100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Louis Funar

Quantization of complex symplectic manifolds

星期一, 17 五月, 2010 - 12:30
Prénom de l'orateur : 
Andrea
Nom de l'orateur : 
D'AGNOLO
Résumé : 

We introduce a canonical quantization algebroid of a complex
symplectic manifold.
Here, unlike in the usual deformation-quantization, the deformation
parameter h-bar is not central.
Its centralizer contains Polesello-Schapira's deformation-quantization
algebroid,
up to a twist by the gerbe parameterizing the primitives of the
symplectic 2-form.

Regular holonomic quantization modules along a Lagrangian subvariety
are equivalent to regular holonomic modules along its contactification,
with coefficients in the algebroid of classical microdifferential
operators.
If the manifold is compact, the derived category of regular holonomic
quantization modules is Calabi-Yau.

This is joint work with Masaki Kashiwara.

Institution de l'orateur : 
Univ. de Padoue
Thème de recherche : 
Algèbre et géométries
Salle : 
04
logo uga logo cnrs