Monday, 1 March, 2010 - 15:00
Prénom de l'orateur :
Franck
Nom de l'orateur :
Sueur
Résumé :
We consider the incompressible Euler equations in a two-dimensional bounded domain, for flows with bounded vorticity, for which Yudovich proved global existence and uniqueness of the solution. We prove in particular that if the boundary of the domain is $C^\infty$ (respectively Gevrey of order $M$) then the trajectories of the fluid particles are $C^\infty$ (resp. Gevrey of order $M+2$).
Institution de l'orateur :
Université Paris VI
Thème de recherche :
Physique mathématique
Salle :
1 tour Irma