100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Louis Funar

Counterexamples to Min-Oo's conjecture

Jeudi, 17 Juin, 2010 - 16:00
Prénom de l'orateur : 
Simon
Nom de l'orateur : 
Brendle
Résumé : 

Consider a compact Riemannian manifold $M$ of dimension $n$ whose boundary $\partial M$ is totally geodesic and is isometric to the standard sphere $S^{n-1}$. A natural conjecture of Min-Oo asserts that if the scalar curvature of $M$ is at least $n(n-1)$, then $M$ is isometric to the hemisphere $S_+^n$ equipped with its standard metric. This conjecture is inspired by the positive mass theorem in general relativity, and has been verified in many special cases.

I will present joint work with F.C. Marques and A. Neves which shows that Min-Oo's conjecture fails in dimension $n \geq 3$.

Institution de l'orateur : 
Stanford
Thème de recherche : 
Théorie spectrale et géométrie
Salle : 
04
logo uga logo cnrs