100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Louis Funar

Holomorphic mappings from strongly pseudoconvex domains to complex manifolds.

Lundi, 25 Septembre, 2006 - 16:00
Prénom de l'orateur : 
Nom de l'orateur : 
Résumé : 

Let D be a strongly pseudoconvex domain with smooth boundary in C^N. It follows from Henkin-Ramirez integral kernel representation that every holomorphic function on D continuous up to the boundary can be uniformly approximated on the closure of D by functions holomorphic in a neighbourhood of D.
In the talk we discuss some approximation results for mappings from
strongly pseudoconvex domains to complex manifolds and for sections of certain holomorphic fiber bundles on strongly pseudoconvex
The main analytic technique which we use is a method of gluing holomorphic sprays over Cartan pairs in Stein manifolds, with control up to the boundary of the domain.
This is joint work with Franc Forstneric.

Institution de l'orateur : 
Université de Ljubljana
Thème de recherche : 
Algèbre et géométries
Salle : 
logo uga logo cnrs