Poincaré institute

Reinventing rational points

triangle gauche logo trimestre triangle droite
drapeau flag

Rational points on Fano and similar varieties

Organisers: T. Browning and E. Peyre


Margaret Bilu :
Motivic Euler products
Julia Brandes :
Rational lines on cubic hypersurfaces
Antoine Chambert-Loir :
Integral points of bounded height on toric varieties — reloaded
Jean-Louis Colliot-Thélène :
Obstruction de Brauer-Manin pour les surfaces de Markoff
Cyril Demarche :
Structure of homogeneous spaces and applications to local-global principles
David Harari :
Complexes of tori and rational points on homogeneous spaces over a function field
Julia Hartmann :
Local-Global principles for tori over arithmetic surfaces
Pierre Le Boudec :
On a conjecture of Poonen and Voloch II: Lattice point counting and the variance of the number of rational points on Fano hypersurfaces
Daniel Loughran :
A quantitative version of the fibration method
Bjorn Poonen :
The local-global principle for stacky curves
Per Salberger :
Counting rational points of cubic hypersurfaces
Cecília Salgado :
Mordell Weil rank jumps and the Hilbert property
Will Sawin :
On a conjecture of Poonen and Voloch I: Probabilistic models for counting rational points on random Fano hypersurfaces
Arne Smeets :
Campana's orbifolds, points of bounded height and fibrations
Efthymios Sofos :
Serre's problem for diagonal conics
Sho Tanimoto :
Sections of del Pezzo fibrations over \(\mathbf P^1\)
Olivier Wittenberg :
Approximation fine pour les points rationnels sur les corps de fonctions
Fei Xu :
Strong approximation for a family of norm varieties