suivant: Euclidean quotient and euclidean
monter: Integers (and Gaussian Integers)
précédent: The integer Euclidean quotient
Table des matières
Index
The integer Euclidean remainder : irem remain smod mods mod %
irem (or remain) returns the integer remainder r from
the Euclidean division of two integers a and b given as arguments
(a = b*q + r avec
0 r < b).
For Gaussian integers, we choose q so that b*q is as near by a as
possible and it can be proved that r may be choosen so that
| r|2 | b|2/2.
Input :
irem(148,5)
Output :
3
irem works with long integers or with Gaussian integers.
Example :
irem(factorial(148),factorial(45)+2 )
Output :
111615339728229933018338917803008301992120942047239639312
Another example
irem(25+12*i,5+7*i)
Output :
-4+i
Here
a - b*q = - 4 + i and
| - 4 + i|2 = 17 < | 5 + 7*i|2/2 = 74/2 = 37
smod or mods is a prefixed
function and has two integers a and b as arguments.
smod or mods returns the
symetric remainder s of the Euclidean division of the
arguments a and b (a = b*q + s with
- b/2 < s b/2).
Input :
smod(148,5)
Output :
-2
mod (or %) is an infixed function
and has two integers a and b
as arguments.
mod (or %) returns r%b of Z/bZ where r is the remainder of
the Euclidean division of the arguments a and b.
Input :
148 mod 5
or
148 % 5
Output :
3 % 5
Note that the answer 3 % 5 is not an integer (3) but
an element of Z/5Z (see 1.31 to have
the possible operations in Z/5Z).
suivant: Euclidean quotient and euclidean
monter: Integers (and Gaussian Integers)
précédent: The integer Euclidean quotient
Table des matières
Index
giac documentation written by Renée De Graeve and Bernard Parisse