On the Gibbs states of the non-critical Potts model on \mathbb{Z}^2

Joint work with H. Duminil-Copin, D. loffe, and Y. Velenik.

Loren Coquille

Hausdorff Center für Mathematik, Universität Bonn

July 10, 2014

Outline of the talk

- Finite volume measures
- Phase transition
- Infinite volume measures
- Mown results
- Mew result
- 6 Main ideas of the proof

Outline of the talk

- Finite volume measures
- 2 Phase transition
- Infinite volume measures
- 4 Known results
- New result
- Main ideas of the proof

Ising model

Spin = state of a site $x \in \mathbb{Z}^d$

$$\sigma_{x} \in \{-1, +1\}$$

٨

Hamiltonian = energy of a spin configuration

$$\mathcal{H}(\sigma) = -\sum_{x \sim v} \sigma_x \sigma_y \to \left\{ \begin{array}{ccc} \bullet \bullet & \text{or } \bullet \bullet & \text{contribution} = -1 \\ \bullet \bullet & \text{or } \bullet \bullet & \text{contribution} = +1 \end{array} \right.$$

Gibbs measure on $\{-1,+1\}^{\Lambda}$:

$$\mathbb{P}_{\Lambda,\mathcal{T}}(\sigma) = rac{1}{Z} \exp\left(-rac{1}{\mathcal{T}}\mathcal{H}(\sigma)
ight), \quad \mathcal{T} = ext{temperature}$$

Ising model / Potts model

Spin = state of a site $x \in \mathbb{Z}^d$

$$\sigma_{\mathsf{X}} \in \{-1, +1\}$$

$$\sigma_{\mathsf{X}} \in \{1, 2 \dots, q\}$$

Hamiltonian = energy of a spin configuration

$$\mathcal{H}(\sigma) = -\sum_{x \sim y} \sigma_x \sigma_y \to \begin{cases} \bullet \bullet \text{ or } \bullet \bullet \text{ contribution } = -1 \\ \bullet \bullet \text{ or } \bullet \bullet \end{cases}$$
 contribution $= +1$

$$\mathcal{H}(\sigma) = -\sum_{\mathbf{x} \sim \mathbf{y}} \delta_{\sigma_{\mathbf{x}} = \sigma_{\mathbf{y}}} \rightarrow \left\{ \begin{array}{cccc} \bullet \bullet & \text{or } \bullet \bullet & \text{or } \bullet \bullet & \text{or } \dots & \text{contribution} = -1 \\ \bullet \bullet & \text{or } \bullet \bullet & \text{or } \bullet \bullet & \text{or } \dots & \text{contribution} = 0 \end{array} \right.$$

$$\mathbb{P}_{\mathsf{\Lambda}, \mathcal{T}}(\sigma) = rac{1}{Z} \exp\left(-rac{1}{T}\mathcal{H}(\sigma)
ight), \quad T = \mathsf{temperature}$$

Boundary conditions

Ising:
$$\mathcal{H}^{\omega}(\sigma) = -\sum_{x \sim y} \sigma_x \sigma_y - \sum_{\substack{x \in \Lambda, y \in \partial \Lambda \\ x \sim y}} \sigma_x \omega_y$$

Potts:
$$\mathcal{H}^{\omega}(\sigma) = -\sum_{\mathsf{x} \sim \mathsf{y}} \delta_{\sigma_{\mathsf{x}} = \sigma_{\mathsf{y}}} - \sum_{\substack{\mathsf{x} \in \mathsf{\Lambda}, \mathsf{y} \in \partial \mathsf{\Lambda} \\ \mathsf{x} \sim \mathsf{y}}} \delta_{\sigma_{\mathsf{x}} = \omega_{\mathsf{y}}}$$

Boundary conditions

Ising:
$$\mathcal{H}^{\omega}(\sigma) = -\sum_{x \sim y} \sigma_x \sigma_y - \sum_{\substack{x \in \Lambda, y \in \partial \Lambda \\ x \sim y}} \sigma_x \omega_y$$

Potts:
$$\mathcal{H}^{\omega}(\sigma) = -\sum_{x \sim y} \delta_{\sigma_x = \sigma_y} - \sum_{\substack{x \in \Lambda, y \in \partial \Lambda \\ x \sim y}} \delta_{\sigma_x = \omega_y} \qquad \rightsquigarrow \quad \mathbb{P}^{\omega}_{\Lambda, T}$$

Outline of the talk

- Finite volume measures
- 2 Phase transition
- Infinite volume measures
- 4 Known results
- New result
- Main ideas of the proof

Monochromatic boundary conditions

Phase transition

Ising

There exists $T_c(d) \in (0, \infty)$ s.t.

• If $T > T_c$ then

$$\lim_{oldsymbol{\Lambda}\uparrow\mathbb{Z}^d}\mathbb{E}_{oldsymbol{\Lambda},oldsymbol{T}}^+(\sigma_0)=0$$

• If $T < T_c$ then

$$\lim_{\Lambda\uparrow\mathbb{Z}^d}\mathbb{E}_{\Lambda,T}^+(\sigma_0)>0$$

Potts

There exists $T_c(d, q) \in (0, \infty)$ s.t.

• If $T > T_c$ then

$$\lim_{\Lambda\uparrow\mathbb{Z}^d}\mathbb{P}^i_{\Lambda,\mathcal{T}}(\sigma_0=i)=1/q$$

• If $T < T_c$ then

$$\lim_{\Lambda\uparrow\mathbb{Z}^d}\mathbb{P}^i_{\Lambda,\mathcal{T}}(\sigma_0=i)>1/q$$

Phase transition

Ising

There exists $T_c(d) \in (0, \infty)$ s.t.

• If $T > T_c$ then

$$\mathbb{E}_{T}^{+}(\sigma_{0})=0$$

• If $T < T_c$ then

$$-\mathbb{E}_{T}^{-}=\mathbb{E}_{T}^{+}(\sigma_{0})>0$$

Potts

There exists $T_c(d,q) \in (0,\infty)$ s.t.

• If $T > T_c$ then

$$\mathbb{P}_{T}^{i}(\sigma_{0}=i)=1/q$$

• If $T < T_c$ then

$$\mathbb{P}_T^i(\sigma_0=i)>1/q$$

Remarks

 Existence of the monochromatic phases: FKG inequality for Ising, coupling with the random-clusters model for Potts.
 They are translation invariant.

Phase transition

Ising

There exists $T_c(d) \in (0, \infty)$ s.t.

• If $T > T_c$ then

$$\mathbb{E}_{7}^{+}(\sigma_{0})=0$$

• If $T < T_c$ then

$$-\mathbb{E}_{T}^{-}=\mathbb{E}_{T}^{+}(\sigma_{0})>0$$

Potts

There exists $T_c(d,q) \in (0,\infty)$ s.t.

• If $T > T_c$ then

$$\mathbb{P}_{T}^{i}(\sigma_{0}=i)=1/q$$

• If $T < T_c$ then

$$\mathbb{P}_T^i(\sigma_0=i)>1/q$$

Remarks

- Existence of the monochromatic phases: FKG inequality for Ising, coupling with the random-clusters model for Potts.
 They are translation invariant.
- Non-triviality of T_c : Peierls in d=q=2, monotonicity in d and in q.

Outline of the talk

- Finite volume measures
- 2 Phase transition
- 3 Infinite volume measures
- 4 Known results
- New result
- Main ideas of the proof

Infinite volume Gibbs measures

Weak limits approach

$$\mathcal{G}_{\mathcal{T}} = \left\{ egin{array}{ll} ext{accumulation points of sequences } \left(\mathbb{P}_{\Lambda_n}^{\omega_n}
ight)_n \ ext{with } \Lambda_n \uparrow \mathbb{Z}^d ext{ as } n o \infty \end{array}
ight.$$

Weak topology :
$$\mathbb{P}^{\omega_n}_{\Lambda_n} \to \mathbb{P} \quad \Leftrightarrow \quad \mathbb{E}^{\omega_n}_{\Lambda_n}(f) \to \mathbb{E}(f) \quad \forall f \text{ local}$$

Infinite volume Gibbs measures

Weak limits approach

$$\mathcal{G}_{\mathcal{T}} = \left\{ egin{array}{ll} ext{accumulation points of sequences } \left(\mathbb{P}_{\Lambda_n}^{\omega_n}
ight)_n \ ext{with } \Lambda_n \uparrow \mathbb{Z}^d ext{ as } n o \infty \end{array}
ight.$$

Weak topology : $\mathbb{P}^{\omega_n}_{\Lambda_n} \to \mathbb{P} \quad \Leftrightarrow \quad \mathbb{E}^{\omega_n}_{\Lambda_n}(f) \to \mathbb{E}(f) \quad \forall f \text{ local}$

Dobrushin-Lanford-Ruelle approach

$$\tilde{\mathcal{G}}_{\mathcal{T}} = \left\{ \begin{array}{c} \mathbb{P}: & \text{for all } \Lambda \Subset \mathbb{Z}^d, \text{ and } \mathbb{P}\text{-a.e. } \omega, \\ \mathbb{P}(\sigma \,|\, \sigma = \omega \text{ on } \Lambda^c) = \mathbb{P}^{\omega}_{\Lambda}(\sigma) \end{array} \right\}$$

Infinite volume Gibbs measures

Weak limits approach

$$\mathcal{G}_{\mathcal{T}} = \left\{ egin{array}{ll} ext{accumulation points of sequences } \left(\mathbb{P}_{\Lambda_n}^{\omega_n}
ight)_n \ ext{with } \Lambda_n \uparrow \mathbb{Z}^d ext{ as } n o \infty \end{array}
ight.$$

Weak topology : $\mathbb{P}^{\omega_n}_{\Lambda_n} \to \mathbb{P} \quad \Leftrightarrow \quad \mathbb{E}^{\omega_n}_{\Lambda_n}(f) \to \mathbb{E}(f) \quad \forall f \text{ local}$

Dobrushin-Lanford-Ruelle approach

$$\tilde{\mathcal{G}}_{\mathcal{T}} = \left\{ \begin{array}{c} \mathbb{P}: & \text{for all } \Lambda \Subset \mathbb{Z}^d, \text{ and } \mathbb{P}\text{-a.e. } \omega, \\ \mathbb{P}(\sigma \,|\, \sigma = \omega \text{ on } \Lambda^c) = \mathbb{P}^{\omega}_{\Lambda}(\sigma) \end{array} \right\}$$

 $\bigwedge \tilde{\mathcal{G}}_{\mathcal{T}}$ is a simplex, whose extremal elements belong to $\mathcal{G}_{\mathcal{T}}$!

Outline of the talk

- Finite volume measures
- 2 Phase transition
- 3 Infinite volume measures
- 4 Known results
- 5 New result
- 6 Main ideas of the proof

Known results for the Ising model

1972 For
$$0 < T \ll T_c$$
 and $d=2$ resp. 3,
[Galavotti] [Dobrushin]
$$\mathbb{P}^{\pm} = (\mathbb{P}^+ + \mathbb{P}^-)/2, \quad \mathbb{P}^{\pm} \text{ is not translation invariant}$$

Known results for the Ising model

1980-81 In d = 2 for all T > 0 [Aizenman] [Higuchi]

$$\mathcal{G}_{\mathcal{T}} = \left\{ \alpha \mathbb{P}_{\mathcal{T}}^{+} + (1 - \alpha) \mathbb{P}_{\mathcal{T}}^{-}, \text{ with } \alpha \in [0, 1] \right\}$$

$$T \geq T_c \quad \Rightarrow \quad \mathcal{G}_T = \{\mathbb{P}_T\}$$

$$T < T_c \quad \Rightarrow \quad \mathcal{G}_T = [\mathbb{P}_T^-, \mathbb{P}_T^+]$$

(Proof by contradiction, in the infinite volume setting, gives little information about large but finite volumes.)

Known results for the Ising model

1979 In
$$d = 2$$
 and for $T \ll T_c$ [Higuchi]
2005 In $d = 2$ and $T < T_c$ [Greenberg, Ioffe]

Under diffusive scaling, the Dobrushin interface weakly converges to a Brownian bridge.

Known results for the Potts model

1986 For
$$d \ge 2$$
, $q > q_0(d)$, and $T < T_c$ [Martirosian]

If
$$\mathbb{P} \in \mathcal{G}_T$$
 is translation invariant, then $\mathbb{P} = \sum_{i=1}^q \alpha_i \mathbb{P}_T^i$.

Known results for the Potts model

1986 For $d \ge 2$, $q > q_0(d)$, and $T < T_c$ [Martirosian]

If $\mathbb{P} \in \mathcal{G}_{\mathcal{T}}$ is translation invariant, then $\mathbb{P} = \sum_{i=1}^q \alpha_i \mathbb{P}_{\mathcal{T}}^i$.

2008 For d = 2, and $T < T_c$ (*) [Campanino, loffe, Velenik]

Under diffusive scaling, the Dobrushin interface weakly converges to a Brownian bridge.

Outline of the talk

- Finite volume measures
- 2 Phase transition
- Infinite volume measures
- 4 Known results
- New result
- 6 Main ideas of the proof

Characterization of $\mathcal{G}_{\mathcal{T}}$ for the Potts model on \mathbb{Z}^2

Theorem (C., Duminil-Copin, Ioffe, Velenik)

For $q \ge 2$ and $T < T_c(q)$,

$$\mathcal{G}_T = \left\{ \sum_{i=1}^q \alpha_i \mathbb{P}_T^i, \text{ with } \sum_{i=1}^q \alpha_i = 1 \right\}$$

Characterization of $\mathcal{G}_{\mathcal{T}}$ for the Potts model on \mathbb{Z}^2

Theorem (C., Duminil-Copin, Ioffe, Velenik)

For $q \ge 2$ and $T < T_c(q)$,

$$\mathcal{G}_{T} = \left\{ \sum_{i=1}^{q} \alpha_{i} \mathbb{P}_{T}^{i}, \text{ with } \sum_{i=1}^{q} \alpha_{i} = 1 \right\}$$

What about criticality $T = T_c = 1/\log(1+\sqrt{q})$?

- [Duminil-Copin, Sidoravicius, Tassion] uniqueness for q = 2, 3, 4.
- [Laanait, Messager, Miracle-Solé, Ruiz, Shlosman] for q > 25 there are q + 1 extremal phases
- Conjecture : q + 1 extremal phases for all q > 4.

Finite volume stronger result

Theorem (C., Duminil-Copin, Ioffe, Velenik)

Let $q \ge 2$ and $T < T_c(q)$.

For all $\varepsilon > 0$, there exists a constant $C_{\varepsilon} < \infty$ such that:

for every boundary condition ω there exist q positive constants $\alpha_1^n, \ldots, \alpha_q^n$ depending only on (n, ω, T, q) , such that

$$\left|\mathbb{P}^{\omega}_{\Lambda_{n},T}(f) - \sum_{i=1}^{q} \alpha_{i}^{n} \mathbb{P}^{i}_{T}(f)\right| \leq C_{\varepsilon} \|f\|_{\infty} \cdot n^{-\frac{1}{2} + \varepsilon}$$

uniformly on functions f which have support in $\Lambda_{n^{\epsilon}}$.

Outline of the talk

- Finite volume measures
- 2 Phase transition
- 3 Infinite volume measures
- 4 Known results
- 6 New result
- 6 Main ideas of the proof

Philosophy

- Uniformly on the given boundary condition, a finite number of interfaces reach the half box,
- They are concentrated around "minimal surfaces",
- But they fluctuate enough so that locally, no phase coexistence is possible.

Let
$$\sigma \sim \mathbb{P}^{\bullet}_{\Lambda,T,q}$$
 and $p_T = 1 - \exp(-1/T)$.

Let $\sigma \sim \mathbb{P}^{ullet}_{\Lambda,T,q}$ and $p_T = 1 - \exp(-1/T)$.

Sample $\eta \in \{0,1\}^{\mathcal{E}_{\Lambda}}$ as follows:

• set $\eta(e) = 1$ on $\partial \Lambda$.

Let $\sigma \sim \mathbb{P}^{ullet}_{\Lambda,T,q}$ and $p_T = 1 - \exp(-1/T)$.

Sample $\eta \in \{0,1\}^{\mathcal{E}_{\Lambda}}$ as follows:

• set $\eta(e) = 1$ on $\partial \Lambda$.

For each e = [i, j],

• if $\sigma_i \neq \sigma_j$, set $\eta(e) = 0$

Let $\sigma \sim \mathbb{P}^{ullet}_{\Lambda,T,q}$ and $p_T = 1 - \exp(-1/T)$.

Sample $\eta \in \{0,1\}^{\mathcal{E}_{\Lambda}}$ as follows:

• set $\eta(e) = 1$ on $\partial \Lambda$.

For each e = [i, j],

- if $\sigma_i \neq \sigma_j$, set $\eta(e) = 0$
- if $\sigma_i = \sigma_j$, set $\eta(e) = 1$ with proba p_T $\eta(e) = 0$ with proba $1 p_T$

Let $\sigma \sim \mathbb{P}^{\bullet}_{\Lambda,T,q}$ and $p_T = 1 - \exp(-1/T)$.

Sample $\eta \in \{0,1\}^{\mathcal{E}_{\Lambda}}$ as follows:

- set $\eta(e) = 1$ on $\partial \Lambda$.
- For each e = [i, j],
- if $\sigma_i \neq \sigma_j$, set $\eta(e) = 0$
- if $\sigma_i = \sigma_j$, set $\eta(e) = 1$ with proba p_T $\eta(e) = 0$ with proba $1 p_T$

Then

$$\eta \sim \phi_{\Lambda, p_T, q}^1 \propto p_T^{o(\eta)} (1 - p_T)^{c(\eta)} q^{\kappa(\eta)}.$$

Let $\sigma \sim \mathbb{P}^{\bullet}_{\Lambda,T,q}$ and $p_T = 1 - \exp(-1/T)$.

Sample $\eta \in \{0,1\}^{\mathcal{E}_{\Lambda}}$ as follows:

• set $\eta(e) = 1$ on $\partial \Lambda$.

For each e = [i, j],

- if $\sigma_i \neq \sigma_j$, set $\eta(e) = 0$
- if $\sigma_i = \sigma_j$, set $\eta(e) = 1$ with proba p_T $\eta(e) = 0$ with proba $1 p_T$

Then

$$\eta \sim \phi_{\Lambda, p_T, q}^1 \propto p_T^{o(\eta)} (1 - p_T)^{c(\eta)} q^{\kappa(\eta)}.$$

$$\frac{\mathbb{P}_T^i(\sigma_0=i)-1/q}{1-1/q}=\phi_{\rho_T,q}^1(0\leftrightarrow\infty).$$

Let $T < T_c(q)$, then $p_T > p_c(q)$, and

$$\mathbb{P}^{\omega}_{\Lambda,\mathcal{T}}$$
 can be coupled to $\phi^1_{\Lambda,p_{\mathcal{T}},q}(\,\cdot\,|\mathit{Cond}(\omega))$

Let $T < T_c(q)$, then $p_T > p_c(q)$, and

$$\mathbb{P}^{\omega}_{\Lambda,\mathcal{T}}$$
 can be coupled to $\phi^1_{\Lambda,\rho_{\mathcal{T}},q}(\,\cdot\,|\mathit{Cond}(\omega))$

$$\mathit{Cond}(\omega) = \left\{ egin{array}{ll} \exists \ \mathsf{open} \ \mathsf{dual} \ \mathsf{paths} \ \mathsf{disconnecting} \ \mathsf{the} \ \mathsf{parts} \ \mathsf{of} \ \partial \Lambda \ & \mathsf{which} \ \mathsf{have} \ \mathsf{different} \ \mathsf{color} \ \mathsf{in} \ \ \omega \end{array}
ight.
ight.$$

coupling ⇒

$$\phi^1_{\Lambda, p_T, q}(\cdot | Cond(\omega))$$

is dual to

$$\phi^0_{\mathsf{\Lambda}^\star, p_{\mathsf{T}}^\star, q}(\cdot | \mathsf{Cond}(\omega))$$

with
$$p_T^{\star} < p_c(q)$$
.

Reformulation of the theorem in terms of the FK model

Theorem

For $q \ge 2$ and $p < p_c(q)$, uniformly on the Potts configuration ω ,

$$\phi^0_{\Lambda_n,p,q}(\mathcal{C}\cap\Lambda_{n^{arepsilon}}=arnothing|Cond(\omega))=O(n^{-rac{1}{2}+arepsilon})$$

where

- $\mathit{Cond}(\omega) = \left\{ egin{array}{ll} \exists \ \mathit{open paths disconnecting the parts of } \partial \Lambda \\ \mathit{which have different color in } \omega \end{array} \right\}$
- ullet C is the union of the clusters starting at the color changes.

Uniformly in ω , a finite number of interfaces reach $\Lambda_{n/2}$ whp.

Claim: there exists a constant M such that

$$\phi_{\Lambda_n}^0\bigg(\exists m\in [\frac{n}{2},n]: |\mathcal{C}\cap\partial\Lambda_m|\leq M\,\bigg|\, \mathit{Cond}(\omega)\bigg)\geq 1-\mathrm{e}^{-cn}$$

Uniformly in ω , a finite number of interfaces reach $\Lambda_{n/2}$ whp.

Claim: there exists a constant M such that

$$\phi_{\Lambda_n}^0 \bigg(\exists m \in [\frac{n}{2}, n] : |\mathcal{C} \cap \partial \Lambda_m| \le M \, \bigg| \, \, Cond(\omega) \bigg) \ge 1 - e^{-cn}$$

[Beffara, Duminil-Copin 2012] $p < p_c(q) \Rightarrow$ exponential decay

Uniformly in ω , a finite number of interfaces reach $\Lambda_{n/2}$ whp.

Claim: there exists a constant M such that

$$\phi_{\Lambda_n}^0 \bigg(\exists m \in [\frac{n}{2}, n] : |\mathcal{C} \cap \partial \Lambda_m| \le M \, \bigg| \, \, Cond(\omega) \bigg) \ge 1 - e^{-cn}$$

[Beffara, Duminil-Copin 2012] $p < p_c(q) \Rightarrow$ exponential decay

 $\phi_{\Lambda_n}^0(\exists r \text{ crossings of } \Lambda_n \backslash \Lambda_{n/2}) \leq e^{-crn}$

Uniformly in ω , a finite number of interfaces reach $\Lambda_{n/2}$ whp.

Claim: there exists a constant M such that

$$\phi_{\Lambda_n}^0 \bigg(\exists m \in [\frac{n}{2}, n] : |\mathcal{C} \cap \partial \Lambda_m| \le M \, \bigg| \, \, Cond(\omega) \bigg) \ge 1 - e^{-cn}$$

[Beffara, Duminil-Copin 2012] $p < p_c(q) \Rightarrow$ exponential decay

$$\begin{split} \phi^0_{\Lambda_n}(\exists r \text{ crossings of } \Lambda_n \backslash \Lambda_{n/2}) &\leq e^{-crn} \\ \phi^0_{\Lambda_n}(\exists \text{ cluster of size } R \text{ in } \Lambda_{n/2}) &\leq e^{-cR} \end{split}$$

Uniformly in ω , a finite number of interfaces reach $\Lambda_{n/2}$ whp.

Claim: there exists a constant M such that

$$\phi_{\Lambda_n}^0 \bigg(\exists m \in [\frac{n}{2}, n] : |\mathcal{C} \cap \partial \Lambda_m| \le M \, \bigg| \, \, Cond(\omega) \bigg) \ge 1 - e^{-cn}$$

[Beffara, Duminil-Copin 2012] $p < p_c(q) \Rightarrow$ exponential decay

$$\begin{split} \phi^0_{\Lambda_n}(\exists r \text{ crossings of } \Lambda_n \backslash \Lambda_{n/2}) &\leq e^{-crn} \\ \phi^0_{\Lambda_n}(\exists \text{ cluster of size } R \text{ in } \Lambda_{n/2}) &\leq e^{-cR} \\ \phi^0_{\Lambda_n}(Cond(\omega)) &\geq p^{4n} \end{split}$$

Uniformly in ω , a finite number of interfaces reach $\Lambda_{n/2}$ whp.

Claim: there exists a constant M such that

$$\phi_{\Lambda_n}^0\bigg(\exists m\in [\frac{n}{2},n]: |\mathcal{C}\cap\partial\Lambda_m|\leq M\,\bigg|\, extit{Cond}(\omega)\bigg)\geq 1-e^{-cn}$$

[Beffara, Duminil-Copin 2012] $p < p_c(q) \Rightarrow$ exponential decay

$$\begin{split} \phi^0_{\Lambda_n}(\exists r \text{ crossings of } \Lambda_n \backslash \Lambda_{n/2}) &\leq e^{-crn} \\ \phi^0_{\Lambda_n}(\exists \text{ cluster of size } R \text{ in } \Lambda_{n/2}) &\leq e^{-cR} \\ \phi^0_{\Lambda_n}(Cond(\omega)) &\geq p^{4n} \end{split}$$

Theorem (Campanino, Ioffe, Velenik, 2008)

Let
$$\tau_p(\hat{x}) = -\lim_{n \to \infty} \frac{1}{n} \log \phi_{p,q}(0 \leftrightarrow \lfloor n\hat{x} \rfloor)$$
 and $\tau_p(x) = |x|\tau_p(\hat{x})$.

For all $p < p_c(q)$ (*), τ_p is a norm which satisfies the sharp triangle inequality

$$\tau_p(x+y) - \tau_p(x) - \tau_p(y) \ge \kappa_p(|x+y| - |x| - |y|)$$

In particular, the unit ball for the τ_p -norm is uniformly convex.

Theorem (Campanino, Ioffe, Velenik, 2008)

For all $p < p_c(q)$ (*), τ_p is a norm which satisfies the sharp triangle inequality

$$\tau_p(x+y) - \tau_p(x) - \tau_p(y) \ge \kappa_p(|x+y| - |x| - |y|)$$

In particular, the unit ball for the τ_p -norm is uniformly convex.

Geometrical consequence: "Minimal surfaces" connecting a finite number of points are forests (union of trees), with internal vertices of degree 3.

Theorem (Campanino, Ioffe, Velenik, 2008)

For all $p < p_c(q)$ (*), τ_p is a norm which satisfies the sharp triangle inequality

$$\tau_p(x+y) - \tau_p(x) - \tau_p(y) \ge \kappa_p(|x+y| - |x| - |y|)$$

In particular, the unit ball for the τ_p -norm is uniformly convex.

Geometrical consequence: "Minimal surfaces" connecting a finite number of points are forests (union of trees), with internal vertices of degree 3.

Large deviation analysis

In $\Lambda_{n/2}$, the remaining interfaces stay in a

 δn -neighborhood of Steiner forests

with probability $\geq 1 - e^{-cn}$.

Large deviation analysis

In $\Lambda_{n/2}$, the remaining interfaces stay in a

 δn -neighborhood of Steiner forests

with probability $\geq 1 - e^{-cn}$.

Example with 2 Steiner forests:

Step 3: Fluctuations

Three cases remain to be analysed...

 Case 1: exponential relaxation into pure phases.

$$\phi(\mathcal{C} \cap \Lambda_{\delta n} \neq 0) \leq e^{-Cn}$$

• Case 2: Brownian scaling of the interfaces between 2 phases.

$$\phi(\mathcal{C}\cap\Lambda_{n^{\varepsilon}}\neq0)\leq O(n^{-1/2+\varepsilon})$$

• Case 3: remains to analyse the fluctuations of triple points.

Step 3: Fluctuations

Theorem (Campanino, Ioffe, Velenik, 2008)

For $p < p_c$ (*),

$$\phi_{p,q}(0\leftrightarrow x)=rac{\Psi(\hat{x})}{\sqrt{|x|}}e^{- au(\hat{x})|x|}(1+o(1)) \quad \text{ as } |x| o\infty.$$

Idea of the proof:

• positive density of cone points

- effective directed RW
- Brownian scaling

Step 3: Fluctuations

Conditioning on $u_1 \leftrightarrow u_2 \leftrightarrow u_3$, the event :

happens for some $y \in \Lambda_{\delta n}$ and some

 Λ^* of sidelength $O(n^{\varepsilon})$

with probability

$$\geq 1 - \exp(-Cn^{\varepsilon}).$$

Let x be the Steiner triple point between u_1 , u_2 and u_3 .

For a fixed y, a Taylor expansion of the exponential contribution gives:

Let x be the Steiner triple point between u_1, u_2 and u_3 .

For a fixed y, a Taylor expansion of the exponential contribution gives:

$$\phi \left(\begin{array}{c} \left(\frac{1}{n} \right) & \exp \left(-C \frac{|x-y|^2}{n} \right) \\ \left(\frac{1}{n} \right) & \exp \left(-C \frac{|x-y|^2}{n} \right) \end{array} \right)$$

Prefactor : all $y \in \Lambda_{n^{1/2}}$ contribute the same.

Let x be the Steiner triple point between u_1 , u_2 and u_3 .

For a fixed y, a Taylor expansion of the exponential contribution gives :

$$\phi \left(\frac{\int_{u_1}^{u_2} \int_{u_2}^{u_3} \int_{u_2}^{u_4} \int_{u_2}^{u_4} \int_{u_2}^{u_5} \int_{u_2}^{u_5} \int_{u_5}^{u_5} \int_{u_5}$$

Prefactor : all $y \in \Lambda_{n^{1/2}}$ contribute the same.

A Brownian estimate allows us to conclude :

$$\phi(\mathcal{C} \cap \Lambda_{n^{\varepsilon}} \neq \varnothing | u_1 \leftrightarrow u_2 \leftrightarrow u_3) \leq O(n^{-1/2+\varepsilon})$$

Thank you!

Coarse graining at scale K

$$\phi(E|Cond(\omega)) = \sum_{\mathcal{F} \sim E} \frac{\phi(\mathcal{F}_K = \mathcal{F})}{\phi(Cond(\omega))}$$

$$\phi(\mathcal{F}_{K} = \mathcal{F}) \leq \phi \left(\bigcap_{x_{i} \in \mathcal{F}} x_{i} \leftrightarrow \partial B_{K}(x_{i}) \right)$$

$$\leq \phi \left(x_{1} \leftrightarrow \partial B_{K}(x_{1}) \middle| \bigcap_{i=2}^{|\mathcal{F}|} x_{i} \leftrightarrow \partial B_{K}(x_{i}) \right) \phi \left(\bigcap_{i=2}^{|\mathcal{F}|} x_{i} \leftrightarrow \partial B_{K}(x_{i}) \right)$$

$$\stackrel{FKG}{\leq} \prod_{i} \phi_{\bar{B}_{K}}^{1} \left(x_{i} \leftrightarrow \partial B_{K}(x_{i}) \right)$$

$$\leq \exp(-K|\mathcal{F}|(1 - o_{K}(1)))$$