next up previous contents index
suivant: The function : Gamma monter: Real numbers précédent: Error function : erf   Table des matières   Index


Complementary error function: erfc

erfc takes as argument a number a.
erfc returns the value of the complementary error function at x = a, this function is defined by :

erfc(x) = $\displaystyle {\frac{{2}}{{\sqrt{\pi}}}}$$\displaystyle \int_{x}^{{+\infty}}$e-t2dt = 1 - erf (x)

Hence erfc(0) = 1, since :

$\displaystyle \int_{0}^{{+\infty}}$e-t2dt = $\displaystyle {\frac{{\sqrt{\pi}}}{{2}}}$

Input :
erfc(1)
Output :
0.15729920705
Input :
1- erfc(1/(sqrt(2)))*1/2
Output :
0.841344746069
Remark
The relation between erfc and normal_cdf is :

\begin{displaymath}\mbox{\tt normal\_cdf}(x)=1-\frac{1}{2}\*\mbox{\tt erfc}
(\frac{x}{\sqrt{2}}) \end{displaymath}

Verification :
normal_cdf(1)=0.841344746069



giac documentation written by Renée De Graeve and Bernard Parisse