suivant: Expand and reduce : monter: The CAS functions précédent: Rational function given by   Table des matières   Index

# Computing in /p or in /p[x]

The way to compute over /p or over /p[x] depends on the syntax mode :
• In Xcas mode, an object n over /p is written n%p. Some examples of input for
• an integer n in /13
n:=12%13.
• a vector V in /13
V:=[1,2,3]%13 or V:=[1%13,2%13,3%13].
• a matrix A in /13
A:=[[1,2,3],[2,3,4]]%13 or
A:=[[1%13,2%13,3%13],[[2%13,3%13,4%13]].
• a polynomial A in /13[x] in symbolic representation
A:=(2*x`^`2+3*x-1)%13 or
A:=2%13*x`^`2+3%13*x-1%13.
• a polynomial A in /13[x] in list representation
A:=poly1[1,2,3]%13 or A:=poly1[1%13,2%13,3%13].
To recover an object o with integer coefficients instead of modular coefficients, input o % 0. For example, input o:=4%7 and o%0,then output is -3.
• In Maple mode, integers modulo p are represented like usual integers instead of using specific modular integers. To avoid confusion with normal commands, modular commands are written with a capital letter (inert form) and followed by the mod command (see also the next section).
Remark
• For some commands in /p or in /p[x], p must be a prime integer.
• The representation is the symetric representation :
11%13 returns -2%13.

Sous-sections

suivant: Expand and reduce : monter: The CAS functions précédent: Rational function given by   Table des matières   Index
giac documentation written by Renée De Graeve and Bernard Parisse