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ABSTRACT. We consider the evolution of a passive scalar advected by a parallel shear flow in an infinite

cylinder with bounded cross section, in arbitrary space dimension. The essential parameters of the problem are

the molecular diffusivity ν, which is assumed to be small, and the wave number k in the streamwise direction,

which can take arbitrary values. Under generic assumptions on the shear velocity v, we obtain optimal decay

estimates for large times, both in the enhanced dissipation regime ν ≪ |k| and in the Taylor dispersion regime

|k| ≪ ν. Our results can be deduced from resolvent estimates using a quantitative version of the Gearhart-Prüss

theorem, or can be established more directly via the hypocoercivity method. Both approaches are explored in

the present example, and their relative efficiency is compared.

1. Introduction

The evolution of a passive scalar advected by a parallel shear flow and undergoing molecular diffusion

is an idealized problem which plays an important role in hydrodynamic stability theory. This is perhaps the

simplest model demonstrating how advection by an incompressible flow, which has no dissipative effect by

itself, can strengthen the action of diffusion and lead to energy dissipation at a much faster rate. The relative

importance of advection and diffusion is measured by the Péclet number, which is inversely proportional

to the molecular diffusion coefficient ν. We are interested in the regime of large Péclet numbers, where

two different phenomena can occur depending on the streamwise wavenumber k. If Pe−1 ≪ |k|L, where

L is a characteristic length of the domain, the lifetime of the Fourier mode with wavenumber k is not

proportional to Pe, as in usual diffusion, but typically to Pe1/3 or Pe1/2 depending on the shear velocity.

This phenomenon is usually called accelerated diffusion or enhanced dissipation [3, 12, 38]. In contrast

the Fourier modes corresponding to |k|L ≪ Pe−1 ≪ 1 evolve diffusively, with an effective diffusion

coefficient that is proportional to Pe and therefore inversely proportional to the molecular viscosity ν. This

effect, which is only observed in very long or infinite cylinders, is called Taylor dispersion or sometimes

Taylor-Aris dispersion [2, 39, 40, 45].

From a mathematical point of view, numerous results describing the enhancement of diffusion due to

advection by a divergence-free vector field were obtained both in the deterministic and in the stochastic

setting, see [6,14,15,17,19,23,24,34,37] and the references therein. For the specific case of a parallel flow

in a two-dimensional strip, the enhanced dissipation effect for a passive scalar was thoroughly studied in

[1,7,42], and the estimates derived on that model also play a crucial role in the stability analysis of the shear

flow as a stationary solution of the Navier-Stokes equations, see [5, 11, 20, 26, 31, 44]. The corresponding

problem in higher-dimensional cylinders did not attract much attention so far, except in particular examples

such as the plane Couette flow [9] and the pipe Poiseuille flow [13]. On the other hand, a rigorous justifi-

cation of Taylor dispersion using self-similar variables and center manifold theory was achieved in [4], see

also [35]. It is worth mentioning that, although the enhanced dissipation and the Taylor dispersion have the
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same physical origin, the mathematical techniques used in [4] and [7] are completely different, and rely on

distinct assumptions on the shear velocity.

In the present paper, we reopen the study of a passive scalar advected by a parallel flow with a double

goal: we aim at investigating the higher-dimensional case, which has received less attention so far, with an

approach that covers in a unified way the enhanced dissipation and the Taylor dispersion regimes. To state

our results, we introduce some notation. Let Ω ⊂ R
d be a smooth bounded domain, and v : Ω → R be a

smooth function. We consider the evolution of a passive scalar in the infinite cylinder Σ = R× Ω ⊂ R
d+1

under the action of the shear velocity u(x, y) = (v(y), 0)T . The density f(x, y, t) of the passive scalar

satisfies the advection-diffusion equation

∂tf(x, y, t) + v(y)∂xf(x, y, t) = ν∆f(x, y, t) , (x, y) ∈ Σ , t > 0 , (1.1)

where ν > 0 is the molecular diffusion coefficient and ∆ = ∂2
x + ∆y denotes the Laplace operator acting

on all variables (x, y) ∈ Σ. We supplement (1.1) with homogeneous Neumann conditions at the boundary

∂Σ = R×∂Ω. Applying a Galilean transformation if needed, we can assume without loss of generality that

the shear velocity v has zero average over Ω. If L denotes the diameter of Ω and U is the maximum of |v|
on Ω, the Péclet number is defined as

Pe =
UL

ν
.

We are interested in the long-time behavior of the solutions of (1.1) in the regime where Pe ≫ 1. It is

convenient to introduce dimensionless variables defined by

x̃ =
x

L
, ỹ =

y

L
, t̃ =

Ut

L
, ṽ =

v

U
.

Dropping all tildes for notational simplicity, we arrive at the same equation (1.1) where L = U = 1 and

ν = Pe−1 is now a dimensionless parameter.

Since equation (1.1) is invariant under translations in the horizontal direction, it is useful to consider the

(partial) Fourier transform formally defined by

f̂(k, y, t) =

∫

R

f(x, y, t) e−ikx dx , k ∈ R , y ∈ Ω , t > 0 . (1.2)

This quantity satisfies the evolution equation

∂tf̂(k, y, t) + ikv(y)f̂(k, y, t) = ν
(

−k2 +∆y

)

f̂(k, y, t) , y ∈ Ω , t > 0 , (1.3)

where the horizontal wavenumber k ∈ R is now a parameter. The horizontal diffusion −νk2 in (1.3) plays

only a minor role in the regime we consider, and can be conveniently eliminated by the change of dependent

variables

f̂(k, y, t) = e−νk2tg(k, y, t) , k ∈ R , y ∈ Ω , t > 0 . (1.4)

This leads to the “hypoelliptic” evolution equation

∂tg(k, y, t) + ikv(y)g(k, y, t) = ν∆yg(k, y, t) , y ∈ Ω , t > 0 , (1.5)

which is the starting point of our analysis. As already mentioned, we suppose that g satisfies the homoge-

neous Neumann conditions at the boundary, but our results still hold, with a similar proof, if we assume

instead that g = 0 on ∂Ω. We also suppose that the horizontal wave number k is nonzero, otherwise (1.5)

reduces to the usual heat equation in Ω. It is not difficult to verify that, for all initial data g0 ∈ L2(Ω),
equation (1.5) has a unique global solution t 7→ g(k, t) ∈ C0([0,+∞), L2(Ω)) such that g(k, 0) = g0. Here

and in the sequel g(k, t) is a shorthand notation for the map y 7→ g(k, y, t) ∈ L2(Ω). Our goal is to estimate

the decay rate of the solutions of (1.5) as t → +∞.

We first consider the situation where the cross section Ω is one-dimensional. Our main result in this

case can be stated as follows.
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THEOREM 1.1. Assume that d = 1, Ω = (0, L), and that v : [0, L] → R is a Cm function, for some

m ∈ N
∗, whose derivatives up to order m do not vanish simultaneously:

|v′(y)|+ |v′′(y)|+ · · ·+ |v(m)(y)| > 0 , for all y ∈ [0, L] . (1.6)

Then there exist positive constants C1, C2 such that, for all ν > 0, all k 6= 0, and all initial data g0 ∈ L2(Ω),
the solution of (1.5) satisfies, for all t ≥ 0,

‖g(k, t)‖L2(Ω) ≤ C1 e
−C2λν,kt ‖g0‖L2(Ω) , where λν,k =

{

ν
m

m+2 |k| 2
m+2 if 0 < ν ≤ |k| ,

k2

ν if 0 < |k| ≤ ν .
(1.7)

The main novel feature of Theorem 1.1 is to exhibit a decay rate λν,k which undergoes a continuous

transition from the enhanced dissipation regime ν ≪ |k| to the Taylor dispersion regime |k| ≪ ν. In

previous mathematical works, both situations were studied using different methods, making the comparison

more difficult. When ν ≤ |k|, the expression (1.7) of λν,k is certainly not new: it was obtained in [7], up

to a logarithmic correction of purely technical origin, and it can also be deduced from the general criteria

given in [42], with some additional work. This instructive formula shows that the long-time behavior of

the solutions of (1.5) is determined, in the enhanced dissipation regime, by the degree of degeneracy of the

critical points of the shear function v. In the most common cases, the shear flows under consideration are

either monotone (m = 1) or have nondegenerate critical points (m = 2). Accordingly, the lifetime 1/λν,k of

the Fourier mode indexed by k is proportional to ν−1/3 or ν−1/2 when ν ≪ 1, and is therefore much shorter

than the diffusive time scale ν−1. In the Taylor dispersion regime |k| ≤ ν, the decay rate λν,k = k2/ν has

the same dependence upon the Fourier parameter k as the purely diffusive rate νk2, but λν,k ≫ νk2 when

ν ≪ 1. So, in all cases, the expression (1.7) of λν,k reveals the strong influence of the advection term on the

solutions of (1.5) when the Péclet number ν−1 is sufficiently large.

In the higher-dimensional case d ≥ 2, the situation is similar and we still expect that the decay rate of

the solutions of (1.5) is determined, when ν ≪ |k|, by the degree of degeneracy of the critical points of

v. This is more difficult to prove, however, because the behavior of a function near its critical points can

take more diverse forms in higher dimensions. To limit the complexity, we assume here that v is a Morse

function, which means that v has only a finite number of critical points in Ω, all of which are nondegenerate.

For simplicity, we also suppose that v has no critical point on the boundary ∂Ω, although this additional

restriction could be dispensed with. Our second main result is:

THEOREM 1.2. Assume that v : Ω → R is a smooth Morse function with no critical point on the

boundary ∂Ω. There exist positive constants C1, C2 such that, for all ν > 0, all k 6= 0, and all initial data

g0 ∈ L2(Ω), the solution of (1.5) satisfies estimate (1.7) for all t ≥ 0, where m = 1 if v has no critical

point in Ω and m = 2 if v has at least one critical point in Ω.

Many classical examples, such as the plane Couette flow or the Poiseuille flow in a cylindrical pipe, are

covered by Theorem 1.2, but of course one can imagine more degenerate situations where v is not a Morse

function. In Section 2 below, we formulate a general condition on the level sets of v (Assumption 2.2) which

ensures that estimate (1.7) holds for all ν > 0 and all k 6= 0. We then prove that our assumption holds for

a one-dimensional map satisfying (1.6) and for a Morse function in any dimension, but we also give other

examples which do not fall into these categories. One may conjecture that estimate (1.7) holds for some

m ∈ N
∗ if v ∈ Cm(Ω) and if, for any critical point ȳ ∈ Ω, there exists an integer n ∈ {1, . . . ,m} such that

the n-th order differential dnv(ȳ) is nondegenerate, but proving that using our techniques requires nontrivial

additional work. In a different direction, we also believe that Theorem 1.2 remains true for Morse-Bott

functions, whose critical points can form submanifolds of nonzero dimension. A thorough examination of

these interesting questions is left for a future work, but a modest discussion of possible extensions of our

results can be found in Section 2.3 below.

At this point, it is important to observe that, although Theorems 1.1 and 1.2 treat the enhanced dissipa-

tion and the Taylor dispersion regimes in a unified way, the minimal assumptions on v that are needed to

obtain the decay estimate (1.7) are very different in both situations. On the one hand, we expect that the
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expression of λν,k is optimal when ν ≪ |k| if v has indeed a critical point where the n-th order differential

vanishes for all n < m. In particular, there is no enhanced dissipation effect at all if, for instance, v is

constant on a nonempty open subset of Ω. In contrast, the following result shows that estimate (1.7) holds

in the Taylor dispersion regime whenever the shear velocity v is not identically constant.

THEOREM 1.3. If v : Ω → R is continuous and not identically constant, there exist positive constants

C1, C2 such that the decay estimate (1.7) holds in the Taylor dispersion regime 0 < |k| ≤ ν.

The rest of this paper is organized as follows. In Section 2, we derive accurate resolvent estimates

for the linear operator Hν,k = −ν∆y + ikv(y), which is (up to a sign) the generator of the evolution

defined by (1.5). We impose an abstract condition on the shear velocity which, in the enhanced dissipation

regime, implies that all level sets of v are “H1-thin”, in a sense that is made precise in Appendix A. We

then check the validity of our assumption in concrete situations, for one-dimensional maps satisfying (1.6)

and for Morse functions in all space dimensions. Finally, the semigroup estimate (1.7) is obtained from the

resolvent bounds using a quantitative version of the Gearhart-Prüss theorem which was recently obtained in

[42], see also [28]. This concludes the proof of Theorems 1.1–1.3.

In Section 3, we give an alternative proof of Theorem 1.2 using the hypocoercivity method of Vil-

lani [41], which was already used in [7] to establish the enhanced dissipation estimate when d = 1. This

second approach is, in some sense, more direct and more elementary, since it relies on relatively straight-

forward energy estimates for the solutions of the evolution equation (1.5) in H1(Ω). However, to avoid

problematic contributions from the boundary, we now have to impose that g = 0 on ∂Ω, or alternatively

that Ω = T
d (the d-dimensional torus). Moreover, to reduce complexity, we restrict ourselves to the Morse

case where m = 1 or 2, which means that the shear velocity has a finite number of critical points which are

all nondegenerate. This implies in particular that the lowest eigenvalue of the semi-classical Hamiltonian

−ν∆y + |∇v|2 in L2(Ω) is bounded from below by Cν
m−1
m as ν → 0, and this information is used to

derive the differential inequalities that eventually lead to estimate (1.7), up to a logarithmic correction in

the enhanced dissipation regime when m = 2. As is shown in [7], the restriction m ≤ 2 can be removed

at the expense of introducing an energy functional with variable coefficients, which is constructed using a

suitable partition of unity. In the Taylor dispersion setting, we also recover Theorem 1.3 under slightly more

restrictive assumptions on the velocity profile, see Remark 3.10 below for a precise statement.

The efficiency of the methods implemented in this paper is briefly compared in the final Section 4.

In Appendix A, we introduce and study a specific notion of “thinness” for arbitrary subsets of Rd, which

is closely related to our Assumption 2.2. Finally, a few technical estimates that are used in the proof of

Theorem 1.2 are collected in Appendix B.

Acknowledgments. Th.G. is partially supported by the grant SingFlows ANR-18-CE40-0027 of the French

National Research Agency (ANR). M.C.Z. acknowledges funding from the Royal Society through a Univer-

sity Research Fellowship (URF\R1\191492). We thank the anonymous referees for insightful comments

and helpful suggestions.

2. Resolvent estimates

This section is devoted to the proof of our main results using a first approach, which relies on spectral

theory and resolvent estimates. We recall that Ω ⊂ R
d is a smooth bounded domain, and v : Ω → R a

smooth function. Given any ν > 0 and any k 6= 0, the linear evolution equation (1.5) can we written in the

abstract form

∂tg +Hν,kg = 0 , where Hν,k = −ν∆y + ikv(y) . (2.1)

We consider Hν,k as a linear operator in the Hilbert space X = L2(Ω) with domain

D(H) =
{

g ∈ H2(Ω) ; N · ∇g = 0 on ∂Ω
}

,

where N denotes the outward unit normal on the boundary ∂Ω. Being a bounded perturbation of the Neu-

mann Laplacian −ν∆y in Ω, the operator Hν,k has compact resolvent, hence purely discrete spectrum [32].
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Moreover, for all g ∈ D(H), we have the identities

Re 〈Hν,kg, g〉 = ν‖∇g‖2 ≥ 0 , and Im 〈Hν,kg, g〉 = k

∫

Ω
v(y)|g(y)|2 dy , (2.2)

where 〈·, ·〉 denotes the scalar product in X and ‖·‖ the corresponding norm. This implies that the numerical

range of Hν,k is included in the infinite strip

Sk =
{

z ∈ C ; Re(z) ≥ 0 , |Im(z)| ≤ |k|‖v‖L∞(Ω)

}

.

The eigenvalues of Hν,k form a sequence (µn)n∈N of complex numbers which satisfy µn ∈ Sk for all n ∈ N

and Re(µn) → +∞ as n → ∞. Furthermore, if we assume that k 6= 0 and v is not identically constant,

we deduce from the first relation in (2.2) that Re(µn) > 0 for all n ∈ N, so that the imaginary axis in the

complex plane is included in the resolvent set of the operator Hν,k. Our goal is to obtain accurate estimates

on the resolvent norm ‖(Hν,k − z)−1‖ for all z ∈ iR. In particular, we need a precise lower bound on the

pseudospectral abscissa

Ψ(ν, k) :=

(

sup
z∈iR

‖(Hν,k − z)−1‖
)−1

, (2.3)

as a function of the parameters ν and k. This quantity was introduced and studied in [25] for a related

problem. It is easy to verify that Re(µn) ≥ Ψ(ν, k) for all n ∈ N. More importantly, a recent result due

to Dongyi Wei [42], see also Helffer & Sjöstrand [28], shows that the quantity Ψ(ν, k) entirely controls the

decay rate of the semigroup generated by −Hν,k. Indeed, applying [42, Theorem 1.3], we obtain:

PROPOSITION 2.1. The operator −Hν,k is the generator of a strongly continuous semigroup in X which

satisfies, for all g ∈ X and all t ≥ 0,

‖e−tHν,kg‖ ≤ eπ/2 e−tΨ(ν,k)‖g‖ . (2.4)

So, to obtain the decay estimate (1.7) with C1 = eπ/2, all we need is to derive a lower bound of the form

Ψ(ν, k) ≥ C2λν,k for some positive constant C2 that is independent of the parameters ν, k.

To do that, we first exploit the assumption that k 6= 0 and write any z ∈ iR in the form z = ikλ with

λ ∈ R, so that

Hν,k − z = Hν,k,λ := −ν∆y + ik
(

v(y)− λ
)

. (2.5)

It is apparent from (2.5) that the estimates we can hope for depend on the properties of the level sets

Eλ =
{

y ∈ Ω ; v(y) = λ
}

, λ ∈ R .

For instance, if Eλ has nonempty interior for some λ ∈ R, then clearly Hν,k,λg = −ν∆yg for any function

g ∈ D(H) that is supported in the interior of Eλ. As is easily verified, this implies that Ψ(ν, k) ≤ Cν for

some positive constant C , which means that there is no enhanced dissipation effect in such a case. So, to

observe a nontrivial influence of the advection term in (1.5), we must assume at least that all levels sets of

the function v are “thin” in an appropriate sense.

To formulate our assumption precisely, we introduce the following notation. We give ourselves a positive

integer m ∈ N
∗, which will be related to the maximal degree of degeneracy of the critical points of v, as is

explained in the introduction. For any λ ∈ R and any δ > 0, we then define the “thickened level set”

Em
λ,δ =

{

y ∈ Ω ; |v(y)− λ| < δm
}

, (2.6)

which is the union of the level sets Eλ′ for all λ′ ∈ (λ− δm, λ+ δm). We also consider the δ-neighborhood

Em
λ,δ =

{

y ∈ Ω ; dist(y,Em
λ,δ) < δ

}

, (2.7)

where “dist” denotes the Euclidean distance in R
d. These definitions are made so that the set Em

λ,δ enjoys

the following properties:

a) If y ∈ Ω \ Em
λ,δ, then |v(y)− λ| ≥ δm (this is clear from (2.6) because Em

λ,δ ⊃ Em
λ,δ).

b) A δ-neighborhood of the level set Eλ is included in Em
λ,δ (this follows from (2.7) since Em

λ,δ ⊃ Eλ).
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We can now formulate our general assumption on the function v : Ω → R.

ASSUMPTION 2.2. There exist a positive integer m ∈ N
∗ and positive real constants C0, δ0 such that,

for all λ ∈ R and all δ ∈ (0, δ0], the following inequality holds for all g ∈ H1(Ω):
∫

Em
λ,δ

|g(y)|2 dy ≤ 1

2

∫

Ω
|g(y)|2 dy + C0δ

2

∫

Ω
|∇g(y)|2 dy . (2.8)

REMARK 2.3. The factor 1/2 in (2.8) can be replaced by any fixed real number κ ∈ (0, 1) without

altering the definition, see Lemma A.3 below for a similar statement. To avoid introducing yet another

parameter, we stick to Assumption 2.2 as it is stated, but it is useful to keep the general case in mind.

It is not easy to characterize precisely the functions v that satisfy Assumption 2.2, but the following

observations can be made. First, we emphasize that inequality (2.8) must hold for all sufficiently small

δ > 0; having it satisfied for just one small δ > 0 is infinitely less restrictive, as is shown in Lemma 2.5

below. Next, since Eλ ⊂ Em
λ,δ, Assumption 2.2 implies in particular that the level sets Eλ are “H1-thin”

according to the definition given in Appendix A. As is shown there, any Lipschitz graph or any submanifold

of nonzero codimension is H1-thin. As a consequence, if Em
λ,δ is contained in a neighborhood of size O(δ)

of a Lipschitz graph or a submanifold of nonzero codimension, then inequality (2.8) holds. In contrast, if

Em
λ,δ contains a ball of radius R(δ) such that R(δ)/δ → +∞ as δ → 0, then (2.8) fails. So Assumption 2.2

roughly means that, locally, the set Em
λ,δ is no thicker than O(δ) in some direction.

We can now explain the role played by the integer m ∈ N
∗ in definitions (2.6), (2.7). Assume for

instance that 0 ∈ Ω and that v(y) = |y|n near the origin, where n ∈ N and n ≥ 2. Then for δ > 0

sufficiently small, the thickened level set Em
0,δ contains the ball of radius δm/n centered at the origin, so that

the δ-neighborhood Em
0,δ contains the ball of radius δ+δm/n. As we just saw, for inequality (2.8) to hold, this

radius must be O(δ) as δ → 0, which is the case if m ≥ n. So a necessary condition for Assumption 2.2 to

hold is that the integer m be chosen sufficiently large, depending on the degree of degeneracy of the critical

points of the function v. For instance, we can take m = 1 if v has no critical points, and m = 2 if all critical

points are nondegenerate, i.e. if v is a Morse function. Note that a critical level set Eλ may also contain

noncritical points, in a neighborhood of which the set Em
λ,δ is as thin as O(δm) in the direction normal to

Eλ; this is the reason for which we consider the δ-neighborhood Em
λ,δ, which satisfies property b) above that

will be needed in our argument.

The main result of this section is:

PROPOSITION 2.4. Assume that the shear velocity v : Ω → R satisfies Assumption 2.2 for some positive

integer m ∈ N
∗. Then there exists a constant C > 0 such that, for all ν > 0 and all k 6= 0,

Ψ(ν, k) ≥ C λν,k , (2.9)

where Ψ(ν, k) is defined in (2.3) and λν,k in (1.7).

PROOF. Fix ν > 0, k 6= 0, λ ∈ R, and δ ∈ (0, δ0), where δ0 > 0 is as in Assumption 2.2. For simplicity

we denote H = Hν,k,λ, where Hν,k,λ is defined in (2.5). We introduce the localization function

χ(y) = φ
(1

δ
sign

(

v(y) − λ
)

dist
(

y,Em
λ,δ

)

)

, y ∈ Ω ,

where φ : R → [−1, 1] is the unique odd function such that φ(t) = min(t, 1) for t ≥ 0. We have the

following three properties:

i) χ is locally Lipschitz in Ω with ‖∇χ‖L∞ ≤ 1/δ;

ii) χ(y)
(

v(y)− λ
)

≥ 0 for all y ∈ Ω;

iii) Em
λ,δ = {y ∈ Ω ; |χ(y)| < 1}.

These properties mean that χ is a Lipschitz regularization of the discontinuous function sign(v − λ), such

that the transitions between the values −1 and +1 occur within the region Em
λ,δ. To prove the Lipschitz
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continuity, we observe that Em
λ,δ is an open neighborhood of the level set Eλ, so that dist(y,Em

λ,δ) vanishes

near the points where sign(v(y)−λ) is discontinuous. The remaining properties are obvious by construction.

For any g ∈ D(H) we have, as in (2.2),

Re〈Hg, g〉 = ν‖∇g‖2 , hence ν‖∇g‖2 ≤ ‖Hg‖ ‖g‖ . (2.10)

Moreover, a direct calculation shows that Im〈Hg,χg〉 = ν Im〈∇g, g∇χ〉+ k〈χ(v−λ)g, g〉. Since |χ| ≤ 1
and |∇χ| ≤ 1/δ we deduce that

|k|〈χ(v − λ)g, g〉 ≤ ‖Hg‖ ‖g‖ +
ν

δ
‖∇g‖ ‖g‖ ≤ ‖Hg‖ ‖g‖ + ν1/2

δ
‖Hg‖1/2 ‖g‖3/2 , (2.11)

where the second inequality follows from (2.10). We now decompose

‖g‖2 =

∫

Ω\E
|g(y)|2 dy +

∫

E
|g(y)|2 dy , where E := Em

λ,δ , (2.12)

and we estimate both terms separately using (2.10), (2.11).

1. If y ∈ Ω \ E , then y /∈ Em
λ,δ, hence |v(y)− λ| ≥ δm by definition. In view of properties ii), iii) above, we

even have χ(y)
(

v(y)− λ
)

≥ δm, so that
∫

Ω\E
|g(y)|2 dy ≤ 1

δm

∫

Ω\E
χ(y)

(

v(y)− λ
)

|g(y)|2 dy ≤ 1

|k|δm |k|〈χ(v − λ)g, g〉

≤ 1

|k|δm
(

‖Hg‖ ‖g‖ +
ν1/2

δ
‖Hg‖1/2 ‖g‖3/2

)

≤
(

1

|k|δm +
ν

k2δ2m+2

)

‖Hg‖ ‖g‖ +
1

4
‖g‖2 ,

(2.13)

where in the second line we used (2.11) and in the third line Young’s inequality.

2. Since E = Em
λ,δ, inequality (2.8) gives

∫

E
|g(y)|2 dy ≤ 1

2
‖g‖2 + C0δ

2‖∇g‖2 ≤ 1

2
‖g‖2 + C0δ

2

ν
‖Hg‖ ‖g‖ . (2.14)

Combining (2.12)–(2.14), we arrive at

1

4
‖g‖ ≤

(

1

|k|δm +
ν

k2δ2m+2
+

C0δ
2

ν

)

‖Hg‖ . (2.15)

We now choose

δ = δ0

( ν

|k|
)

1
m+2

if ν ≤ |k| , and δ = δ0 if ν ≥ |k| . (2.16)

Then (2.15) shows that

‖Hg‖ ≥ C

{

ν
m

m+2 |k| 2
m+2 ‖g‖ if 0 < ν ≤ |k| ,

k2

ν ‖g‖ if 0 < |k| ≤ ν ,

where the constant C depends only on C0, δ0, and m. In other words, we have ‖Hg‖ ≥ Cλν,k‖g‖ for all

g ∈ D(H), where λν,k is as in (1.7). Since H = Hν,k,λ and

Ψ(ν, k) = inf
{

‖Hν,k,λg‖ ; λ ∈ R , g ∈ D(H) , ‖g‖ = 1
}

, (2.17)

we obtain the desired inequality (2.9). �

It is clear that the decay estimate (1.7) follows immediately from inequalities (2.4) and (2.9). So, to

prove Theorems 1.1–1.3, what remains to be done is verifying the validity of Assumption 2.2. We first

investigate under which conditions a continuous function v satisfies inequality (2.8) for some fixed δ > 0.
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LEMMA 2.5. If v : Ω → R is continuous and not identically constant, then for any sufficiently small

δ > 0 there exist constants C > 0 and κ ∈ (0, 1) such that, for all λ ∈ R and all g ∈ H1(Ω),
∫

E1
λ,δ

|g(y)|2 dy ≤ κ

∫

Ω
|g(y)|2 dy + C

∫

Ω
|∇g(y)|2 dy . (2.18)

PROOF. Since v is not constant, we can pick y1, y2 ∈ Ω such that v(y2) > v(y1). We define

λ0 =
v(y2) + v(y1)

2
, γ =

v(y2)− v(y1)

6
,

so that v(y1) = λ0 − 3γ and v(y2) = λ0 + 3γ. We next choose δ > 0 small enough so that

i) δ < γ;

ii) B(yj, δ) ⊂ Ω for j = 1, 2, where B(yj, δ) is the open ball of radius δ centered at yj;

iii) for all y, ỹ ∈ Ω with |y − ỹ| < δ, one has |v(y)− v(ỹ)| < γ.

Property iii) holds because v is continuous on the compact set Ω, hence uniformly continuous in Ω.

Given any λ ∈ R, we claim that

B(y2, δ) ⊂ Ω \ E1
λ,δ if λ ≤ λ0 , and B(y1, δ) ⊂ Ω \ E1

λ,δ if λ ≥ λ0 . (2.19)

Let us prove the first assertion, the second one being similar. Assume thus that λ ≤ λ0. By definition, if

y ∈ E1
λ,δ, there exists ỹ ∈ E1

λ,δ such that |y − ỹ| < δ, hence by iii) and i) above

v(y) < v(ỹ) + γ < λ+ δ + γ < λ0 + 2γ .

On the other hand, for any y ∈ B(y2, δ), one has v(y) > v(y2) − γ = λ0 + 2γ. It follows that B(y2, δ) ∩
E1
λ,δ = ∅, which is the first assertion in (2.19).

For any λ ∈ R, it follows from (2.19) that |E1
λ,δ| ≤ |Ω| − |B(δ)|, where |B(δ)| is the measure of a ball

of radius δ in R
d. We now take ρ > 0 small enough so that

κ :=
(

1 + ρ
)

(

1− |B(δ)|
|Ω|

)

< 1 , hence |E1
λ,δ| ≤

κ |Ω|
1 + ρ

. (2.20)

If g ∈ H1(Ω), we decompose g = 〈g〉 + g̃ where 〈g〉 is the average of g over Ω. Using Young’s inequality

in the form |g|2 =
∣

∣〈g〉+ g̃
∣

∣

2 ≤ (1 + ρ)|〈g〉|2 +
(

1 + 1/ρ
)

|g̃|2, we obtain
∫

E1
λ,δ

|g|2 dy ≤ (1 + ρ)

∫

E1
λ,δ

|〈g〉|2 dy +
(

1 + 1/ρ
)

∫

E1
λ,δ

|g̃|2 dy

≤ (1 + ρ)
|E1

λ,δ|
|Ω|

∫

Ω
|〈g〉|2 dy +

(

1 + 1/ρ
)

∫

Ω
|g̃|2 dy

≤ κ

∫

Ω
|g|2 dy +

(

1 + 1/ρ
)

C2
W

∫

Ω
|∇g|2 dy ,

where in the last line we used (2.20), the obvious bound ‖〈g〉‖ ≤ ‖g‖, and the Poincaré-Wirtinger inequality

‖g̃‖ ≤ CW‖∇g̃‖. This gives the desired inequality (2.18). �

PROOF OF THEOREM 1.3. In the Taylor dispersion regime where |k| ≤ ν, the proof of Proposition 2.4

requires Assumption 2.2 only for a fixed value of the parameter δ, see (2.16). So, if v : Ω → R is continuous

and not identically constant, we can use instead of (2.8) inequality (2.18), which is given by Lemma 2.5.

The only (minor) difference is the factor κ in the right-hand side of (2.18), which may be larger than 1/2,

in which case one should modify (2.13) so that the factor 1/4 in the last member is replaced by (1 − κ)/2.

The rest of the proof is unchanged, and gives the desired inequality (2.9) when |k| ≤ ν. �

We next investigate the validity of inequality (2.8) for all sufficiently small δ > 0, which requires much

stronger assumptions on the function v. We begin with the one-dimensional case, which is simpler.
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2.1. The one-dimensional case. If d = 1, we can take Ω = (0, L), for some L > 0. Given a nonzero

integer m ∈ N, we suppose that v : [0, L] → R is a function of class Cm whose derivatives up to order m
do not vanish simultaneously:

|v′(y)|+ |v′′(y)|+ · · ·+ |v(m)(y)| > 0 , for all y ∈ [0, L] . (2.21)

Our goal is to show that such a function satisfies Assumption 2.2, for the same value of m.

We recall that H1(Ω) ⊂ C0(Ω) and that the following inequality

‖g‖2L∞ ≤ 1

L
‖g‖2L2 + 2‖g‖L2‖g′‖L2

holds for any g ∈ H1(Ω). If E ⊂ Ω is any measurable set, we thus have
∫

E
|g|2 dy ≤ |E|

( 1

L
‖g‖2L2 + 2‖g‖L2‖g′‖L2

)

≤
(1

4
+

|E|
L

)

‖g‖2L2 + 4|E|2‖g′‖2L2 , (2.22)

where in the second step we used Young’s inequality. If |E| ≤ δ for some δ ≤ L/4, we see that inequality

(2.22) is precisely of the form (2.8). This observation reveals that, in the one-dimensional case, it is sufficient

to show that |Em
λ,δ| = O(δ) as δ → 0, uniformly with respect to λ ∈ R.

We first estimate the length of the thickened level sets Em
λ,δ defined in (2.6).

LEMMA 2.6. If v ∈ Cm([0, L]) satisfies (2.21), there exist positive constants C0, δ0 such that, for all

λ ∈ R and all δ ∈ (0, δ0), one has |Em
λ,δ| ≤ C0δ.

PROOF. Since Em
λ,δ = ∅ when λ /∈ v([0, L]) and δ is sufficiently small, we need only prove the result

for λ in a compact neighborhood of the range of v. Thus, by a finite covering argument, it is sufficient to

prove that, for any λ0 ∈ R, we have the bound |Em
λ,δ| ≤ Cδ for all λ ∈ R sufficiently close to λ0 and for all

δ > 0 small enough. From now on, we fix λ0 ∈ R and we consider the (extended) level set

Eλ0 =
{

y ∈ [0, L] ; v(y) = λ0

}

=
{

y1, . . . , yN
}

,

which is a finite set since, by (2.21), the zeros of the function y → v(y)− λ0 are isolated. If Eλ0 = ∅, then

Eλ = ∅ when λ is sufficiently close to λ0, hence also Em
λ,δ = ∅ when δ > 0 is small enough. So we need

only consider the situation where N := card(Eλ0) ≥ 1. In that case, a standard continuity argument shows

that, for any ǫ > 0, there exists η > 0 such that, if |λ− λ0| < η and 0 < δ < η, any point y ∈ Em
λ,δ satisfies

dist(y,Eλ0) < ǫ. In particular, if ǫ > 0 is sufficiently small, the thickened level set Em
λ,δ is included in the

union of the pairwise disjoint intervals (yj − ǫ, yj + ǫ), where j = 1 . . . N . This means that it is enough to

consider the intersection Em
λ,δ ∩ (yj − ǫ, yj + ǫ) for each j ∈ {1, . . . , N}, which reduces the problem to the

particular case N = 1.

In the rest of the proof, we thus assume that Eλ0 = {y1} for some y1 ∈ [0, L]. According to (2.21),

there exists n ∈ {1, . . . ,m} such that v(j)(y1) = 0 for j = 1, . . . , n − 1 and v(n)(y1) 6= 0. We distinguish

two cases according to the parity of n.

Case 1 : n is odd. For definiteness, we suppose that y1 ∈ (0, L) and v(n)(y1) > 0 (the other situations can

be treated in the same way). We introduce the function w(x) = v(y1 + x)− λ0, which satisfies w(0) = 0.

By assumption, there exist an open interval I ⊂ R containing the origin and two positive constants κ1, κ2
such that

κ1x
n−1 ≤ w′(x) ≤ κ2x

n−1 , for all x ∈ I .

In particular, for any λ in a small neighborhood V of the origin, the equation w(x) = λ has exactly one

solution xλ in I , which satisfies λxλ ≥ 0 and

n|λ|
κ2

≤ |xλ|n ≤ n|λ|
κ1

, for all λ ∈ V . (2.23)
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If w(x) ≥ λ for some x ∈ I and some λ ∈ V , one has

w(x) − λ = w(x) −w(xλ) =

∫ x

xλ

w′(y) dy ≥ κ1
n

(

xn − xnλ
)

,

and a similar estimate holds when w(x) ≤ λ. Reducing the neighborhood V if necessary and choosing a

sufficiently small δ0 > 0, we conclude that, if λ ∈ V and 0 < δ < δ0, then

x ∈ Ẽn
λ,δ :=

{

x ∈ I ; |w(x)− λ| < δn
}

=⇒ |xn − xnλ| <
nδn

κ1
. (2.24)

We now estimate the measure of the set Ẽn
λ,δ in (2.24). Assume for instance that λ ≥ 0 (the other case

being similar). If λ ≥ δn, then xλ ≥ (n/κ2)
1/nδ by (2.23), hence by (2.24) any x ∈ Ẽn

λ,δ satisfies

|x− xλ| <
nδn

κ1

1

xn−1 + · · · + xn−1
λ

≤
( n

κ1

)(κ2
n

)1−1/n
δ . (2.25)

If 0 ≤ λ ≤ δn, then xλ ≤ (n/κ1)
1/nδ by (2.23), hence using (2.24) again we find that any x ∈ Ẽn

λ,δ satisfies

|x|n ≤ |xn − xnλ|+ xnλ <
2n

κ1
δn .

In all cases we obtain |Ẽn
λ,δ| ≤ Cδ, where the constant depends only on n, κ1, κ2. Returning to the original

function v, we conclude that, if λ− λ0 ∈ V and 0 < δ < δ0, we have the estimate

|Em
λ,δ| ≤ |En

λ,δ| = |Ẽn
λ,δ| ≤ C(n, κ1, κ2)δ . (2.26)

Case 2 : n is even. We again assume that y1 ∈ (0, L) and v(n)(y1) > 0. If w(x) = v(y1 + x) − λ0, there

exists an open interval I ⊂ R containing the origin such that

κ1x
n ≤ xw′(x) ≤ κ2x

n , for all x ∈ I .

If the parameter λ is restricted to a small neighborhood V of the origin, the equation w(x) = λ has no

solution in I when λ < 0, and exactly two solutions x±λ ∈ I when λ > 0, which satisfy

x−λ < 0 < x+λ , and
nλ

κ2
≤

∣

∣x±λ
∣

∣

n ≤ nλ

κ1
. (2.27)

Assume now that λ ∈ V and 0 < δ < δ0 for some sufficiently small δ0 > 0. If λ ≥ δn and x belongs to the

set Ẽn
λ,δ defined in (2.24), then taking xλ ∈ {x−λ , x+λ } such that xxλ ≥ 0 we have, as in (2.24), (2.25),

|xn − xnλ| <
nδn

κ1
, hence |x− xλ| <

( n

κ1

)(κ2
n

)1−1/n
δ .

If λ ≤ δn and x ∈ Ẽn
λ,δ, then w(x) < λ + δn ≤ 2δn, and using the lower bound w(x) ≥ (κ1/n)x

n we

deduce that |x| < (2n/κ1)
1/nδ. In all cases we thus obtain |Ẽn

λ,δ| ≤ Cδ, and we conclude as in (2.26). �

The same estimate also holds for the δ-neighborhoods of the thickened level sets:

LEMMA 2.7. If v ∈ Cm([0, L]) satisfies (2.21), there exists positive constants C1, δ1 such that, for all

λ ∈ R and all δ ∈ (0, δ1), one has |Em
λ,δ| ≤ C1δ.

PROOF. Again it is sufficient to estimate the measure of Em
λ,δ for λ close to some λ0 ∈ R, and for δ > 0

sufficiently small. The proof of Lemma 2.6 shows that, under those assumptions, the thickened level set

Em
λ,δ is contained in the union of a finite number of intervals, the lengths of which are bounded by C0δ.

Therefore, the δ-neighborhood Em
λ,δ is contained in a finite union of intervals of lengths (C0 + 2)δ, which

gives the desired conclusion. �

PROOF OF THEOREM 1.1. If d = 1 and v satisfies (1.6), Assumption 2.2 holds as a consequence of

Lemma 2.7 and estimate (2.22). Thus, combining Propositions 2.1 and 2.4, we obtain the desired conclusion.

�
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2.2. The case of Morse functions. Checking Assumption 2.2 in the higher-dimensional case d ≥ 2
is more difficult, and we only consider here an important example. We assume that Ω ⊂ R

d is a bounded

domain with smooth boundary ∂Ω, and that v : Ω → R is a smooth Morse function with no critical point on

the boundary. By this we first mean that v has only a finite number of critical points in Ω, all of which are

nondegenerate. Moreover, by Whitney’s extension theorem [30], v can be extended to a smooth function on

Ω0 := {y ∈ R
d ; dist(y,Ω) < ǫ0} for some ǫ0 > 0, and we assume that this extension (still denoted by v)

has no critical point on ∂Ω.

LEMMA 2.8. If v : Ω → R is a smooth Morse function with no critical point on ∂Ω, then Assumption 2.2

holds with m = 1 if v has no critical point in Ω, and with m = 2 if v has at least one critical point in Ω.

PROOF. As in Lemma 2.6, it is sufficient to prove that, for all λ0 ∈ R, there exists a constant C > 0 such

that inequality (2.8) holds for all λ sufficiently close to λ0, all δ > 0 sufficiently small, and all g ∈ H1(Ω).
We thus fix λ0 ∈ R and we denote by y1, . . . , yN ∈ Ω the critical points of v that lie on the level set Eλ0 (if

there are none, we simply set N = 0). By the Morse lemma [36], for any j ∈ {1, . . . , N} and any sufficiently

small ǫ > 0, there exist a neighborhood Vj of yj in Ω and a smooth diffeomorphism φj : B(0, ǫ) → Vj such

that φj(0) = yj and

v(φj(x)) = λ0 + |x′|2 − |x′′|2 , for all x = (x′, x′′) ∈ B(0, ǫ) ⊂ R
d , (2.28)

where x′ ∈ R
d1 , x′′ ∈ R

d2 with d1 + d2 = d. In other words, after a smooth change of coordinates, we can

assume that v takes the canonical form (2.28) near the critical point yj .

Similarly, in a neighborhood of any non-critical point y ∈ Eλ0 := {y ∈ Ω ; v(y) = λ0}, we can

transform v into an affine function by a change of coordinates. The compact set Eλ0 being covered by these

neighborhoods and by the sets Vj for j = 1, . . . , N , we can extract a finite subcover. We can thus find M

points yN+1, . . . , yN+M ∈ Eλ0 such that, for any j ∈ {N+1, . . . , N+M}, there exist a neighborhood Vj

of yj in Ω0 and a smooth diffeomorphism φj : B(0, ǫ) → Vj such that φj(0) = yj and

v(φj(x)) = λ0 + xd , for all x = (x1, . . . , xd) ∈ B(0, ǫ) . (2.29)

Moreover we have

Eλ0 ⊂ V := V1 ∪ · · · ∪ VN ∪ VN+1 ∪ · · · ∪ VN+M ⊂ Ω0 . (2.30)

Our next tool is a smooth partition of unity (χj) associated with the open cover (2.30). More precisely,

there exists smooth functions χj : R
d → R such that Kj := supp(χj) ⊂ Vj for j = 1, . . . , N +M , and

N+M
∑

j=1

χj(y)
2 ≤ 1 for all y ∈ Ω0 ,

N+M
∑

j=1

χj(y)
2 = 1 for all y ∈ E , (2.31)

for some open set E ⊂ R
d with Eλ0 ⊂ E ⊂ E ⊂ V . For later use, we observe that Em

λ,δ ⊂ E whenever λ
is sufficiently close to λ0 and δ > 0 is sufficiently small.

Now, let g ∈ H1(Ω). Since the boundary ∂Ω is smooth, we can extend g to a function g̃ ∈ H1(Ω0)
which satisfies

‖g̃‖L2(Ω0) ≤ 2‖g‖L2(Ω) , ‖g̃‖H1(Ω0) ≤ C‖g‖H1(Ω) , (2.32)

for some constant C > 0 (independent of g). This extension will allow us to treat the boundary points

yj ∈ ∂Ω exactly as the interior points yj ∈ Ω. Since Em
λ,δ ⊂ E when λ is sufficiently close to λ0 and δ > 0

is sufficiently small, we can use the partition of unity (2.31) to decompose

∫

Em
λ,δ

|g(y)|2 dy =

N+M
∑

j=1

∫

Em
λ,δ

|g(y)|2χj(y)
2 dy =

N+M
∑

j=1

∫

Em
λ,δ

|gj(y)|2 dy , (2.33)

where gj := g̃ χj is supported in Kj ⊂ Vj for j = 1, . . . , N+M .
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It remains to estimate the integrals in the right-hand side of (2.33), which can be written in the form

Ij :=

∫

Em
λ,δ∩Kj

|gj(y)|2 dy =

∫

φ−1
j (Em

λ,δ∩Kj)
|gj(φj(x))|2 |Jφj

(x)|dx , (2.34)

where Jφj
is the Jacobian determinant of the diffeomorphism φj . We can find constants L,Λ ≥ 1 such that

L−1 |x− x̃| ≤ |φj(x)− φj(x̃)| ≤ L|x− x̃| , and Λ−1 ≤ |Jφj
(x)| ≤ Λ ,

for all points x, x̃ ∈ B(0, ǫ) and all integers j ∈ {1, . . . , N+M}. It is thus straightforward to verify that

φ−1
j (Em

λ,δ ∩Kj) ⊂ Em
λ,Lδ,j if δ > 0 is small enough, where

Em
λ,δ,j :=

{

x ∈ B(0, ǫ) ; dist(x,Em
λ,δ,j) < δ

}

, Em
λ,δ,j :=

{

x ∈ B(0, ǫ) ;
∣

∣v(φj(x))− λ
∣

∣ < δm
}

.

Note that the sets Em
λ,δ,j, Em

λ,δ,j are defined in terms of the canonical forms v ◦ φj exactly as the sets (2.6),

(2.7) were defined in terms of the original function v. We now distinguish two cases:

1 : The critical points. If N ≥ 1 and j ∈ {1, . . . , N}, we necessarily have m = 2. In view of the canonical

form (2.28), we apply Lemma B.2 if d1d2 = 0 (the case of a local extremum) or Lemma B.3 if d1d2 > 0
(the case of a saddle point). Denoting hj = gj ◦ φj , we thus obtain

Ij ≤ Λ

∫

Em
λ,Lδ,j

|gj(φj(x))|2 dx ≤ Cδ‖hj‖‖∇hj‖ ≤ κ‖hj‖2 +Cδ2‖∇hj‖2 , (2.35)

where the constant κ > 0 can be taken arbitrarily small. Returning to the original variable y we arrive at

‖hj‖2L2 =

∫

B(0,ǫ)
|gj(φj(x))|2 dx ≤ Λ

∫

Vj

|gj(y)|2 dy = Λ

∫

Vj

|g̃j(y)|2χj(y)
2 dy

‖∇hj‖2L2 ≤ C

∫

Vj

|∇gj(y)|2 dy ≤ C

∫

Vj

(

|∇g̃(y)|2χj(y)
2 + |g̃(y)|2|∇χj(y)|2

)

dy .

(2.36)

2 : The non-critical points. If j ∈ {N+1, . . . , N+M} and m = 1 or 2, then due to the simple canonical

form (2.29) we have the inclusions Em
λ,Lδ,j ⊂ E1

λ,Lδ,j ⊂ E1
λ,2Lδ,j . Therefore, applying Lemma A.5 we obtain

the same estimate (2.35) for the quantity Ij , and (2.36) is unchanged too. Note that, if yj ∈ ∂Ω, the open set

Vj is not entirely contained in Ω, so that we need to use the extension g̃ instead of g in the right-hand side

of (2.36).

Summarizing, we deduce from (2.31), (2.32), and (2.33)–(2.36) that

∫

Em
λ,δ

|g(y)|2 dy =

N+M
∑

j=1

Ij ≤ κΛ

∫

Ω0

|g̃(y)|2 dy + Cδ2
∫

Ω0

(

|∇g̃(y)|2 + |g̃(y)|2
)

dy

≤ 1

2

∫

Ω
|g(y)|2 dy + Cδ2

∫

Ω
|∇g(y)|2 dy ,

provided κΛ < 1/8 and δ > 0 is sufficiently. This gives the desired estimate (2.8). �

PROOF OF THEOREM 1.2. If v is a Morse function, Assumption 2.2 holds with m = 1 or 2 in view of

Lemma 2.8, and the desired conclusion follows from Propositions 2.1 and 2.4. �

2.3. Additional examples. Lemmas 2.7 and 2.8 give general conditions that imply the validity of As-

sumption 2.2, but our approach has a much broader scope and allows us potentially to treat many flows

which do not fall into these categories. We first consider two illustrative examples, and then briefly discuss

in which direction the assumptions of Theorem 1.2 could be weakened.

EXAMPLE 2.9. Assume that Ω = B(0, 1) ⊂ R
d and that v(y) = 1 − |y|m, for some m ∈ N

∗. Then

Assumption 2.2 is verified for that value of m, so that estimate (1.7) holds for all ν > 0 and all k 6= 0.
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To see this, we observe that, if λ ∈ R and δ > 0, we have Em
λ,δ ⊂

{

y ∈ Ω ; R1 ≤ |y| < R2

}

, where

R1 =
(

1− λ− δm
)1/m

+
− δ , R2 =

(

1− λ+ δm
)1/m

+
+ δ .

An easy calculation shows that R2 −R1 ≤ 4δ. So, if g ∈ H1(Ω) and if g̃ ∈ H1(Rd) is an extension of g to

Ω0 = R
d satisfying (2.32), we can apply Lemma B.1 in Appendix B to obtain the estimate

∫

Em
λ,δ

|g(y)|2 dy ≤
∫

{R1≤|y|<R2}
|g̃(y)|2 dy ≤ 8δ ‖g̃‖L2 ‖∇g̃‖L2 ,

from which (2.8) easily follows using (2.32) and Young’s inequality. Note that the value m = 1 is allowed,

in which case the function v is not smooth. In fact, we can allow m to be an arbitrary positive real number

in that example, but the constant C0 in (2.8) diverges in the singular limit m → 0.

EXAMPLE 2.10. Assume that Ω = B(0, 1)×B(0, 1) ⊂ R
d1 × R

d2 and that v(y, z) = 1− |y|m for all

(y, z) ∈ Ω. If d1 ≥ 1 we have the same conclusions as in Example 2.9.

We can assume that d2 ≥ 1 too, otherwise we recover Example 2.9. In the case m = 2, which is already

interesting, the function v is Morse-Bott: its critical points form a submanifold S = {(0, z) ; |z| < 1}, and

the second differential of v is nondegenerate in the directions that are transverse to S. This example can be

treated in the same way as the previous one. We have Em
λ,δ ⊂

{

(y, z) ∈ Ω ; R1 ≤ |y| < R2

}

, with R1, R2

as above, so using Lemma B.1 and Fubini’s theorem we obtain
∫

Em
λ,δ

|g(y, z)|2 dy dz ≤
∫

Rd2

∫

{R1≤|y|<R2}
|g̃(y, z)|2 dy dz ≤ 8δ ‖g̃‖L2 ‖∇g̃‖L2 ,

and estimate (2.8) follows by the same argument. Note that the domain Ω is not smooth in that example.

In a broader perspective, it is possible to prove the validity of Assumption 2.2 for smooth functions v :
Ω → R with degenerate critical points under two conditions. The first one is that the degree of degeneracy

of the critical points be finite at least in some direction of the space. Morse-Bott functions, for instance, may

have critical level sets that form smooth submanifolds of finite codimension, but in transverse directions to

the submanifold the critical points are nondegenerate, and this is sufficient to obtain inequality (2.8) with

m = 2 using the same techniques as in Lemma 2.8 and Example 2.10. The details are postponed to a future

work. On the other hand, if v has an infinitely degenerate critical point, such as in the classical example

v(y) = exp(−1/|y|), it is rather obvious that inequality (2.8) fails for any choice of m ∈ N
∗.

The second condition is more technical in nature: loosely speaking, there should exist a convenient

normal form describing the behavior of v in a neighborhood of any critical point. In the one-dimensional

case, we can use the Taylor expansion at the first nontrivial order, and for nondegenerate critical points in

higher dimensions the Morse lemma describes exactly the local behavior of the function. To our knowledge,

there is no convenient analogue of the Morse lemma for degenerate critical points, and this is what really

prevents us extending Theorem 1.1 to higher dimensions, although simple cases such as Example 2.9 can be

treated by ad hoc arguments.

2.4. A comment on optimality. It is natural to ask whether our Assumption 2.2 is necessary for the

result of Proposition 2.4 to hold. At present time we cannot formulate any precise statement in this direction,

but we believe that hypothesis (2.8) is not far from optimal. At least in simple geometric situations, the fail-

ure of that inequality implies properties of the (thickened) level sets of the function v which are incompatible

with estimate (2.9) in the enhanced dissipation regime.

To explain that, we consider the one-dimensional domain Ω = R, which is noncompact so that the

results of Section 2.1 do not apply. For simplicity, we assume that v : R → R is a smooth, increasing

and globally Lipschitz function, for which Assumption 2.2 with m = 1 does not hold. This means that,

for arbitrary small values of δ > 0, inequality (2.8) fails for arbitrary large values of the constant C0 and

appropriate choices of the parameter λ ∈ R. Since v is increasing, the sets E1
λ,δ and E1

λ,δ are just open
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intervals in the present case, and if we denote by ℓ the length of E1
λ,δ it is easily verified that the failure of

(2.8) is equivalent to the property that ℓ/δ → +∞ as δ → 0.

In what follows we assume for notational simplicity that E1
λ,δ = (−ℓ/2, ℓ/2). We give ourselves a

smooth function h ∈ C2
c (R) which is not identically zero and satisfies supp(h) ⊂ (−1/2, 1/2). We

consider the function g(y) := h(y/ℓ), which is supported in E1
λ,δ, and we compute Hg where H = Hν,k,λ

is the operator defined in (2.5). The result is

(

Hg
)

(y) = − ν

ℓ2
h′′(y/ℓ) + ik

(

v(y)− λ
)

h(y/ℓ) , y ∈ R .

As |v(y)− λ| < δ when y ∈ supp(g), we easily deduce that

‖Hg‖ ≤ C
( ν

ℓ2
+ |k|δ

)

‖g‖ , (2.37)

where the constant C > 0 does not depend on δ, ν, or k.

Now, if ν = |k|ℓ2δ, which is compatible with the enhanced dissipation regime, both terms inside the

parenthesis are equal, and inequality (2.37) becomes ‖Hg‖ ≤ C ν1/3 |k|2/3 ǫ2/3‖g‖, where ǫ := δ/ℓ. In

view of (2.17) we deduce that Ψ(ν, k) ≤ Cν1/3 |k|2/3 ǫ2/3, which contradicts (2.9) in the case m = 1
because ǫ → 0 as δ → 0. Similar arguments can be used to prove the optimality of Assumption 2.2 with

m = 2 for functions v that have nondegenerate critical points.

3. Energy estimates

In this section we give an alternative proof of a slight variation of Theorems 1.2–1.3, using a direct

energy method usually referred to as hypocoercivity [41].To avoid a few technicalities related to boundaries,

we restrict ourselves to the following two cases:

1. Ω = T
d, the d-dimensional periodic box;

2. Ω ⊂ R
d a smooth bounded domain, with homogeneous Dirichlet boundary conditions for g.

The result involves an energy functional of the form

Φ =
1

2

[

‖g‖2 + α‖∇g‖2 + 2βRe〈ikg∇v,∇g〉 + γk2‖g∇v‖2
]

, (3.1)

where 〈·, ·〉 denotes the scalar product in X = L2(Ω) and ‖ · ‖ the associated norm. The parameters α, β, γ
depend on ν, k in a different way according to whether we consider the enhanced dissipation regime or the

Taylor dispersion regime. We prove the following result:

THEOREM 3.1. Assume that v : Ω → R is a smooth Morse function with no critical point on the

boundary ∂Ω. There exist positive constants β0, C3 such that, for all ν > 0, all k 6= 0, and all initial data

g0 ∈ H1
0 (Ω), the solution of (1.5) satisfies, for all t ≥ 0,

Φ(t) ≤ e−C3λν,ktΦ(0) , where λν,k =

{

ν
m

m+2 |k| 2
m+2 if 0 < ν ≤ β0|k| ,

k2

ν if 0 < β0|k| ≤ ν .
(3.2)

Here m = 1 if v has no critical point in Ω, and m = 2 if v has at least one critical point in Ω.

REMARK 3.2. If Ω = T
d, it is understood that Ω = T

d, ∂Ω = ∅, and H1
0 (Ω) = H1(Td). In that case,

any Morse function v has critical points in Ω, so that we necessarily have m = 2.

The decay rate λν,k in (3.2) is essentially the same as the one in (1.7), except for the threshold parameter

β0 which will be taken smaller than 1 in the proof of Theorem 3.1. However, the main difference with the

arguments developed in Section 2 is the use of the H1-type energy (3.1). A simple argument allows us to

translate estimate (3.2) on the energy functional Φ into a semigroup bound of the form (1.7), as is stated

below.
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COROLLARY 3.3. Under the assumptions of Theorem 3.1, there exist positive constants β0, C1, C2 such

that, for all ν > 0, all k 6= 0, and all initial data g0 ∈ L2(Ω), the solution of (1.5) satisfies the estimate

‖g(k, t)‖ ≤ C1

(

1 +
|k|
ν

)
m−1
m+2

e−C2λν,kt ‖g0‖ , (3.3)

for all t ≥ 0, where λν,k is given by (3.2).

REMARK 3.4. In the enhanced dissipation regime, when m ≥ 2, the prefactor appearing in (3.3) implies

a logarithmic correction on the decay rate λν,k, as already noticed in [7]. Such a correction is not present

when m = 1, namely when there are no critical points. Also, in the Taylor dispersion case, the prefactor is

harmless since 1 ≤ 1 + |k|
ν ≤ 1 + β−1

0 .

In the case of homogeneous Dirichlet boundary conditions, the decay estimate (3.3) is not interesting in

the Taylor dispersion regime, because it is in fact weaker than what can be deduced from the simple energy

balance (3.4) in view of the Poincaré inequality.

The rest of this section is devoted to proving Theorem 3.1.

3.1. Energy identities. We start the discussion with some energy identities that will be used to build

the hypocoercivity functional Φ in (3.1). Below, we indicate by ∆ and ∇ the Laplacian and the gradient

with respect to the space variable y ∈ Ω.

LEMMA 3.5. Let g solve (1.5) either in the torus Td, or in a bounded domain Ω ⊂ R
d with homogeneous

Dirichlet boundary conditions. Then we have the following balances:

1

2

d

dt
‖g‖2 + ν‖∇g‖2 = 0 , (3.4)

1

2

d

dt
‖∇g‖2 + ν‖∆g‖2 = −Re〈ikg∇v,∇g〉 , (3.5)

d

dt
Re〈ikg∇v,∇g〉 + k2‖g∇v‖2 = −2νRe〈ik∇v · ∇g,∆g〉 − νRe〈ikg∆v,∆g〉 , (3.6)

1

2

d

dt
‖g∇v‖2 + ν‖|∇v|∇g‖2 = −2νRe〈gD2v∇v,∇g〉 . (3.7)

PROOF. All the identities are established by direct computation, using integration by parts. There are

no boundary terms if Ω = T
d, and in the other case the contributions from the boundary vanish thanks to

the homogeneous Dirichlet conditions. The L2 balance (3.4) follows directly by testing (1.5) with g and

using the antisymmetry property Re〈ivg, g〉 = 0. Testing (1.5) with −∆g we also obtain (3.5) by a simple

integration by parts. Turning to (3.6), we use (1.5) to compute

d

dt
Re〈ikg∇v,∇g〉 = νRe [〈ik(∇v)∆g,∇g〉 + 〈ikg∇v,∇∆g〉] + k2Re [〈vg∇v,∇g〉 − 〈g∇v,∇(vg)〉] .

We treat the ν term integrating by parts as

Re [〈i(∇v)∆g,∇g〉 + 〈ig∇v,∇∆g〉] = −2Re〈i∇v · ∇g,∆g〉 − Re〈ig∆v,∆g〉 ,
while for the second term we compute

〈vg∇v,∇g〉 − 〈g∇v,∇(vg)〉 = −‖g∇v‖2 ,
and (3.6) follows. For (3.7), thanks to antisymmetry we have

1

2

d

dt
‖g∇v‖2 = νRe〈g∇v, (∇v)∆g〉 − Re〈g∇v, ikvg∇v〉

= −ν‖|∇v|∇g‖2 − 2νRe〈gD2v∇v,∇g〉 .
This concludes the proof. �
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REMARK 3.6. The relations (3.4), (3.5), and (3.7) remain valid if g satisfies the homogeneous Neumann

conditions on ∂Ω, but to obtain (3.6) one has to assume in addition that the normal derivative of the shear

velocity v vanishes identically on the boundary. This additional hypothesis is not very natural, as it is not

satisfied in many classical examples, such as the cylindrical Poiseuille flow. Moreover, it conflicts with our

forthcoming assumption that v has no critical points on ∂Ω, see Proposition 3.7 below. For these reasons,

we prefer assuming in this section that g = 0 on ∂Ω, or alternatively that Ω = T
d.

For each k ∈ R, the (frequency-localized) energy functional Φ in (3.1) depends on the positive coeffi-

cients α, β, γ, to be chosen depending on k and ν. For the moment, we assume that

β2

αγ
≤ 1

16
, (3.8)

a condition that guarantees the coercivity of Φ. Indeed, since

2β|k||〈g∇v,∇g〉| ≤ 2β|k|‖g∇v‖‖∇g‖ ≤ α

4
‖∇g‖2 + 4β2k2

α
‖g∇v‖2 ≤ α

4
‖∇g‖2 + γk2

4
‖g∇v‖2 ,

we obtain

1

8

[

4‖g‖2 + 3α‖∇g‖2 + 3γk2‖g∇v‖2
]

≤ Φ ≤ 1

8

[

4‖g‖2 + 5α‖∇g‖2 + 5γk2‖g∇v‖2
]

. (3.9)

Moreover, Lemma 3.5 readily implies that

d

dt
Φ+ ν‖∇g‖2 + αν‖∆g‖2 + βk2‖g∇v‖2 + γνk2‖|∇v|∇g‖2

= −αRe〈ikg∇v,∇g〉 − 2βνRe〈ik∇v · ∇g,∆g〉 (3.10)

− βνRe〈ikg∆v,∆g〉 − 2γνk2〈gD2v∇v,∇g〉 .
In addition to (3.8), let us assume from now on that

α2

ν
≤ β . (3.11)

In this way, the first term on the right-hand side of (3.10) can be estimated as

α|〈ikg∇v,∇g〉| ≤ α|k|‖g∇v‖‖∇g‖ ≤ ν

2
‖∇g‖2 + α2k2

2ν
‖g∇v‖2 ≤ ν

2
‖∇g‖2 + βk2

2
‖g∇v‖2 . (3.12)

Moreover, thanks to (3.8) we have

2βν|〈ik∇v · ∇g,∆g〉| ≤ 2βν|k|‖|∇v|∇g‖‖∆g‖ ≤ αν

4
‖∆g‖2 + γνk2

4
‖|∇v|∇g‖2 , (3.13)

and

βν|〈ikg∆v,∆g〉| ≤ βν|k|‖g∆v‖‖∆g‖ ≤ αν

4
‖∆g‖2 + γνk2

16
‖g∆v‖2. (3.14)

Finally, we have

2γνk2|〈gD2v∇v,∇g〉| ≤ γνk2

4
‖|∇v|∇g‖2 + 4γνk2‖gD2v‖2 . (3.15)

Combining (3.10) and (3.12)–(3.15), we arrive at

d

dt
Φ+

ν

2
‖∇g‖2 + αν

2
‖∆g‖2 + βk2

2
‖g∇v‖2 + γνk2

2
‖|∇v|∇g‖2 ≤ 5γνk2‖gD2v‖2. (3.16)

In order to obtain a differential inequality for the functional Φ, it remains to bound the remainder term in the

right-hand side of (3.16), and to show that Φ itself can be controlled using the positive terms in the left-hand

side.
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3.2. A semi-classical estimate. One of the key elements of the proof via hypocoercivity is the follow-

ing inequality, which we state in a fairly general way.

PROPOSITION 3.7. Let w : Ω → R be a smooth function such that

(H1) w ∈ C1(Ω), and ∇w 6= 0 on ∂Ω;

(H2) w has a finite number of critical points y1, . . . , yN in Ω. For 1 ≤ j ≤ N there exist a radius

Rj ∈ (0, 1), an integer mj ≥ 2, and a constant C ≥ 1 such that

1

C
|y − yj |mj−1 ≤ |∇w(y)| ≤ C|y − yj|mj−1, ∀ y ∈ B(yj, Rj) , (3.17)

where B(yj, Rj) denotes the ball of radius Rj centered at yj .

Then there exists a constant Csp ≥ 1 such that, for all σ ∈ (0, 1] and all ϕ ∈ H1(Ω), the following

inequality holds

σ
m−1
m ‖ϕ‖2 ≤ Csp

[

σ‖∇ϕ‖2 + ‖ϕ∇w‖2
]

, (3.18)

where m = max{m1, . . . ,mN} if N ≥ 1 and m = 1 if w has no critical point in Ω.

Estimate (3.18) means that the ground state of the Schrödinger operator −σ∆ + |∇w|2 in L2(Ω) is

bounded from below by C−1
sp σ

m−1
m in the semi-classical limit σ → 0. There is of course an abundant

literature on spectral bounds for semi-classical Schrödinger operators. The background material can be

found in the excellent references [27,29], where estimate (3.18) is established at least in some special cases.

For the sake of completeness, we give below a short proof of (3.18) under our general assumptions.

The proof of Proposition 3.7 relies on the following lemma.

LEMMA 3.8. Let R > 0 and denote by BR ⊂ R
d the ball of radius R centered at 0. If ϕ ∈ H1

0 (BR)
and ℓ ∈ N, then

‖ϕ‖L2(BR) ≤ C‖∇ϕ‖
ℓ

ℓ+1

L2(BR)
‖|y|ℓϕ‖

1
ℓ+1

L2(BR)
, (3.19)

where the constant C > 0 depends only on d and ℓ.

PROOF. There is nothing to prove if ℓ = 0, so we assume henceforth that ℓ ≥ 1. Passing to polar

coordinates and decomposing ϕ in spherical harmonics as in the proof of Lemma B.1 below, we see that it

is sufficient to prove (3.19) in the particular case where ϕ is radially symmetric. Under that assumption, we

can integrate by parts and obtain

‖ϕ‖2 = Ad

∫ R

0
ϕ(r)2rd−1 dr = −2Ad

d

∫ R

0
rϕ(r)ϕ′(r)rd−1 dr ,

where Ad = 2πd/2Γ(d/2)−1 is the area of the unit sphere in R
d. By Hölder’s inequality we then find

Ad

∫ R

0
r|ϕ(r)||ϕ′(r)|rd−1 dr ≤ ‖ϕ′‖‖rℓϕ‖ 1

ℓ ‖ϕ‖1− 1
ℓ ,

hence

‖ϕ‖2 ≤ 2

d
‖ϕ′‖‖rℓϕ‖ 1

ℓ ‖ϕ‖1− 1
ℓ .

This gives the desired inequality (3.19) for a radially symmetric ϕ, and the general case follows. �

We are now ready to prove the semi-classical estimate (3.18).

PROOF OF PROPOSITION 3.7. For definiteness we consider the case of a bounded domain Ω ⊂ R
d; the

argument is similar in the periodic case. In Assumption (H2), we suppose without loss of generality that the

balls B(yj, Rj) are pairwise disjoint. For each j ∈ {1, . . . , N}, let χj be a smooth cut-off function such
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that supp(χj) ⊂ B(yj, Rj) and χj = 1 on B(yj, Rj/2). We can also assume that there exists a smooth

function χ0 such that

χ0(y)
2 +

N
∑

j=1

χj(y)
2 = 1 , for all y ∈ R

d ,

so that the family {χ2
j} for j = 0, . . . , N is a smooth partition of unity.

Fix ϕ ∈ H1(Ω). For any j ∈ {1, . . . , N} we have ϕχj ∈ H1
0 (B(yj , Rj)), so using assumption (3.17)

and Lemma 3.8 with ℓ = mj − 1, we obtain

‖ϕχj‖L2(B(yj ,Rj)) ≤ C‖∇(ϕχj)‖
mj−1

mj

L2(B(yj ,Rj))
‖ϕχj∇w‖

1
mj

L2(B(yj ,Rj))
, j ≥ 1 .

Equivalently, by Young’s inequality, there exists a constant c1 > 0 such that

σ
mj−1

mj ‖ϕχj‖2 ≤ c1
[

σ‖∇(ϕχj)‖2 + ‖ϕχj∇w‖2
]

, j ≥ 1 . (3.20)

We remark that inequality (3.20) is also satisfied when j = 0, with m0 = 1, since by construction the

function |∇w| is bounded away from zero on the support of ϕχ0. Taking this observation into account, we

can compute

σ‖∇ϕ‖2 + ‖ϕ∇w‖2 =
∑

j≥0

σ‖χj∇ϕ‖2 + ‖ϕχj∇w‖2

=
∑

j≥0

σ‖∇(ϕχj)− ϕ∇χj‖2 + ‖ϕχj∇w‖2

=
∑

j≥0

σ‖∇(ϕχj)‖2 + ‖ϕχj∇w‖2 − 2σ〈∇(ϕχj), ϕ∇χj〉+ σ‖ϕ∇χj‖2

≥ 1

2

∑

j≥0

[

σ‖∇(ϕχj)‖2 + ‖ϕχj∇w‖2
]

− c2σ‖ϕ‖2

≥ 1

2c1

∑

j≥0

σ
mj−1

mj ‖ϕχj‖2 − c2σ‖ϕ‖2

=
1

2c1
σ

m−1
m ‖ϕ‖2 − c2σ‖ϕ‖2 ≥ 1

4c1
σ

m−1
m ‖ϕ‖2 ,

provided σ ∈ (0, σ0] for some σ0 small enough. A simple rescaling of σ then implies (3.18), hence con-

cluding the proof. �

3.3. Velocity profiles with simple critical points. If v is a Morse function, namely if all critical points

of v are nondegenerate, the strategy is to estimate the right-hand side of (3.16) using the smoothness of v,

and then to apply inequality (3.18) with m = 2 (or m = 1 if v has no critical point). For the sake of clarity,

we concentrate here on the harder case m = 2.

PROOF OF THEOREM 3.1, CASE m = 2. Our starting point is inequality (3.16). Since v ∈ C2(Ω),
there exists a positive constant cv = c(‖v‖W 2,∞) such that ‖D2v‖L∞ ≤ cv/5, hence

d

dt
Φ+

ν

2
‖∇g‖2 + βk2

2
‖g∇v‖2 ≤ cvγνk

2‖g‖2 .

We need to show that the right-hand side can be absorbed in the left-hand side thanks to inequality (3.18)

and to a suitable choice of the parameters α, β, γ, in compliance with (3.8) and (3.11). Assuming for the

moment that such a choice can be made, so that

cvγνk
2‖g‖2 ≤ ν

4
‖∇g‖2 + βk2

4
‖g∇v‖2 , (3.21)
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we then find
d

dt
Φ+

ν

4
‖∇g‖2 + βk2

4
‖g∇v‖2 ≤ 0 .

Using (3.21) once more, we obtain

d

dt
Φ+

cvγνk
2

2
‖g‖2 + ν

8
‖∇g‖2 + βk2

8
‖g∇v‖2 ≤ 0 ,

or equivalently

d

dt
Φ+

cvγνk
2

8

[

4‖g‖2 + 1

5cvαγk2
5α‖∇g‖2 + β

5cvγ2νk2
5γk2‖g∇v‖2

]

≤ 0 . (3.22)

In order to fulfill (3.8) and (3.11) with an equality, we make the choices

α2 = βν , γ =
16β3/2

ν1/2
, (3.23)

and rewrite (3.22) as

d

dt
Φ+ 2cvβ

3/2ν1/2k2
[

4‖g‖2 + 1

80cvβ2k2
5α‖∇g‖2 + 1

1280cvβ2k2
5γk2‖g∇v‖2

]

≤ 0 . (3.24)

We now consider two complementary regimes, verify (3.21) and close a proper Gronwall estimate for Φ.

⋄ Enhanced dissipation. For some β0 ∈ (0, 1) to be fixed and independent of ν, k, we take

β =
β0
|k| , and we assume

ν

|k| ≤ β0 . (3.25)

To verify (3.21), we use inequality (3.18) with w = v, m = 2, and

σ =
ν

βk2
≤ 1 .

We thus obtain

β1/2ν1/2|k|‖g‖2 ≤ Csp

[

ν‖∇g‖2 + βk2‖g∇v‖2
]

. (3.26)

It follows that inequality (3.21) is verified provided

cvγνk
2 ≤ β1/2ν1/2|k|

4Csp
.

In view of (3.23) and (3.25), this is equivalent to β0 ≤ (64 cvCsp)
−1, which is simply requiring β0 to be

small enough. Going back to (3.24) and possibly reducing β0 further so that 1280 cvβ
2
0 ≤ 1, we find from

the coercivity of Φ in (3.9) that

d

dt
Φ+ 16 cvβ

3/2
0 ν1/2|k|1/2Φ ≤ 0 , (3.27)

which immediately implies (3.2).

⋄ Taylor dispersion. If ν|k|−1 ≥ β0, we take

β =
β1
ν

, (3.28)

for some β1 ∈ (0, β2
0 ] to be fixed and independent of ν, k. Now, choosing σ = 1 in (3.18) and using the

assumption that β1 ≤ β2
0 , we find

βk2‖g‖2 ≤ Csp

[

ν‖∇g‖2 + βk2‖g∇v‖2
]

.

It follows that inequality (3.21) is verified provided

cvγνk
2 ≤ βk2

4Csp
.
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From (3.23) and (3.28), this is equivalent to β
1/2
1 ≤ (64 cvCsp)

−1. Going back to (3.24), we possibly reduce

β1 further so that 1280 cvβ
2
1 ≤ β2

0 . From the coercivity of Φ in (3.9), we then find

d

dt
Φ+ 16 cvβ

3/2
1

k2

ν
Φ ≤ 0 .

and the proof is now complete. �

REMARK 3.9. In the simpler case m = 1, the only difference is the scaling of α, β, γ with respect to

ν, k, in the enhanced dissipation regime. Specifically, the choice of β in (3.25) has to be changed to

β = β0
ν1/3

|k|4/3 . (3.29)

In fact, an even simpler proof can be carried out, without the use of the term multiplied by γ in (3.1). See

[16] for a proof in the one dimensional case.

REMARK 3.10. In the Taylor dispersion regime, we really only used that v is twice continuously differ-

entiable and not identically constant. Indeed, all we need is that inequality (3.18) holds when σ = 1, and

this does not require any particular structure. Therefore, the above argument also gives an alternative proof

of Theorem 1.3 under slightly more restrictive regularity assumptions on v.

It remains to give a proof of the semigroup estimate (3.3). The argument follows essentially that of

[20, 21], and we give the details here for completeness.

PROOF OF COROLLARY 3.3. We first consider the enhanced dissipation regime. Let Tν,k = 1/λν,k be

the relevant time scale. From the energy balance (3.4) and the mean-value theorem, we may find a time

t0 ∈ (0, Tν,k) such that

2‖∇g(t0)‖2 ≤ λν,k

ν
‖g0‖2 =

( |k|
ν

)
2

m+2

‖g0‖2 .

In turn, from the definition of α, β, γ in (3.23) and (3.25) (or in (3.29) for m = 1), the above inequality can

be rewritten as

α‖∇g(t0)‖2 ≤ β
1/2
0

2
‖g0‖2 . (3.30)

Since ∇v is bounded on Ω and t 7→ ‖g(t)‖2 is decreasing by (3.4), we infer from (3.9) that

Φ(t0) ≤ 1

8

[

4‖g(t0)‖2 + 5α‖∇g(t0)‖2 + 5γk2‖g(t0)∇v‖2
]

≤ K0(1 + γk2)‖g0‖2 , (3.31)

for some constant K0 > 0 which is independent on ν, k. Hence, for any t ≥ Tν,k, the differential inequality

(3.27) implies that

1

2
‖g(t)‖2 ≤ Φ(t) ≤ e−16cvβ

3/2
0 λν,k(t−t0)Φ(t0) ≤ K0(1 + γk2) e16cvβ

3/2
0 e−16cvβ

3/2
0 λν,kt‖g0‖2 . (3.32)

In terms of powers of ν and k, we have that

β ∼ ν
2−m
m+2

|k| 4
m+2

, γ ∼ ν
2(1−m)
m+2

|k| 6
m+2

=⇒ γk2 ∼
( |k|

ν

)

2(m−1)
m+2

,

so that (3.32) gives the semigroup estimate (3.3) for t ≥ Tν,k. Since inequality (3.3) is trivially satisfied

when t < Tν,k, the proof is complete in the enhanced dissipation regime.

In the Taylor dispersion regime, the argument is analogous, and in fact more elementary due to the

simple scaling of α, β, γ. Indeed, since α ∼ 1 and γ ∼ ν−2, we only have to replace (3.30) and (3.31) by

α‖∇g(t0)‖2 ≤ β
1/2
1

2

(

k

ν

)2

‖g0‖2, Φ(t0) ≤ K0

(

1 +

(

k

ν

)2 )

‖g0‖2 , (3.33)

respectively. The rest of the argument is exactly the same as before, and leads to (3.3). �
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4. Conclusions

The results of this paper emphasize the link between enhanced dissipation and Taylor dispersion in

parallel shear flows, thereby demonstrating that these phenomena, which have a common origin, can be

analyzed using the same mathematical tools. In the Taylor dispersion regime, an optimal decay estimate is

obtained under very general assumptions on the shear velocity v, see Theorem 1.3, but our approach does not

give the classical formula for the effective diffusion constant in the asymptotic regime where |k| ≪ ν. That

formula can be established using homogenization theory [34, 37], see also [4] for a rigorous proof based on

center manifold theory. In the enhanced dissipation regime, which requires more precise assumptions, we

obtain (to our knowledge) the first general result concerning the higher-dimensional case, see Theorem 1.2.

For simplicity, we suppose that the shear velocity is a Morse function, but it is clear that our methods

can be extended to more general situations, some examples of which are given in Section 2.3. When the

cross-section of the domain is one-dimensional, we only need to suppose that the critical points of v are

nondegenerate in the sense of (1.6), and we recover the main conclusions of the previous works [7, 25].

A notable feature of our analysis is to provide for our main results two different proofs, which are based

either on L2 resolvent estimates (Section 2) or on H1 energy estimates (Section 3). Both methods have their

own advantages and drawbacks, and it is worth drawing a little summary at this point.

i) The first approach, based on resolvent estimates for the generator of the linear evolution equation (1.5),

is very general. It can be used even if the shear velocity is not smooth, see [42], and it is relatively insensitive

to the choice of the boundary conditions. Thanks to the semigroup bounds recently obtained in [28, 42],

it gives optimal decay estimates for the solutions of (1.5) in L2(Ω), without the logarithmic corrections

originating from the hypocoercivity method [7]. It relies entirely on standard techniques for the analysis

of linear partial differential operators, and can therefore be applied to higher-order dissipative operators,

involving for instance the bilaplacian. However, when the cross-section of our domain has dimension d ≥ 2,

Assumption 2.2 on the level sets of the shear velocity v is not easy to verify, and this is why we restrict

ourselves to the relatively simple case of Morse functions.

ii) The second approach, inspired from Villani’s work on hypocoercivity [41], has the advantage of

dealing directly with the evolution equation, which makes it potentially applicable to nonlinear problems as

well (see [10]), although this possibility has not been widely explored so far. It is based on rather elementary

H1 energy estimates, which however impose some restrictions concerning the boundary conditions. When

the shear velocity v is a Morse function, it essentially relies on the standard semi-classical estimate (3.18),

which is certainly easier to prove than (2.8) in the higher-dimensional case. But if v has degenerate critical

points, the coefficients α, β, γ in the functional (3.1) have to be replaced by y-dependent functions, which

makes the calculations more complicated. As a final remark, the estimates given by the hypocoercivity

method are naturally expressed in terms of the H1-type functional Φ, and logarithmic corrections may

appear when translating them into ordinary L2 estimates for the evolution equation (1.5). It is worth noticing

that the introduction of time-dependent coefficients in Φ can remove logarithmic losses [18, 22, 33, 43].

Moreover, the robustness of the method allows to treat different dissipative operators, for instance fractional

diffusion [33] or more complicated dissipative operators [8].

Appendix A. On H1-thin sets

Assumption 2.2 in Section 2 is closely related to a notion of “thinness” for subsets of Rd which seems

quite natural, although we were not able to locate it in the literature. In this section, we introduce this notion

and discuss a few elementary properties.

DEFINITION A.1. A set E ⊂ R
d is H1-thin if there exist positive constants C and δ0 such that, for all

δ ∈ (0, δ0) and all g ∈ H1(Rd), the following inequality holds:
∫

Eδ

g(x)2 dx ≤ 1

2

∫

Rd

g(x)2 dx+ Cδ2
∫

Rd

|∇g(x)|2 dx , (A.1)

where Eδ =
{

x ∈ R
d ; dist(x,E) < δ

}

.
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REMARK A.2. In particular, if we take g ∈ H1
0 (Eδ) in (A.1), we see that Poincaré’s inequality holds

in Eδ with constant
√
2Cδ, for all sufficiently small δ > 0. It is not clear if this property is sufficient to

characterize H1-thin sets.

We first observe that the factor 1/2 in (A.1) can be replaced by an arbitrary real number κ ∈ (0, 1)
without altering the definition.

LEMMA A.3. Fix any κ ∈ (0, 1). A set E ⊂ Rd is H1-thin if and only if there exist positive constants

C and δ0 such that, for all δ ∈ (0, δ0) and all g ∈ H1(Rd),
∫

Eδ

g(x)2 dx ≤ κ

∫

Rd

g(x)2 dx+ Cδ2
∫

Rd

|∇g(x)|2 dx . (A.2)

PROOF. Increasing the value of κ obviously makes inequality (A.2) weaker. To prove Lemma A.3, we

have to show that it is possible to decrease the value of κ in (A.2), at the expense of modifying the constants

C and δ0. To see that, assume that (A.2) holds for some κ ∈ (0, 1), and take g ∈ H1(Rd). For any N ∈ N
∗,

we have
∫

E(N+1)δ

g(x)2 dx ≤ κ

∫

Rd

g(x)2 dx+ C(N+1)2δ2
∫

Rd

|∇g(x)|2 dx , (A.3)

provided 0 < δ < δ0/(N + 1). Define f ∈ H1(Rd) by f = χg, where

χ(x) = φ
(dist(x,E)− δ

Nδ

)

, φ(t) =







1 if t ≤ 0
1− t if 0 ≤ t ≤ 1
0 if t ≥ 1

.

Note that f vanishes outside E(N+1)δ , and coincides with g on Eδ. Applying (A.2) to f , we thus find
∫

Eδ

g(x)2 dx =

∫

Eδ

f(x)2 dx ≤ κ

∫

Rd

f(x)2 dx+ Cδ2
∫

Rd

|∇f(x)|2 dx

≤ κ

∫

E(N+1)δ

g(x)2 dx+ 2Cδ2
∫

E(N+1)δ

(

|∇g|2 + |∇χ|2g2
)

dx .
(A.4)

Since |∇χ| ≤ 1/(Nδ), we deduce from (A.3), (A.4) that
∫

Eδ

g(x)2 dx ≤
(

κ2 +
2C

N2

)

∫

Rd

g(x)2 dx+ C(N)δ2
∫

Rd

|∇g(x)|2 dx ,

for some constant C(N) independent of δ. If we take N large enough, the coefficient in front of the first

integral in the right-hand side can be made smaller than κ′ := κ(κ + 1)/2 < κ. Repeating the argument a

finite number of times, we can thus make the coefficient κ in (A.2) as small as we wish. �

It is clear from the definition that, if E ⊂ R
d is H1-thin, then any subset F ⊂ E is H1-thin a fortiori.

Also, using Lemma A.3, it is easy to verify that a finite union of H1-thin sets is H1-thin. Indeed, if E,F
are arbitrarily subsets of Rd we have, for all g ∈ H1(Rd) and all δ > 0,

∫

(E∪F )δ

g2 dx =

∫

Eδ∪Fδ

g2 dx ≤
∫

Eδ

g2 dx+

∫

Fδ

g2 dx .

If E,F are H1-thin, both integrals in the right-hand side can be estimated as in (A.2) with κ = 1/4, which

yields inequality (A.1) for E ∪ F . A less immediate property is stated in the following lemma.

LEMMA A.4. If E ⊂ R
d is measurable and H1-thin, then E has zero Lebesgue measure.

PROOF. We can assume without loss of generality that E is bounded, so that |E| < ∞. Given any ǫ > 0
we define gǫ = 1E ∗ χǫ, where 1E is the characteristic function of E and χǫ is a standard approximation of

unity:

χǫ(x) =
1

ǫd
χ
(x

ǫ

)

, χ ∈ C∞
c (Rd) ,

∫

Rd

χ(x) dx = 1 .
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Since E is H1-thin and gǫ ∈ H1(Rd), inequality (A.1) shows that, for any small δ > 0,

∫

E
gǫ(x)

2 dx ≤
∫

Eδ

gǫ(x)
2 dx ≤ 1

2

∫

Rd

gǫ(x)
2 dx+ Cδ2

∫

Rd

|∇gǫ(x)|2 dx .

Therefore, taking the limit δ → 0, we obtain

∫

E
gǫ(x)

2 dx ≤ 1

2

∫

Rd

gǫ(x)
2 dx . (A.5)

Now, in the limit ǫ → 0, we have gǫ → 1E in L2(Rd), so that both integrals in (A.5) converge to the same

value |E|. We thus obtain the inequality |E| ≤ |E|/2, which implies that |E| = 0. �

The following lemma is useful to construct concrete examples of H1-thin sets.

LEMMA A.5. The graph of any Lipschitz function h : Rd−1 → R is H1-thin in R
d.

PROOF. Let E =
{

(x, h(x)) ∈ R
d ; x ∈ R

d−1
}

be the graph of h, and let M be a Lipschitz constant of

h. We first observe that, for any δ > 0, we have the inclusion

Eδ ⊂ Γδ :=
{

(x, y) ∈ R
d ; x ∈ R

d−1 , |y − h(x)| < Nδ
}

, (A.6)

where N = (1 +M2)1/2. Indeed, for all x1, x2 ∈ R
d−1 and all z ∈ R, we have

∣

∣(x1, h(x1) + z)− (x2, h(x2))
∣

∣

2
= |x1 − x2|2 + |z + h(x1)− h(x2)|2

≥ |x1 − x2|2 +
(

|z| −M |x1 − x2|
)2

+
≥ z2

1 +M2
,

where the last inequality is obvious if |z| ≤ M |x1 − x2|, and can be obtained by minimizing the function

a 7→ a2 + (|z| −Ma)2 in the converse case. Taking the infimum over x2 ∈ R
d−1, we obtain the estimate

dist
(

(x1, h(x1) + z) , E
)

≥ |z|√
1 +M2

, ∀x1 ∈ R
d−1 , ∀ z ∈ R ,

which in turn implies (A.6). Now, if g ∈ C1
c (R

d), we have for any x ∈ R
d−1:

∫ h(x)+Nδ

h(x)−Nδ
g(x, y)2 dy ≤ 2Nδ sup

y∈R
g(x, y)2 ≤ 2Nδ

(
∫

R

g(x, y)2 dy

)1/2(∫

R

∂yg(x, y)
2 dy

)1/2

,

where we used the bound ‖f‖2L∞ ≤ ‖f‖L2‖f ′‖L2 which holds for all f ∈ H1(R). Integrating both sides

over x ∈ R
d−1 and using Schwarz’s inequality together with (A.6), we arrive at

∫

Eδ

g(x)2 dxdy ≤
∫

Γδ

g(x)2 dxdy ≤ 2Nδ ‖g‖L2‖∇g‖L2 .

By density, this bound remains valid for all g ∈ H1(Rd), and (A.1) then follows from Young’s inequality.

�

It is clear from Definition A.1 that the family of H1-thin sets is invariant under the action of the Eu-

clidean group in R
d. It is also easy to verify that H1-thin sets are stable under dilations, although the upper

bound δ0 on the parameter δ has to be replaced by λδ0 if E is replaced by λE for some λ > 0. Combining

these observations with Lemma A.5, we conclude that any submanifold S of Rd of nonzero codimension is

H1-thin. More generally, any m-rectifiable set E ⊂ R
d with m ≤ d− 1 is H1-thin.
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Appendix B. Geometric lemmas

In this section we collect some basic estimates for levels sets of Morse functions near critical points,

which are used in Section 2.2. We assume henceforth that the space dimension d is at least 2. Our starting

point is:

LEMMA B.1. For all g ∈ H1(Rd) and all R2 ≥ R1 ≥ 0, we have
∫

R1≤|x|≤R2

g(x)2 dx ≤ 2(R2 −R1) ‖g‖L2 ‖∇g‖L2 . (B.1)

PROOF. We first prove (B.1) in the particular case where g ∈ C1
c (R

d) and g is radially symmetric.

Under those assumptions, we can integrate by parts and obtain, for any r > 0,

−
∫ ∞

r
2g(s)g′(s)sd−1 ds = g(r)2rd−1 + (d−1)

∫ ∞

r
g(s)2sd−2 ds .

Using Schwarz’s inequality, we deduce

g(r)2rd−1 + (d−1)

∫ ∞

r
g(s)2sd−2 ds ≤ 2

(
∫ ∞

r
g(s)2sd−1 ds

)1/2(∫ ∞

r
g′(s)2sd−1 ds

)1/2

.

In particular, we have

Ad g(r)
2 rd−1 ≤ 2 ‖g‖L2 ‖∇g‖L2 , ∀ r > 0 ,

where Ad = 2πd/2Γ(d/2)−1 is the area of the unit sphere S
d−1 ⊂ R

d. Integrating both sides over the

interval [R1, R2], we obtain the desired inequality (B.1).

For a general function g ∈ C1
c (R

d), we introduce polar coordinates x = rω and use the decomposition

g(rω) =
∑

n∈N

gn(r)Yn(ω) , r ∈ R+ , ω ∈ S
d−1 ,

where the spherical harmonics Yn(ω) are eigenfunctions of the Laplace-Beltrami operator on S
d−1, and are

normalized so that the family (Yn)n∈N is an orthonormal basis of L2(Sd−1). Using Parseval’s identity and

the previous step, we deduce that
∫

R1≤|x|≤R2

g(x)2 dx =
∑

n∈N

∫

R1≤|x|≤R2

gn(|x|)2 dx ≤ 2(R2 −R1)
∑

n∈N

‖gn‖L2‖g′n‖L2

≤ 2(R2 −R1)
(

∑

n∈N

‖gn‖2L2

)1/2(∑

n∈N

‖g′n‖2L2

)1/2
≤ 2(R2 −R1) ‖g‖L2 ‖∇g‖L2 ,

because ‖g‖2L2 =
∑

n∈N ‖gn‖2L2 and ‖∇g‖2L2 ≥ ∑

n∈N ‖g′n‖2L2 . This proves (B.1) for all g ∈ C1
c (R

d), and

the general case follows by density. �

Now, let v : Rd → R be a smooth function and m ∈ N
∗ a nonzero integer. In analogy with (2.6), (2.7),

we define, for all λ ∈ R and all δ > 0,

Em
λ,δ =

{

x ∈ R
d ; |v(x) − λ| < δm

}

, Em
λ,δ =

{

x ∈ R
d ; dist(x,Em

λ,δ) < δ
}

. (B.2)

LEMMA B.2. Assume that v(x) = |x|2 for all x ∈ R
d. Then for any λ ∈ R, any δ > 0, and any

g ∈ H1(Rd), we have
∫

E2
λ,δ

g(x)2 dx ≤ 2
√
2 δ ‖g‖L2 ‖∇g‖L2 ,

∫

E2
λ,δ

g(x)2 dx ≤ 2(1+
√
3) δ ‖g‖L2 ‖∇g‖L2 . (B.3)

PROOF. Since v(x) = |x|2, the definition (B.2) implies that E2
λ,δ ⊂ {x ∈ R

d ; R1 ≤ |x| < R2}
where R1 = (λ − δ2)

1/2
+ and R2 = (λ + δ2)

1/2
+ . Considering three cases according to whether λ ≤ −δ2,
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λ ∈ (−δ2, δ2), or λ ≥ δ2, it is straightforward to verify that R2 − R1 ≤
√
2 δ in all situations, hence (B.1)

gives the first inequality in (B.3). The same argument applies to E2
λ,δ if we define

R1 =
(

(λ− δ2)
1/2
+ − δ

)

+
, R2 = (λ+ δ2)

1/2
+ + δ .

Again considering all possible cases, we find that R2 − R1 ≤ (1+
√
3)δ, and the second inequality in (B.3)

follows in the same way. �

LEMMA B.3. Assume that d = d1+d2 with d1, d2 ≥ 1, and that v(x) = |y|2−|z|2 for all x = (y, z) ∈
R
d1 × R

d2 . Then for any λ ∈ R, any δ > 0, and any g ∈ H1(Rd), we have
∫

E2
λ,δ

g(x)2 dx ≤ 2
√
2 δ ‖g‖L2 ‖∇g‖L2 ,

∫

E2
λ,δ

g(x)2 dx ≤ 4(2 +
√
2) δ ‖g‖L2 ‖∇g‖L2 . (B.4)

PROOF. We have by definition

E2
λ,δ =

{

(y, z) ∈ R
d ; |z|2 + λ− δ2 < |y|2 < |z|2 + λ+ δ2

}

.

It follows that E2
λ,δ ⊂ {(y, z);R1(z) ≤ |y| < R2(z)} where

R2(z) =
(

|z|2 + λ+ δ2
)1/2

+
, R1(z) =

(

|z|2 + λ− δ2
)1/2

+
.

As before we have R2(z)−R1(z) ≤
√
2 δ. Thus applying Lemma B.1 and Fubini’s theorem, we obtain

∫

E2
λ,δ

g(y, z)2 dy dz ≤
∫

Rd2

(
∫

R1(z)≤|y|≤R2(z)
g(y, z)2 dy

)

dz

≤ 2
√
2 δ

∫

Rd2

(
∫

Rd1

g(y, z)2 dy

)1/2(∫

Rd1

|∇yg(y, z)|2 dy
)1/2

dz

≤ 2
√
2 δ ‖g‖L2 ‖∇g‖L2 ,

which is the first inequality in (B.4).

The proof of the second inequality is slightly more complicated. If (y, z) ∈ E2
λ,δ, then by definition

there exists (ỹ, z̃) ∈ E2
λ,δ such that |y − ỹ|2 + |z − z̃|2 < δ2. Let µ = |ỹ|2 − |z̃|2 ∈ (λ − δ2, λ + δ2). If

µ ≥ 0 we have |ỹ| =
√

µ+ |z̃|2, hence
∣

∣

∣
|y| −

√

µ+ |z|2
∣

∣

∣
≤

∣

∣

∣
|y| − |ỹ|

∣

∣

∣
+

∣

∣

∣
|ỹ| −

√

µ+ |z̃|2
∣

∣

∣
+

∣

∣

∣

√

µ+ |z̃|2 −
√

µ+ |z|2
∣

∣

∣

≤ |y − ỹ|+ |z − z̃| <
√
2 δ .

A similar argument shows that
∣

∣|z| −
√

|µ|+ |y|2
∣

∣ <
√
2 δ if µ ≤ 0. Thus E2

λ,δ ⊂ Fλ,δ ∪Gλ,δ where

Fλ,δ =
{

(y, z) ;
∣

∣|y| −
√

µ+ |z|2
∣

∣ <
√
2 δ for some µ ≥ 0 with |µ − λ| < δ2

}

,

Gλ,δ =
{

(y, z) ;
∣

∣|z| −
√

|µ|+ |y|2
∣

∣ <
√
2 δ for some µ ≤ 0 with |µ− λ| < δ2

}

.

We now distinguish three cases.

Case 1 : λ ≥ δ2. Then Gλ,δ = ∅ and Fλ,δ ⊂ {(y, z);R1(z) ≤ |y| < R2(z)} where

R1(z) =
(

(λ− δ2 + |z|2)1/2 −
√
2 δ

)

+
, R2(z) = (λ+ δ2 + |z|2)1/2 +

√
2 δ .

It is easy to verify that R2(z) −R1(z) ≤ (2 +
√
2)δ, hence proceeding as above we find

∫

E2
λ,δ

g(x)2 dx ≤
∫

Fλ,δ

g(x)2 dx ≤ 2(2 +
√
2) δ ‖g‖L2 ‖∇g‖L2 .
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Case 2 : λ ≤ −δ2. Then Fλ,δ = ∅ and a similar argument shows that
∫

E2
λ,δ

g(x)2 dx ≤
∫

Gλ,δ

g(x)2 dx ≤ 2(2 +
√
2) δ ‖g‖L2 ‖∇g‖L2 .

Case 3 : −δ2 < λ < δ2. Here both sets Fλ,δ, Gλ,δ are nonempty, and must be considered. We first observe

that Fλ,δ ⊂ {(y, z);R1(z) ≤ |y| < R2(z)} where

R1(z) =
(

(λ− δ2 + |z|2)1/2+ −
√
2 δ

)

+
, R2(z) = (λ+ δ2 + |z|2)1/2 +

√
2 δ .

One verifies that R2(z)−R1(z) ≤ (2 +
√
2) δ, and it follows that

∫

Fλ,δ

g(x)2 dx ≤ 2(2 +
√
2) δ ‖g‖L2 ‖∇g‖L2 .

A similar argument gives the same estimate for the integral over Gλ,δ, and since E2
λ,δ ⊂ Fλ,δ ∪ Gλ,δ we

arrive at the second estimate in (B.4) in all cases. �
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[30] L. Hörmander, The analysis of linear partial differential operators. I, Classics in Mathematics, Springer-Verlag, Berlin, 2003.

[31] S. Ibrahim, Y. Maekawa, and N. Masmoudi, On pseudospectral bound for non-selfadjoint operators and its application to

stability of Kolmogorov flows, Ann. PDE 5 (2019), no. 2, Paper No. 14, 84.

[32] T. Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995.

[33] H. Li and W. Zhao, Metastability for the dissipative quasi-geostrophic equation and the non-local enhancement, arXiv e-prints

(July 2021), available at 2107.10594.

[34] A. J. Majda and P. R. Kramer, Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena,

Phys. Rep. 314 (1999), no. 4-5, 237–574.

[35] G. N. Mercer and A. J. Roberts, A centre manifold description of contaminant dispersion in channels with varying flow

properties, SIAM J. Appl. Math. 50 (1990), no. 6, 1547–1565.

[36] J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963.

[37] G. A. Pavliotis and A. M. Stuart, Multiscale methods, Texts in Applied Mathematics, vol. 53, Springer, New York, 2008.

[38] P. B. Rhines and W. R. Young, How rapidly is a passive scalar mixed within closed streamlines?, Journal of Fluid Mechanics

133 (1983), 133–145.

[39] G. I. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. Roy. Soc. London A 219 (1953),

186–203.

[40] G. I. Taylor, Dispersion of matter in turbulent flow through a tube, Proc. Roy. Soc. London A 223 (1954), 446–468.

[41] C. Villani, Hypocoercivity, Mem. Am. Math. Soc. 202 (2009), iv+141 pp.

[42] D. Wei, Diffusion and mixing in fluid flow via the resolvent estimate, Sci. China Math. 64 (2021), no. 3, 507–518.

[43] D. Wei and Z. Zhang, Enhanced dissipation for the Kolmogorov flow via the hypocoercivity method, Sci. China Math. 62

(2019), no. 6, 1219–1232.

[44] D. Wei, Z. Zhang, and W. Zhao, Linear inviscid damping and enhanced dissipation for the Kolmogorov flow, Adv. Math. 362

(2020), 106963, 103.

[45] W. R. Young and S. Jones, Shear dispersion, Physics of Fluids A: Fluid Dynamics 3 (1991), no. 5, 1087–1101.

DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE LONDON, LONDON, SW7 2AZ, UK

Email address: m.coti-zelati@imperial.ac.uk
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