suivant: The integer Euclidean remainder
monter: Integers (and Gaussian Integers)
précédent: The divisors of a
Table des matières
Index
The integer Euclidean quotient : iquo intDiv
iquo (or intDiv) returns the integer quotient q of the
Euclidean division of two integers a and b given as arguments.
(a = b*q + r with
0 r < b).
For Gaussian integers, we choose q so that b*q is as near by a as
possible and it can be proved that r may be choosen so that
| r|2 | b|2/2.
Input :
iquo(148,5)
Output :
29
iquo works with integers or with Gaussian integers.
Input :
iquo(factorial(148),factorial(145)+2 )
Output :
3176375
Input :
iquo(25+12*i,5+7*i)
Output :
3-2*i
Here
a - b*q = - 4 + i and
| - 4 + i|2 = 17 < | 5 + 7*i|2/2 = 74/2 = 37
giac documentation written by Renée De Graeve and Bernard Parisse