suivant: Complementary error function: erfc
monter: Real numbers
précédent: n-th root : root
Table des matières
Index
Error function : erf
erf takes as argument a number a.
erf returns the floating point value of the error function at x = a,
where the error function is defined by :
erf(
x) =

e-t2dt
The normalization is choosen so that:
erf(+

) = 1, erf(-

) = - 1
since :
e-t2dt =
Input :
erf(1)
Output :
0.84270079295
Input :
erf(1/(sqrt(2)))*1/2+0.5
Output :
0.841344746069
Remark
The relation between erf and normal_cdf is :

Indeed, making the change of variable
t = u*
in

gives :

Check :
normal_cdf(1)=0.841344746069
giac documentation written by Renée De Graeve and Bernard Parisse