|r|> = 1), then 6, takes values in iR, because

0=d({r, ry=(Dr, r)+(r, Dr)=0,+0,.

The connection D can be extended to A4”(L) — APT'(L) by setting for y € 47,
se A%L),

Dy ®s)=dy ® s+ (=1 A Ds,
then for y € A4(L), we have

D An) =dy An+ (=D A Dn.
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Remark that for s € A°(L), f € C®(U), we have
D*(f.s) = DAf ® s +fDs) = —df A Ds+df A Ds+f A D*s = f.D*s € A*(L).
So D? is a tensor, and at point J, one has

(DZ)Jde A(ZJd) ® Hom(L(Jy), L(Jo)) = A(sz).

One can write D’s = @s, ® € A%. If r is a never vanishing section on U, then
D*r = D(0,r) = d0,r — 0, A Dr = d6,r — 0, A 0, = d0,r,

so ® = df,, where O takes values in /R, and does not depend on the choice of r.
One can also show that ® = PdP A dP.

4.1.2. Parallel Transport and Holonomy
The section s is said to be parallel transported in the direction X € Ty, M, at point
Jcl € M, if DXs =0.

If y(t) € M, t € [0, 1] is a path, and r a section which never vanishes on y, then for
any section s, one can write s(y(¢)) = f(y(£))r(y(?)) with f(¢) € C*°[0, 1]. If s is parallel
transported along 7y, then

_df0O)

0= D}"(t)s =74 t+ 0;(?/(1))f(l)

So there is a unique solution f(1) = f(0).e f o If, moreover, y is a closed path, one
sets:

eiq)‘/ :& = e_ f Hr’
f(0)
which does not depend on the parameterization of the path y. The holonomy of the
connection, or Berry’s phase [2] along y is ¢, = iﬁ/ 0,.

4.1.3. Chern Index and Topology of the Fiber Bundle
The first Chern class is:

i
ci(L) = 7 [@] € Hp (M, 7).
This is an integer class, which means that
C:/ ci(L) e Z (8)
M

is an integer, the Chern index. C characterizes the topology of L, and does not depend
on the connection.

Proof. If M = S?, and if y C M is a closed curve, which separates M in two simply
connected parts: M = M; U M;, and y = dM; = —dM,. One chooses sections which
not vanish on M; and M, and with Stokes theorem, the holonomy along 7, is
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Q= lf, O0c =i [y, ® =—i [, ©[2n]. Soi/2x [,, ® € Z. (If M is any surface, M can
be represented by a disk D with appropriate identifications of its boundary 9D,
and we take y = 9D.)

4.1.4. Expression of the Index C from the Zeros of a Section

If s is a global section of the fiber L with generic zeros, then one can associate a sign
1, = £1 at each zero p, which is the degree of the map J. € Sj2 —s(Jg)eLina
neighborhood of the zero. Then the sum, which does not depend on the section s,
is the Chern index:

C = le. (9)
p

If the zeros are not generic, they can overlap, and 1, € Z.

Proof. One can choose a particular section with zero curvature outside the disks D,
surrounding each isolated zero p: the domain is U = M \ (U,D,), and one has to set
0,=0 on U. On every disk D,, with a local trivialization r, one has s =f.r,
Ds = (df + 0,f)r. Using Stokes’ theorem:

i i i i —df
c='fe=-L /d@,.:— 7§ 6, = L 7§ v
21 Jur 21 Xp: D, 2n ; aD, 2n Xp: aD, S
and if on 9D, o is a polar coordinate, and f(a) = ¢?®, then df /f = ide, so

1
C=3-2 (9@m =) =) 1,
P P

There is another equivalent expression of the Chern index:

4.1.5. Expression of the Index C from the Intersection of Im (P) with a Hyperplane
Let us consider Im(P), the image 0ij2 in the projective space P(Hy) by themap (7). If
H is an hyperplane of P(H,) (i.e. hyperplane of H,), then the intersection
I = HNIm(P) consists of isolated points p (generically), and one can associate
to each point p, an orientation 1, = £1, depending on the relative orientations of
H and Im(P). Then

C=Y 1. (10)
P
If the points p overlap, one must count the multiplicities, and 1, € Z.

To justify this formula from the previous one, consider the hyperplane orthogonal to
a fixed vector [):

H={1y) €M st (W) =0}.
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Figure 4. In this example, one can observe that a global section (full line) of the Moebius strip, vanishes an
odd number of times: the zeros of a global section reveal a nontrivial topology of the bundle.

In this case, s(Jo) = PJe)Yo) € L(Ja) is a global section of L, and formula (9) is
Equation (10).

Below we will calculate 1, by choosing a local section [)(J.1)) which does not
vanish near p, and calculate the degree of the map: Jog — (Y (Ja)|y,) € C.

4.1.6. Additivity of the Indices
From the additivity of the first Chern class [6], and because of the triviality of the total
bundle H, — M, one has 3_, ci(Lg) = c1(BgLg) = c1(Hy) = 0. So o Ce=0.

g=—s

4.2. COMPUTATION OF THE INDICES IN THE SPIN-ORBIT MODEL

We now compute the topological indices of the bands of model Equation (5).

For . =0, I:IS = §. does not depend of J. The eigenvalues E, = g are isolated
(g =—s---+5), and the eigenvectors are independent of J, so the bundles L,
are trivial, and CEE,O) =0.

For /. =1, we have H (J) = (J.1.S) with operators S acting in H,, and with J a
fixed classical parameter. This Hamiltonian generates the rotations of spin S around
the axis Ji. The eigenvalues are then E, =g with (g= —s---+5), and the
eigenvectors |if,(Jc1)) are obtained from the state |m; = g) by a rotation which trans-
forms the axis z into the axis J.. See Figure 5.

In order to calculate Cg4, by the algebraic method explained above, we choose as
reference state a coherent state [y,) = [Sp), and we count the degrees of the zeros
of the map Jo — (Y,(Ja)|So). From the Figure (5), obtained from Figure (2), we
see that when the axis J; moves with direct orientation on the whole sphere, the
(s — g) zeros pass with a positive orientation over the fixed point Sy, whereas the
(s + g) zeros pass with negative orientation. We deduce that

" =(s—9 - (s+8=-2 (1n

Remark. one can obtain the same result with a curvature integral, but this is less
simple, see [1] p. 599.
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Figure 5. The Husimi distribution [(So[y,(Ju)}|* with its zeros, showing that CV=(-9—-(+g=-2g

4.3. GENERIC MODIFICATION OF OPERATORS

4.3.1. Codimension of Generic Degeneracies between Bands

We have supposed that the level E,(J.) has no degeneracies for Jg € S/2 This
hypothesis is justified, because in a generic family of Hermitian matrices,
degeneracies have codimension three; this means that we need to vary three inde-
pendent parameters to find a degeneracy between two levels. To explain that, con-
sider two consecutive levels, and the restriction of the Hermitian matrix to these
two levels. This gives a (2 x 2) matrix 4. One can subtract a multiple of Identity
(i.e. change the reference of energy) so that 4 has zero trace. But a general
(2 x 2) matrix with zero trace can be written as

A:( — x‘”), (12)
X+ 1y +z

with three parameters (x,y,z) € R*, and only the point (x =y =z =0) gives a
degeneracy. This shows that degeneracies have codimension three.
The eigenvalues of A are

Ey =+/x2+ 2+ 22,

The functions EL(x, y, z) form two cones, with a contact conical point at (0, 0, 0).

4.3.2. Variation of the Indices
In our problem, the space of parameters J has dimension dim(S/.z) = 2. We need
then an extra parameter 1 € R, to obtain degeneracies between two bands. (This
is the role of parameter /4 in Equation (5).) In the space (J., 4), one can observe
degeneracies, see Figure 6. We want to show now that a degeneracy will change
the values of Chern indices.

From the additivity of the first Chern class, and because the rank 2 vector bundle
of the two bands is well defined: C) + C, = ¢1(L1 @ Ly) = c1(L] @ L) = C; + .
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®

Figure 6. (a) Two consecutive bands (1 and 2) in the space (E, 1), with a degeneracy at (J7;, 2%). The indices of
the bands are Cy, G, Ci, C.
(b) Same picture in the space (J¢, 4).

So ACy = —ACGC,. Figure 7 shows that the variation AC, is the ‘topological charge of
the degeneracy’.

We have now to calculate AC,. Consider the restriction of the operator H to two
bands, represented by matrix (12). This defines locally a map D:(J., 4) —
(x, y, z), which takes (J7}, 2%) to (0, 0, 0). One can choose the axis of J, and the origin
of 4 such that the degeneracy is at J; = (0,0, —1) and 2 = 0. One can then make a
homotopic deformation of this map, such that in a neighborhood of the degeneracy,
one has x=J,, y=J,, z==4 (the sign + depends if the map D conserves
orientation or not). The local model is then

— :F)L JCl,x - iJcl,y
A= (Jcl,x + iJay £/ ’ (13)

(on Figure 7, a direct frame is (J, J,, —A)!)

The calculation of the topological charge can be made with the algebraic method.
(See also [2] for a computation using the curvature integral.) One can write
Ay =B.S with B = (J,,J,, F4). The Chern index of the bundle for the highest
eigenvalue has been computed in Equation (11) for g = 1/2 (with a change of
orientation) and gives:

AC, = Fl. (14)

5. Manifestation of the Topological Indices in the Exact Spectrum

The natural question is: we have just calculated the topological indices C,,
g=-S,...,+s of the bands in the Born—Oppenheimer approximation. What is
the physical meaning of C,? What is their manifestation in the exact approach
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Figure 7. If we deform continuously the external sphere in the space (4, J), we deduce that AC, = C) — Gy is

the topological charge of the degeneracy, i.e. the Chern index of the fiber bundle associated to the highest
eigenvalue, over a small sphere surrounding the degeneracy.

< -l -0-
<~ - -

@

of the problem? In order to guess the answer, let us study first the quantum
‘spin-orbit’ model (5). Now J is an operator, and no more a classical variable.

5.1. SPECTRUM OF THE SPIN-ORBIT MODEL

For /. =0, one has H = S.. The spectrum has (2s 4+ 1) energy levels E, = g, with
g=—s,...,+s, but each level has multiplicity 2j + 1, because H does not depend
on J. There is thus (2s 4+ 1) groups of levels, in correspondence to each band,
and each group contains

N =2j 41 = dim(H)),

sub-levels.

Fori=1,onehas H = 1 /jJ.S. One can find the spectrum of H by introducing the
total angular momentum N = J + S. Then H= 1/2j(N? — J> — §?). The eigenvalues
of N2 are n(n + 1) withn = (j — s), ..., (j + s) (as soon as j), with multiplicity 2n + 1.
We deduce that the eigenvalues of H are

1
E, :Z_j(n(n+ D)—jG+1) —s(s+1))

(with g =n —j = —s, ..., +s), with multiplicity

NV = (2j + 1) + 2g = dim(H;) + 2g.

See Figure 8, which shows the total spectrum. From this computation, two results
appear for this simple model:

(I) The exact energy levels of H come in groups; each group corresponds to an
isolated band in the Born—Oppenheimer approximation.
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Figure 8. The exact spectrum of the spin-orbit model (5), for s = 1/2 and j = 4. The values of C, and N, are
related by Equation (15).
(2) The number of levels N, of the isolated band g is in accordance with I:

N, = dim(H)) — C. (15)
In the next sections, we will justify these two results for a general Hamiltonian such

as Equation (7).

5.2. GROUP OF LEVELS OF THE BAND g

This is a result of C. Emmrich and A. Weinstein ([8], theorem 2.1):

5.2.1. Theorem for ‘Born—Oppenheimer’
We note

Hs(Jcl) = HO(JCI) + 1/]'PII (Jcl) +e
the symbol of H (which characterizes it). Suppose that Eyq(J1) is an isolated

eigenvalue of Hy(Jq) for every J. € S/2 We note Py(J.)) = |¢0’g(JC1))(n//0,g(Jcl)| the
projector on the associated eigenspace. Then for every k € N, there exists a symbol

1 1
P(Jcl) = PO(JCI) +J—.P1(Jcl) + - +]._kPk(Jcl)»
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which defines a self-adjoint operator P such that

A A 1
PP=P+ O(JTH>, quasi-projector, (16)
PN 1
[H, P] = O(/k_ﬂ> almost commute. (17)
Remarks

e In [8], the hypothesis are more general: the phase space is any symplectic
manifold, and the operators need not to be self-adjoint, nor the projector
Py need to have rank one.

e How can one define the rank of the ‘quasi-projector’ P A consequence of
equality (16), is that the eigenvalues of P are either close to 1 or to 0 within
a range of order O(1/*t): if one diagonalizes P = UDU™", with D=
(di,ds, ..., dry,y1) eigenvalues of 13, one obtains

|02~ p] == 0( ).

so max;|d? — dj| =&, so |d;| <& or |1 —dj| < e One can thus modify P (move
slightly the eigenvalues towards 1 or 0, without moving the eigenspaces) to
obtain a true projector P’ whose image is a space Ly, C Ho. The rank of this
projector is

N, = Rank(P') = dim L,

Remark. N, is already the number of eigenvalues close to 1 of the principal symbol
Py(Jg) for band g, (because the error is ¢ = O(1/j) K 1).

e What can we say about the eigenvectors or eigenvalues of H defined by
ﬁlqﬁi) = E;|¢;)? From equality (17), one can almost diagonalizes H in the
eigenspaces L,. To be more precise, remark that if one diagonalizes the
restriction of H in Ly,: H' = P'HP', the obtained eigenvalues E] are close to
the real eigenvalues E; within a distance SE = O(1//5*!). But from the Weyl
formula, one expects that generically, every eigenvalue E; is apart from the
other eigenvalues by a distance AE = O(1/dim Hiot) = O(1/)) for j — oco. If
k=1, then 0E < AE, and a result on quasi-modes ([13], p. 235) states
that the eigenvector of H associated to the eigenvalue E;, belongs to the
space L, with an error (6E/AE) <« 1. Stated in another way: in the
generic case, in the spectrum of H one can identify a group of N, levels
associated to the band g. For each eigenvalue E; and eigenvector
|p;), ie€[l,...2s+ 1)(2j +1)], one can associate a precise band number
ge[—s,...,+s]
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e The ranges of energy for different bands can overlap, and so the levels E; of
different bands can be mixed. But their identification is still possible.

e Discussion of the non generic case: if two levels E;, E; of two different bands
g, ¢ are close enough, it is possible that each eigenvector has components
on different bands, as it occurs usually in the tunneling effect.

e Equality 20 reflects the idea of Born—Oppenheimer: a consequence is that a
quantum state which initially belongs to the space L, (i.e. band g), will
stay in this space forever during its evolution, with a good approximation
(if k& high).

Indications for the proof. For the proof of the theorem, see [8].The proof is by
induction. Check that the result is true for k=0, then suppose it true for
k € N, and write

A A 1 = 1
2 —

and
A A I - 1

We look for the symbol K such that P = P + 1/(*T)K verifies (16), (17), at order
k + 1. Writing these conditions, one obtains that K exists and is uniquely determined
by 4 and F (choose a basis of H, where Hy and Py are diagonal).

5.3. RELATION BETWEEN C, AND N,

We will justify the formula (15), in the general case, by studying specifically the
degeneracies between bands. This is because far from degeneracies, C, is con-
stant, and the number N, is well defined and constant from theorem in Section
5.2. Tt is sufficient then to check the relation (15) in a neighborhood of a
degeneracy.

5.3.1. A Normal Form Near a Degeneracy

In order to understand the phenomenon, we take again the spin-orbit model (5).
We have observed that for 41 <1/2, C, =0, and for 1 > 4 > %, C, = —2g. The
change in C, occurs at /1:%, with a degeneracy between bands located at
A= %, Jaq = (0,0, —1), giving I:IS(JCI) =0 (a collective degeneracy). This collective
degeneracy is not generic from the above study, except for two bands (if s = %).
Consider then the case s=13 with two bands numbered by g=+1, and in
the neighborhood of the conical degeneracy point J. = (0,0, —1). In the basis
|+) = |my = i%) of H,, where S,,S,,S. are represented by the Pauli 2 x2
matrices, we write:



PROPERTIES OF THE BORN-OPPENHEIMER APPROXIMATION 235

H=(1 —A)SZ+/1§.S (18)

A=+ tu—in)
=i, I e (19)
iy —(-ay-ak
J J

Take / = (24 — 1),/2j. Then for j — oo, and Jo =~ (0,0, —1), we have [J_, J,] = —
2J. ~2j, so

LZ:LJ, :L(Jx—l..]y), a+ !

NG VoL
fulfill the commutation relations [a, a*] 2 1 of the harmonic oscillator. This allows
us to write:

c 1 (o )
H>~— = . 20
2,/2j<aJr +4 20)

In the sequel, we call Equation (20) the conical model.
Write E = E 2,/2j. The spectrum of H is obtained by solving H|$) = E|¢), with
lp) = o )|+) + lo_)|—). This gives

Je+idy),

(1) Forn=>0

Ef= im,

|$3) E;C In—1)|+) + |n)|-).
(2) Forn=0

Ey =, o) =

5.3.2. Asymptotic Behavior of the Spectrum
The lowest states of the upper band for 7 < 0 are

9 === D)+ i), n=1,

n

which converge towards |n— 1)|4+)for f — —oo. (because 1/(]3;r +Z) ~ —21/71).
Similarly, one calculates the three other asymptotics.
The result is sketched in Figure 9.
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H>H>, . E Il;l N :Band +
10> . —
0 1 .
A
10>]-> /: ’x 105>
> . 11>H> . Band —

Figure 9. Spectrum of the conical model (20).

The figure shows clearly the exchange of one state between the two bands (1)
giving a variation of number of states:

ANL = £1.

5.3.2. Topological Charge of the Degeneracy, and Conservation Law

On can consider the model Equation (20) at the semi-quantal level with classical
variables J.. Write @, = (x+ip). We have a 2 x 2 matrix which depends on
(Z, x,p) € R*:

i, = L( —},. X — ip>'
2 \x+ip A
As studied with Equation (14), in space (x, p, —Z) € R3, this matrix has a conical
degeneracy at (0, 0, 0), with a topological charge AC. = F1. We therefore obtain
A(Cg + Ng) = 0 or, said in another way, C; + N, is a conserved quantity for each

band, even when a degeneracy occurs. The formula (15) in the case g = 1/2 can
be deduced directly.

Sketch of a proof in the general case. The previous study suggests a proof of for-
mula (15) for a general Hamiltonian H as Equation (4). Consider a continuous gen-
eric deformation f]i from FAIAZI =H to IEI;;O = S, (which is the trivial case).
This is a path I' in the space of Hamiltonian operators from Hy=S. to
H, = H. Each operator H, is characterized by its symbol H(Z, J.). Along the path
I', degeneracies between bands of H(4, J.) can occur at isolated points A*, and
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as we saw, after a suitable choice of local coordinates, Hy(4, J.) is described in the
neighborhood of degeneracy point A* by the model (13). We have studied this model,
and obtained that for each band (C, 4+ N,) is a conserved quantity even when the
path crosses a degeneracy point. So (Cg + Ng) is constant along the path I', and
its value for A = 0 has been calculated:

Cy+ Ny =2j + 1 = dimH,;.

This gives formula (15).

6. Perspectives

Our study was only for a slow dynamical variable J; which belongs to a
two-dimensional phase space M = S/2 To generalize it for phase spaces with higher
dimensions, we must remark first that the theorem (5.2) is still valid on the quantum
side, and that N, is still well defined for isolated bands. On the semiquantal side, the
topology of an isolated band is characterized by its first Chern class
ci(L) € H*(M, 7)), characterized by b, integers (second Betty number) plus torsion
numbers. These two informations should be related by a formula similar to the
Riemann-Roch-Hirzebruch formula (or Atiyah-Singer index formula). See [4,
7]. This generalization could find interesting applications in molecular physics.

We must also remark that for dim M > 2, it is no more possible to separate the
bands by an argument of genericity as above. We must therefore consider vector
bundles of higher dimensions, and topological obstructions play a major role. It
should also be possible to develop semiclassical rules for the computation of the
indices C, with a similar approach as in [9].
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