Thursday, 29 September, 2011 - 16:00
Prénom de l'orateur :
Roberto
Nom de l'orateur :
Mossa
Résumé :
In the first part of the seminar, I will introduce Calabi's {diastasis function}, a special Kähler potential defined on real analytic Kähler manifold. Then I will illustrate some of its applications. In the second part, I will apply the properties of the diastasis function to study the problem of Minimal Entropy on a compact Riemannian manifold $(X,g_0)$ which is a quotient of the polydisc $(\mathbb C H^1)^r$ endowed with its canonical K\{a}hler structure. Namely
Institution de l'orateur :
Institut Fourier
Thème de recherche :
Théorie spectrale et géométrie
Salle :
04