suivant: The function : Gamma
monter: Real numbers
précédent: Error function : erf
Table des matières
Index
Complementary error function: erfc
erfc takes as argument a number a.
erfc returns the value of the complementary error function at
x = a, this function is defined by :
erfc(
x) =
e-t2dt = 1 -
erf (
x)
Hence erfc(0) = 1, since :
e-t2dt =
Input :
erfc(1)
Output :
0.15729920705
Input :
1- erfc(1/(sqrt(2)))*1/2
Output :
0.841344746069
Remark
The relation between erfc and normal_cdf is :
Verification :
normal_cdf(1)=0.841344746069
giac documentation written by Renée De Graeve and Bernard Parisse