Université Grenoble Alpes
Institut Fourier
UMR 5582 CNRS-UGA
100, rue des mathématiques
F-38610 Gières, France Œ
Tél : 04 76 63 54 93 (From abroad: +33 4 76 63 54 93) Fax : 04 76 51 44 78 (From abroad: +33 4 76 51 44 78) Bureau : 045, rez-de-chaussée, entrée C E-mail : Thierry.Gallay@univ-grenoble-alpes.fr
"Tout ce qui vaut la peine d'être fait vaut la peine d'être bien fait"
Carla et Vilhelm Hansen, Petzi alpiniste, Casterman 1960
Publications
Depuis 2020 :
M. Dolce et Th. Gallay, "The long way of a viscous vortex dipole", prépublication (2024) (pdf).
Th. Gallay et A. Scheel, "Viscous shocks and long-time behavior of scalar conservation laws", Commun. Pure Appl. Analysis 23 (2024), 1448--1482(postscript ou pdf).
Th. Gallay et V. Sverak, "Vanishing viscosity limit for axisymmetric vortex rings", Inventiones Mathematicae 237 (2024), 275--348 (postscript ou pdf).
Th. Gallay et V. Sverak, "Arnold's variational principle and its application to the stability of planar vortices", Analysis & PDE 17 (2024), 681-722 (postscript ou pdf).
M. Coti Zelati et Th. Gallay, "Enhanced dissipation and Taylor dispersion in higher-dimensional parallel shear flows", J. London Math. Society 108 (2023), 1358--1392 (postscript ou pdf).
Th. Gallay et S. Slijepcevic, "Diffusive relaxation to equilibria for an extended reaction-diffusion system on the real line", J. Evol. Equations 22 (2022), Article No. 47, 33 pages (postscript ou pdf).
Th. Gallay et C. Mascia, "Propagation fronts in a simplified model of tumor growth with degenerate cross-dependent self-diffusivity", Nonlinear Analysis: Real World Applications 63 (2022), Article ID 103387, 28 pages (postscript ou pdf).
Th. Gallay, R. Joly et G. Raugel, "Asymptotic self-similarity in diffusion equations with nonconstant radial limits at infinity", prépublication (2020), J. Dynamics Differential Equations 34 (2022), 2593-2638 (postscript ou pdf).
Th. Gallay et D. Smets, "Spectral stability of inviscid columnar vortices", Analysis & PDE 13 (2020), 1777-1832 (postscript ou pdf).
2015 - 2019 :
Th. Gallay, "Estimations pseudo-spectrales et stabilité des tourbillons plans",
séminaire Bourbaki, exposé 1167, novembre 2019 (pdf).
Th. Gallay, "Stability of vortices in ideal fluids : the legacy of Kelvin and Rayleigh", Proceedings of the XVII International Conference on Hyperbolic Problems (HYP2018), AIMS, 2019 (postscript ou pdf).
Th. Gallay et D. Smets, "On the linear stability of vortex columns in the energy space", J. Math. Fluid Mechanics 21 (2019), article 48 (postscript ou pdf).
Th. Gallay et V. Sverak, "Uniqueness of axisymmetric viscous flows originating from circular vortex filaments", Annales de l'ENS 52 (2019), 1025-1071 (postscript ou pdf).
Th. Gallay, "Enhanced dissipation and axisymmetrization of two-dimensional viscous vortices", Arch. Rational Mech. Anal. 230 (2018), 939-975 (postscript ou pdf).
Th. Gallay, B. Texier, et K. Zumbrun, "On nonlinear stabilization of linearly unstable maps", J. Nonlinear Science 27 (2017), 1641-1666 (postscript ou pdf).
Th. Gallay , "Infinite energy solutions of the two-dimensional Navier-Stokes equations", Annales de la Faculté des Sciences de Toulouse 26 (2017), 979-1027
(postscript ou pdf).
Th. Gallay et Y. Maekawa, "Existence and stability of viscous vortices", dans : Y. Giga et A. Novotny A. (eds), Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, 2016, 41 pages (postscript ou pdf).
Th. Gallay et V. Sverak, "Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations", Confluentes Mathematici 7 (2015), 67-92 (postscript ou pdf).
Th. Gallay et D. Pelinovsky, "Orbital stability in the cubic defocusing NLS equation: II. The black soliton", J. Differential
Equations 258 (2015), 3639-3660 (postscript ou pdf).
Th. Gallay et D. Pelinovsky, "Orbital stability in the cubic defocusing NLS equation: I. Cnoidal periodic waves",
J. Differential Equations 258 (2015), 3607-3638 (postscript ou pdf).
Th. Gallay et S. Slijepcevic, "Uniform boundedness and long-time asymptotics for the two-dimensional Navier-Stokes equations in an infinite cylinder", J. Math. Fluid Mechanics 17 (2015), 23-46 (postscript ou pdf).
Th. Gallay et S. Slijepcevic, "Distribution of energy and convergence to equilibria in extended dissipative systems", J. Dynam. Differential Equations 27 (2015), 653-682 (postscript ou pdf).
2010 - 2014 :
Th. Gallay et S. Slijepcevic, "Energy bounds for the two-dimensional Navier-Stokes equations in an infinite cylinder", Comm. Partial Differential Equations 39 (2014), 1741-1769. (postscript ou pdf).
Th. Gallay, "Long-time asymptotics for the Navier-Stokes equation in a two-dimensional exterior domain", comptes-rendus des Journées EDP 2012, Biarritz (postscript ou pdf).
Th. Gallay et Y. Maekawa, "Long-time asymptotics for two-dimensional exterior flows with small circulation at infinity", Analysis & PDE 6 (2013), 973-991. (postscript ou pdf).
Th. Gallay, "Stability and interaction of vortices in two-dimensional viscous flows", Discr. Cont. Dyn. Systems Ser. S 5 (2012), 1091-1131 (postscript ou pdf).
Th. Gallay, "Interacting vortex pairs in inviscid and viscous planar flows", Mathematical Aspects of Fluid Mechanics (J. Robinson, J. Rodrigo, et W. Sadowski eds), London Math. Soc. Lecture Notes Series 402, Cambridge 2012 (postscript ou pdf).
Th. Gallay et D. Serre, "The numerical measure of a complex matrix", Comm. Pure Appl. Math. 65 (2012), 287-336 (postscript ou pdf).
Th. Gallay et Y. Maekawa, "Three-dimensional stability of Burgers vortices",Comm. Math. Phys. 302 (2011), 477-511
(postscript ou pdf).
Th. Gallay, "Interaction of vortices in weakly viscous planar flows", Archive Rat. Mech. Anal. 200 (2011), 445-490 (postscript ou pdf).
Th. Gallay et Arnd Scheel, "Diffusive stability of oscillations in reaction-diffusion systems", Trans. Amer. Math. Soc. 363 2011), 2571-2598 (postscript ou pdf).
2005 - 2009 :
Th. Gallay et V. Roussier-Michon, "Global existence and long-time asymptotics for rotating fluids in a 3D layer", J. Math. Anal. Appl. 360 (2009), 14-34 (postscript ou pdf).
I. Gallagher, Th. Gallay, et F. Nier, "Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator", Int. Math. Res. Notices 2009 (2009), 2147-2199 (postscript ou pdf).
Th. Gallay, "Interaction des tourbillons dans les écoulements plans faiblement visqueux", Séminaire EDP de l'Ecole
Polytechnique 2007-2008, exposé XIII (postscript ou pdf).
Th. Gallay et R. Joly, "Global stability of travelling fronts for a damped wave equation with bistable nonlinearity", Ann. Scient. Ec. Norm. Sup. 42 (2009), 103-140 (postscript ou pdf)
Th. Gallay et L.M. Rodrigues, "Sur le temps de vie de la turbulence bidimensionnelle", Annales de la Faculté des Sciences de Toulouse 17 (2008), 719-733 (postscript ou pdf).
Th. Gallay et E. Risler, "A variational proof of global stability for bistable travelling waves", Differential and Integral Equations 20 (2007), 901--926 (postscript ou pdf).
Th. Gallay et Ph. Laurençot, "Asymptotic behavior for a viscous Hamilton-Jacobi equation with critical exponent", Indiana Univ. Math. J. 56 (2007), 459--479 (postscript ou pdf).
h. Gallay et M. Haragus, "Orbital stability of periodic waves for the nonlinear Schrödinger equation", J.
Dynamics Diff. Eqns 19 (2007), 825--865 (postscript ou pdf).
Th. Gallay et M. Haragus, "Stability of small periodic waves for the nonlinear Schrödinger equation", J. Differential Equations 234 (2007), 544--581 (postscript ou pdf).
Th. Gallay et C.E. Wayne, "Existence and stability of asymmetric Burgers vortices", J. Math. Fluid Mech. 9 (2007), 243-261 (postscript ou pdf).
Th. Gallay et C.E. Wayne, "Long-time asymptotics of the Navier-Stokes equation in R2 and R3", Z. Angew. Math. Mech. 86 (2006), 256--267 (postscript ou pdf).
Th. Gallay et C.E. Wayne, "Three-dimensional stability of Burgers vortices: the Low Reynolds number case", Physica D 213 (2006), 164--180 (postscript ou pdf).
I. Gallagher, Th. Gallay et P.-L. Lions, "On the uniqueness of the solution of the two-dimensional Navier-Stokes equation with a Dirac mass as initial vorticity", Math. Nachr. 278 (2005), 1665-1672 (postscript ou pdf).
I. Gallagher et Th. Gallay, "Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity", Mathematische Annalen 332 (2005), 287--327 (postscript ou pdf).
Th. Gallay et C.E. Wayne, "Global stability of vortex solutions of the two-dimensional Navier-Stokes equation", Comm. Math. Phys. 255 (2005), 97--129 (postscript ou pdf).
2000 - 2004 :
Th. Gallay, "Equations de Navier-Stokes dans le plan avec tourbillon initial mesure", Séminaire EDP de l'Ecole Polytechnique
2003-2004, exposé XIV (postscript ou pdf).
Th. Gallay, G. Schneider et H. Uecker, "Stable transport of information near essentially unstable localized structures", Discr. Cont. Dyn. Systems Ser. B 4 (2004), 349--390 (postscript ou pdf).
Th. Gallay et A. Mielke, "Convergence results for a coarsening model using global linearization", J. Nonlin. Science 13 (2003), 311-346 (postscript ou pdf).
Th. Gallay, "Tourbillon d'Oseen et comportement asymptotique des solutions de l'équation de Navier-Stokes", Séminaire EDP de
l'Ecole Polytechnique 2001-2002, exposé V (postscript ou pdf).
Th. Gallay et C.E. Wayne, "Long-time asymptotics of the Navier-Stokes and vorticity equations on R3",
Phil. Trans. Roy. Soc. Lond. 360 (2002), 2155-2188 (postscript ou pdf).
Th. Gallay et C.E. Wayne, "Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R2", Arch. Rat. Mech. Anal. 163 (2002), 209-258 (postscript ou pdf).
Th. Gallay, "Développements asymptotiques et stabilité d'ondes progressives", mémoire d'habilitation à diriger les recherches, Université de Paris-Sud, janvier 2000 (postscript ou pdf).
Th. Gallay, "Convergence to travelling waves in damped hyperbolic equations", dans International Conference on Differential Equations, Berlin 1999, vol. 1, B. Fiedler, K. Groeger, J. Sprekels (Eds), World Scientific (2000), 787--793.
Th. Gallay et S. Slijepcevic, "Energy flow in extended gradient partial differential equations", J. Dyn. Diff. Eqns. 13 (2001), 757-789.
Th. Gallay et G. Schneider, "KP-description of unidirectional long waves - The model case", Proc. Roy. Soc. Edinb. 131 A (2001), 885-898.
Th. Gallay et G. Raugel, "Scaling variables and stability of hyperbolic fronts", SIAM J. Math. Anal. 32 (2000), 1-29.
Th. Gallay et G. Raugel, "Stability of propagating fronts in damped hyperbolic equations", dans Partial differential equations: theory and numerical solutions, W. Jaeger, J. Necas, O. John, K. Najzar, J. Stara (eds), Chapmann Hall Research Notes in Mathematics 406 (2000), 130-146.
Avant 2000 :
Th. Gallay et A. Mielke, "Diffusive mixing of stable states in the Ginzburg-Landau equation", Commun. Math. Phys. 199 (1998), 71-97.
Th. Gallay et G. Raugel, "Scaling variables and asymptotic expansions in damped wave equations", J. Diff. Equations 150 (1998), 42-97.
S. Focant et Th. Gallay, "Existence and stability of propagating fronts for an autocatalytic reaction-diffusion system", Physica D 120 (1998), 346-368.
Th. Gallay et G. Raugel, "Stability of travelling waves for a damped hyperbolic equation", Z. angew. Math. Phys. 48 (1997), 451-479.
J.-P. Eckmann, Th. Gallay et C.E. Wayne, "Phase slips and the Eckhaus instability", Nonlinearity 8 (1995), 943-961.
Th. Gallay, "Periodic patterns and traveling fronts for the Ginzburg-Landau equation", dans Structure and Dynamics of Nonlinear Waves in Fluids, A. Mielke, K. Kirchgaessner (eds), World Scientific (1995).
Th. Gallay, "Existence et stabilité des fronts dans l'équation de Ginzburg-Landau à une dimension", Thèse de l'Université
de Genève, 1994.
Th. Gallay, "Local stability of critical fronts in non-linear parabolic partial differential equations", Nonlinearity 7 (1994), 741-764.
Th. Gallay, "A center-stable manifold theorem for differential equations in Banach spaces", Commun. Math. Phys. 152 (1993), 249-268.
J.-P. Eckmann et Th. Gallay, "Front solutions for the Ginzburg-Landau equation", Commun. Math. Phys. 152 (1993), 221-248.
Th. Gallay et G. Wanders, "Massless fermion emission on 1+1 dimensional curved space-times", Helv. Phys. Acta 66 (1993), 378-404.
Th. Gallay, "Fermions dans un espace-temps courbe à deux dimensions", travail de diplôme de l'Ecole Polytechnique
Fédérale de Lausanne, 1990.