Logo CNRS Logo Université Grenoble Alpes

Loren Coquille

Welcome to my web page !

Institut Fourier
UMR 5582 du CNRS
Université de Grenoble Alpes
100 rue des Mathématiques
38610 Gières, France

BUREAU 320
Tél. : 0476514656, Fax : 0476514478
E-mail :

Vitae

I am 'maître de conférences' (assistant professor) at the Institut Fourier, Université Grenoble Alpes, since September 2015. My main research interests are in statistical mechanics and population dynamics. From 2013 to 2015 I was a postdoc at the Hausdorff Center fuer Mathematik, Bonn University, in the group of Anton Bovier. I did my PhD at the University of Geneva, Switzerland, under the supervision of Yvan Velenik.

Here is my full Curriculum Vitae.

Publications and preprints

  1. Crossing a fitness valley as a metastable transition in a stochastic population model,
    A. Bovier, L. Coquille and C. Smadi, (2018)
    [ArXiv:1801.06473]

  2. The recovery of a recessive allele in a Mendelian diploid model,
    A. Bovier, L. Coquille and R. Neukirch, (2017)
    [ArXiv:1703.02459] [Slides]

  3. Note on Bolthausen-Deuschel-Zeitouni's paper on the absence of a wetting transition for a pinned harmonic crystal in dimensions three and larger,
    L. Coquille and P. Miłoś, (2017)
    [ArXiv:1703.01479]

  4. A stochastic model for immunotherapy of cancer,
    M. Baar, L. Coquille, H. Mayer, M. Hölzel, M. Rogava, T. Tüting, and A. Bovier,
    Scientific Reports, 6, 24169 (2016)
    [DOI:10.1038/srep24169] [ArXiv:1505.00452] [Poster] [Slides]

  5. Examples of DLR states which are not weak limits of finite volume Gibbs measures with deterministic boundary conditions
    L. Coquille,
    Journal of Statistical Physics, 159 (2015), pp. 958-971.
    [ DOI 10.1007/s10955-015-1211-3] [Arxiv]

  6. On the Gibbs states of the noncritical Potts model on Z^2,
    L. Coquille, H. Duminil-Copin, D. Ioffe, and Y. Velenik,
    Probability Theory and Related Fields, 158 (2014), pp. 477–512.
    [DOI 10.1007/s00440-013-0486-z] [Arxiv] [Slides]

  7. A note on the discrete Gaussian free field with disordered pinning on Z^d, d ≥ 2,
    L. Coquille and P. Miłoś,
    Stochastic Processes and their Applications, 123 (2013), pp. 3542 – 3559.
    [DOI 10.1016/j.spa.2013.04.022
    ] [Arxiv]

  8. A second note on the Gaussian free field with disordered pinning on Z^d, d ≥ 2,
    L. Coquille and P. Miłoś, (2013)
    [ArXiv:1303.6770]

  9. A finite-volume version of Aizenman–Higuchi theorem for the 2d Ising model,
    L. Coquille and Y. Velenik,
    Probability Theory and Related Fields, 153 (2012), pp. 25–44.
    [DOI: 10.1007/s00440-011-0339-6
    ] [Arxiv] [Poster] [Slides]

Ongoing projets

  1. Parameter estimation and treatment optimization in a stochastic model for cancer immunotherapy 
    with M. Diabaté and A. Leclercq-Samson. 

  2. Interfaces for 2d long-range Ising models  
    with A. Le Ny, W. Ruszel and A. van Enter.  

  3. Fluctuations of the tilted interfaces of the 3d Ising model 
    with B. Laslier.  

PhD Thesis

    Flowers, Forests and Fields in Physics
    University of Geneva, Switzerland. June 2013.
    Under the supervision of Prof. Yvan Velenik
    [Thesis] (in english), [Slides] (in french).

Popularization

  1. Un modèle probabiliste pour l'immunothérapie du cancer,
    L. Coquille
    Tangente, Hors Série 58 (2016), pp.36-37.
    [Online version]
Institut Fourier, UMR5582 CNRS, Université Grenoble Alpes, 100 rue des Mathématiques, 38610 Gières France.