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Finite volume measures

Ising model

/ Potts model

Spin = state of a site x ∈ Zd

σx ∈ {−1,+1}

σx ∈ {1, 2 . . . , q}

Λ

Hamiltonian = energy of a spin configuration

H(σ) = −
∑
x∼y

σxσy →
{
•• or •• contribution = -1
•• or •• contribution = +1

Gibbs measure on {−1,+1}Λ :

PΛ,T (σ) =
1
Z

exp
(
− 1
T
H(σ)

)
, T = temperature
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Finite volume measures

Boundary conditions

Ising : Hω(σ) = −
∑
x∼y

σxσy −
∑

x∈Λ,y∈∂Λ
x∼y

σxωy

Potts : Hω(σ) = −
∑
x∼y

δσx=σy −
∑

x∈Λ,y∈∂Λ
x∼y

δσx=ωy

 PωΛ,T
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Phase transition

Monochromatic boundary conditions

Ising : P+
Λ,T and P−Λ,T

Potts : Pi
Λ,T , with i = 1, . . . , q.

T ' 0

T � 1
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Phase transition

Phase transition

Ising
There exists Tc(d) ∈ (0,∞) s.t.

If T > Tc then

lim
Λ↑Zd

E+
Λ,T (σ0) = 0

If T < Tc then

lim
Λ↑Zd

E+
Λ,T (σ0) > 0

Potts
There exists Tc(d , q) ∈ (0,∞) s.t.

If T > Tc then

lim
Λ↑Zd

Pi
Λ,T (σ0 = i) = 1/q

If T < Tc then

lim
Λ↑Zd

Pi
Λ,T (σ0 = i) > 1/q

Remarks
Existence of the monochromatic phases : FKG inequality for Ising,
coupling with the random-clusters model for Potts.
They are translation invariant.
Non-triviality of Tc : Peierls in d = q = 2, monotonicity in d and in q.
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Infinite volume measures

Infinite volume Gibbs measures

Weak limits approach

GT =

{
accumulation points of sequences (Pωn

Λn
)
n

with Λn ↑ Zd as n→∞

}
Weak topology : Pωn

Λn
→ P ⇔ Eωn

Λn
(f )→ E(f ) ∀f local

Dobrushin-Lanford-Ruelle approach

G̃T =

{
P : for all Λ b Zd , and P-a.e. ω,

P(σ |σ = ω on Λc) = PωΛ(σ)

}

G̃T is a simplex, whose extremal elements belong to GT !
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Known results

Known results for the Ising model

1972 For 0 < T � Tc and d = 2 resp. 3,
[Galavotti] [Dobrushin]

P± = (P+ + P−)/2, P± is not translation invariant
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Known results

Known results for the Ising model

1980-81 In d = 2 for all T > 0 [Aizenman] [Higuchi]

GT =
{
αP+

T + (1− α)P−T , with α ∈ [0, 1]
}

T ≥ Tc ⇒ GT = {PT} •

T < Tc ⇒ GT = [P−T ,P
+
T ]

(Proof by contradiction, in the infinite volume setting, gives little
information about large but finite volumes.)
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Known results

Known results for the Ising model

1979 In d = 2 and for T � Tc [Higuchi]
2005 In d = 2 and T < Tc [Greenberg, Ioffe]

Under diffusive scaling,
the Dobrushin interface
weakly converges
to a Brownian bridge.
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Known results

Known results for the Potts model

1986 For d ≥ 2, q > q0(d), and T < Tc [Martirosian]

If P ∈ GT is translation invariant, then P =
∑q

i=1
αiPi

T .

2008 For d = 2, and T < Tc (*) [Campanino, Ioffe, Velenik]

Under diffusive scaling,
the Dobrushin interface
weakly converges
to a Brownian bridge.
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New result

Characterization of GT for the Potts model on Z2

Theorem (C., Duminil-Copin, Ioffe, Velenik)

For q ≥ 2 and T < Tc(q),

GT =
{∑q

i=1
αiPi

T , with
∑q

i=1
αi = 1

}

What about criticality T = Tc = 1/ log(1 +
√
q)?

[Duminil-Copin, Sidoravicius, Tassion]
uniqueness for q = 2, 3, 4.
[Laanait, Messager, Miracle-Solé, Ruiz, Shlosman]
for q > 25 there are q + 1 extremal phases
Conjecture : q + 1 extremal phases for all q > 4.

Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 17 / 34



New result

Characterization of GT for the Potts model on Z2

Theorem (C., Duminil-Copin, Ioffe, Velenik)

For q ≥ 2 and T < Tc(q),

GT =
{∑q

i=1
αiPi

T , with
∑q

i=1
αi = 1

}

What about criticality T = Tc = 1/ log(1 +
√
q)?

[Duminil-Copin, Sidoravicius, Tassion]
uniqueness for q = 2, 3, 4.
[Laanait, Messager, Miracle-Solé, Ruiz, Shlosman]
for q > 25 there are q + 1 extremal phases
Conjecture : q + 1 extremal phases for all q > 4.

Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 17 / 34



New result

Finite volume stronger result

Theorem (C., Duminil-Copin, Ioffe, Velenik)

Let q ≥ 2 and T < Tc(q).
For all ε > 0, there exists a constant Cε <∞ such that:
for every boundary condition ω there exist q positive constants αn

1, . . . , α
n
q

depending only on (n, ω,T , q), such that

∣∣∣PωΛn,T (f )−
q∑

i=1

αn
i Pi

T (f )
∣∣∣ ≤ Cε‖f ‖∞ · n−

1
2+ε

uniformly on functions f which have support in Λnε .
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Main ideas of the proof

Philosophy

Uniformly on the given
boundary condition, a
finite number of interfaces
reach the half box,
They are concentrated
around “minimal surfaces”,
But they fluctuate enough
so that locally, no phase
coexistence is possible.
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Main ideas of the proof Coupling with the random cluster model

Edwards-Sokal coupling with the random cluster model

Let σ ∼ P•Λ,T ,q and pT = 1− exp(−1/T ).

Sample η ∈ {0, 1}EΛ as follows:

set η(e) = 1 on ∂Λ.

For each e = [i , j ],
if σi 6= σj , set η(e) = 0
if σi = σj , set
η(e) = 1 with proba pT
η(e) = 0 with proba 1− pT

Then
η ∼ φ1Λ,pT ,q ∝ po(η)

T (1− pT )c(η)qκ(η).

Pi
T (σ0 = i)− 1/q

1− 1/q
= φ1pT ,q(0↔∞).
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Main ideas of the proof Coupling with the random cluster model

Edwards-Sokal coupling with the random cluster model

Let T < Tc(q), then pT > pc(q), and

PωΛ,T can be coupled to φ1Λ,pT ,q( · |Cond(ω))

Cond(ω) =

{
∃ interfaces disconnecting the parts of ∂Λ

which have different color in ω

}

coupling⇒
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Let T < Tc(q), then pT > pc(q), and

PωΛ,T can be coupled to φ1Λ,pT ,q( · |Cond(ω))

Cond(ω) =

{
∃ open dual paths disconnecting the parts of ∂Λ

which have different color in ω

}

coupling⇒

⇓ duality

φ1Λ,pT ,q( · |Cond(ω))

is dual to

φ0Λ?,p?
T ,q

( · |Cond(ω))

with p?T < pc(q).
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Main ideas of the proof Coupling with the random cluster model

Reformulation of the theorem in terms of the FK model

Theorem
For q ≥ 2 and p < pc(q), uniformly on the Potts configuration ω,

φ0Λn,p,q(C ∩ Λnε = ∅ |Cond(ω)) = O(n−
1
2+ε)

where

Cond(ω) =

{
∃ open paths disconnecting the parts of ∂Λ

which have different color in ω

}
C is the union of the clusters starting at the color changes.
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Main ideas of the proof Finite number of crossing interfaces

Step 1: Macroscopic flower domains
Uniformly in ω, a finite number of interfaces reach Λn/2 whp.

Claim : there exists a constant M such that

φ0Λn

(
∃m ∈ [

n
2
, n] : |C ∩ ∂Λm| ≤ M

∣∣∣∣Cond(ω)

)
≥ 1− e−cn

Λn/2

Λn

[Beffara, Duminil-Copin 2012]
p < pc(q)⇒ exponential decay

φ0Λn
(∃r crossings of Λn\Λn/2) ≤ e−crn

φ0Λn
(∃ cluster of size R in Λn/2) ≤ e−cR

φ0Λn
(Cond(ω)) ≥ p4n
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Main ideas of the proof Concentration around minimal surfaces

Step 2: Concentration around Steiner forests

Theorem (Campanino, Ioffe, Velenik, 2008)

Let τp(x̂) = − lim
n→∞

1
n
log φp,q(0↔ bnx̂c) and τp(x) = |x |τp(x̂).

For all p < pc(q) (*), τp is a norm which satisfies the sharp triangle
inequality

τp(x + y)− τp(x)− τp(y) ≥ κp(|x + y | − |x | − |y |)

In particular, the unit ball for the τp-norm is uniformly convex.

Geometrical consequence: “Minimal surfaces” connecting a finite number
of points are forests (union of trees), with internal vertices of degree 3.

The L∞ norm
allows degree 4 !
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Main ideas of the proof Concentration around minimal surfaces

Step 2: Concentration around Steiner forests

Large deviation analysis
In Λn/2, the remaining interfaces stay in a

δn-neighborhood of Steiner forests

with probability ≥ 1− e−cn.

Example with 2 Steiner forests :
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Main ideas of the proof Concentration around minimal surfaces

Step 3: Fluctuations

Three cases remain to be analysed...

u1

u2

u3

u4

u5

CASE 1

CASE 2

CASE 3

Case 1: exponential relaxation into
pure phases.

φ(C ∩ Λδn 6= 0) ≤ e−Cn

Case 2: Brownian scaling of the
interfaces between 2 phases.

φ(C ∩ Λnε 6= 0) ≤ O(n−1/2+ε)

Case 3: remains to analyse the
fluctuations of triple points.
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Main ideas of the proof Fluctuations

Step 3: Fluctuations

Theorem (Campanino, Ioffe, Velenik, 2008)

For p < pc (*),

φp,q(0↔ x) =
Ψ(x̂)√
|x |

e−τ(x̂)|x |(1 + o(1)) as |x | → ∞.

Idea of the proof:

positive density of cone points
effective directed RW
Brownian scaling

0

x

γb

γ2

γ3
γ4

V (γ1)

V (γ2)

V (γ3)

V (γ4)

γ1

γf
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Main ideas of the proof Fluctuations

Step 3: Fluctuations

Conditioning on u1 ↔ u2 ↔ u3, the event :

u1

u2

u3

w1 + Y1

w2 + Y2
w3 + Y3

Λ?

w2

w1

w3

Λm

y

happens for some y ∈ Λδn
and some

Λ? of sidelength O(nε)

with probability

≥ 1− exp(−Cnε).
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Main ideas of the proof Fluctuations

Let x be the Steiner triple point between u1, u2 and u3.
For a fixed y , a Taylor expansion of the exponential contribution gives :

φ



u1

u2

u3

w1 + Y1

w2 + Y2
w3 + Y3

Λ?

w2

w1

w3

Λm

y

∣∣∣∣u1 ↔ u2 ↔ u3


∼ exp

(
−C |x − y |2

n

)

Prefactor : all y ∈ Λn1/2 contribute the same.

A Brownian estimate allows us to conclude :

φ(C ∩ Λnε 6= ∅|u1 ↔ u2 ↔ u3) ≤ O(n−1/2+ε)
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Main ideas of the proof Fluctuations

Thank you !
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Details about coarse graining

x1

x2

x0 = 0
x

x3

x4

x5

x6

x7

x8
BK(x0)

B̄K(x0)
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Details about coarse graining

u2

u4

u5

BK(x0)

u1 = x0

u3

t1

B1

t2

B2
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Details about coarse graining

Coarse graining at scale K

φ(E |Cond(ω)) =
∑
F∼E

φ(FK = F)

φ(Cond(ω))

φ(FK = F) ≤ φ

 ⋂
xi∈F

xi ↔ ∂BK (xi )


≤ φ

x1 ↔ ∂BK (x1)

∣∣∣∣ |F|⋂
i=2

xi ↔ ∂BK (xi )

φ

 |F|⋂
i=2

xi ↔ ∂BK (xi )


FKG
≤
∏
i

φ1B̄K
(xi ↔ ∂BK (xi ))

≤ exp(−K |F|(1− oK (1)))
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