next up previous contents index
suivant: Row reduction to echelon monter: Computing in /p or précédent: Determinant of a matrix   Table des matières   Index


Inverse of a matrix with coefficients in $ \mathbb {Z}$/p$ \mathbb {Z}$ : inv inverse

inverse (or inv) takes as argument a matrix A in $ \mathbb {Z}$/p$ \mathbb {Z}$.
inverse (ou inv) returns the inverse of the matrix A in Z/p$ \mathbb {Z}$.
Input :
inverse([[1,2,9]%13,[3,10,0]%13,[3,11,1]%13])
Or :
inv([[1,2,9]%13,[3,10,0]%13,[3,11,1]%13])
Or :
inverse([[1,2,9],[3,10,0],[3,11,1]]%13)
Or :
inv([[1,2,9],[3,10,0],[3,11,1]]%13)
Output :
[[2%13,-4%13,-5%13],[2%13,0%13,-5%13], [-2%13,-1%13,6%13]]
it is the inverse of A = [[1, 2, 9],[3, 10, 0],[3, 11, 1]] in $ \mathbb {Z}$/13$ \mathbb {Z}$.



giac documentation written by Renée De Graeve and Bernard Parisse