100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Louis Funar

Canonical metrics on some complex domains of $\C^n$

星期三, 1 四月, 2009 - 12:30
Prénom de l'orateur : 
Fabio
Nom de l'orateur : 
ZUDDAS
Résumé : 

The study of the existence and uniqueness of a preferred Kaehler metric on a given complex manifold $M$ is a very important area of research. In this talk we recall the main results and open questions for the most important canonical metrics (Einstein, constant scalar curvature, extremal, Kaehler-Ricci solitons) in the compact and the non-compact case, then we consider a particular class of complex domains $D$ in $\C^n$, the so-called Hartogs domains, which can be equipped with a natural Kaehler
metric $g$. We show that if $g$ is an extremal Kaehler metric, then $(D, g)$ is holomorphically isometric to an open subset of the $n$-dimensional complex hyperbolic space. We also prove the same assertion under the assumption that there exists a real holomorphic vector field $X$ on $D$ such that $(g, X)$ is a Kaehler-Ricci soliton.

Institution de l'orateur : 
Université de Cagliari, Italie
Thème de recherche : 
Théorie spectrale et géométrie
Salle : 
04
logo uga logo cnrs