Genetic Variability in the Mendelian Diploid Model

Loren Coquille (Institut Fourier, Grenoble)

joint work in progress with A. Bovier and R. Neukirch (University of Bonn)

Journée de la chaire MMB, 13 avril 2016

Outline

(1) Introduction
(2) Clonal reproduction model

- Trait substitution sequence
(3) Mendelian diploid model
- Genetic variability

Outline

(1) Introduction
(2) Clonal reproduction model
(3) Mendelian diploid model

Clonal Reproduction versus Sexual Reproduction

Clonal Reproduction

- individual reproduces out of itself
- offspring = copy of the parent
- offspring genom:
- 100% of genes of the parent
vs.
Sexual Reproduction

- individual needs a partner for reproduction
- offspring genom:
- 50% genes of mother
- 50% genes of father

Clonal Reproduction versus Sexual Reproduction

Clonal Reproduction

+ fast growing populations
+ no time loss for partner selection
- genes stay constant over generations
- hard adaptation to changing environment

Sexual Reproduction

- slowly growing population
- time cost for partner selection
+ genetic variability
+ possible adaptation to changing environment
+ correction of genetic defects
+ elimination of disadvantageous mutations

Outline

(1) Introduction

(2) Clonal reproduction model

- Trait substitution sequence

(3) Mendelian diploid model

Clonal reproduction model

Bolker, Pacala, Dieckmann, Law, Champagnat, Méléard,...
$\Theta \simeq \mathbb{N}$: Trait space
$n_{i}(t)$: Number of individuals of trait $i \in \Theta$

Dynamics of the process

$$
n(t)=\left(n_{0}(t), n_{1}(t), \ldots\right) \in \mathbb{N}^{\mathbb{N}} \quad:
$$

Each individual of trait i

- reproduces clonally with rate $b_{i}(1-\mu)$
- reproduces with mutation with rate $b_{i} \mu$ according to some mutation kernel $M(i, j)$
- dies due to age or competition with rate $d_{i}+\sum_{j} c_{i j} n_{j}$

Clonal reproduction model

Bolker, Pacala, Dieckmann, Law, Champagnat, Méléard,...
$\Theta \simeq \mathbb{N}$: Trait space
$n_{i}(t)$: Number of individuals of trait $i \in \Theta$

Dynamics of the process

$$
n(t)=\left(n_{0}(t), n_{1}(t), \ldots\right) \in \mathbb{N}^{\mathbb{N}} \quad:
$$

The population n_{i}

- increases by 1 with rate $b_{i}(1-\mu) n_{i}$
- makes n_{j} increase by 1 with rate $b_{i} \mu \cdot M(i, j) \cdot n_{i}$
- deceases by 1 with rate $\left(d_{i}+\sum_{j} c_{i j} n_{j}\right) n_{i}$

Clonal reproduction model

Bolker, Pacala, Dieckmann, Law, Champagnat, Méléard,...
$\Theta \simeq \mathbb{N}$: Trait space
$n_{i}(t)$: Number of individuals of trait $i \in \Theta$

Dynamics of the rescaled process (with competition $c_{i j} / K$)

$$
n^{K}(t)=\frac{1}{K}\left(n_{0}(t), n_{1}(t), \ldots\right) \in(\mathbb{N} / K)^{\mathbb{N}} \quad:
$$

The population n_{i}^{K}

- increases by $1 / K$ with rate $b_{i}(1-\mu) \cdot K n_{i}^{K}$
- makes n_{j}^{K} increase by $1 / K$ with rate $b_{i} \mu M(i, j) \cdot K n_{i}^{K}$
- deceases by $1 / K$ with rate $\left(d_{i}+\sum_{j} c_{i j} n_{j}^{K}\right) \cdot K n_{i}^{K}$

Large populations limit $\mu=0$ and $K \rightarrow \infty$

Proposition

Let $\Theta=\{1,2\}$, assume that the initial condition $\left(n_{1}^{K}(0), n_{2}^{K}(0)\right)$ converges to a deterministic vector $\left(x_{0}, y_{0}\right)$ for $K \rightarrow \infty$. Then the process $\left(n_{1}^{K}(t), n_{2}^{K}(t)\right)$ converges in law, on bounded time intervals, to the solution of

$$
\frac{d}{d t}\binom{x(t)}{y(t)}=X(x(t), y(t))=\binom{\left(b_{1}-d_{1}-c_{11} x-c_{12} y\right) x}{\left(b_{2}-d_{2}-c_{21} x-c_{22} y\right) y} .
$$

with initial condition $(x(0), y(0))=\left(x_{0}, y_{0}\right)$.

Monomorphic equilibria : $\bar{n}_{i}=\frac{b_{i}-d_{i}}{c_{i i}}$ Invasion fitness : $f_{i j}=b_{i}-d_{i}-c_{i j} \bar{n}_{j}$.

Large populations and rare mutations limit

 $\mu=\mu(K) \ll(K \log K)^{-1}$Start with $n_{i}^{K}(0)=\bar{n}_{x} 1_{i=x}+\frac{1}{K} 1_{i=y}$ (time of the first mutation).
If y is fitter than x, i.e. $f_{y x}>0$ and $f_{x y}<0$, then with proba $\rightarrow 1$: population size

Trait Substitution Sequence

Proposition

Assume

- $\log K \ll \frac{1}{K \mu} \ll \exp (c K)$
- $\forall(i, j) \in \Theta^{2}$, either $f_{j i}<0$ or $f_{j i}>0$ and $f_{i j}<0$.

Then the rescaled process

$$
\left(n_{t / K \mu}^{K}\right)_{t \geq 0} \Rightarrow\left(\bar{n}_{X_{t}} 1_{X_{t}}\right)_{t \geq 0}
$$

where X_{t} is a Markov chain on Θ with transition kernel

$$
P(i, j)=b_{i} \frac{\left[f_{j i}\right]_{+}}{b_{j}} M(i, j) .
$$

Outline

(1) Introduction

(2) Clonal reproduction model

(3) Mendelian diploid model

- Genetic variability

Mendelian Diploid Model

Let \mathcal{U} be the allelic trait space, a countable set.
For example $\mathcal{U}=\{a, A\}$.

- An individual i is determined by two alleles out of \mathcal{U} :
- genotype: $\left(u_{1}^{i}, u_{2}^{i}\right) \in \mathcal{U}^{2}$
- phenotype: $\phi\left(\left(u_{1}^{i}, u_{2}^{i}\right)\right)$, with $\phi: \mathcal{U}^{2} \rightarrow \mathbb{R}_{+}$
- Rescaled population: let N_{t} be the total number of individuals at time t,

$$
n_{u_{1}, u_{2}}^{K}(t)=\frac{1}{K} \sum_{i=1}^{N_{t}} 1_{\left(u_{1}^{i}, u_{2}^{i}\right)}(t)
$$

Reproduction

Reproduction rate of $\left(u_{1}^{i}, u_{2}^{i}\right)$ with $\left(u_{1}^{j}, u_{2}^{j}\right)$:

$$
f_{u_{1}^{i} u_{2}^{i}} f_{u_{1}^{j} u_{2}^{j}}
$$

Number of potential partners of $\left(u_{1}^{i}, u_{2}^{i}\right) \times$ their mean fertility

Reproduction

Reproduction rate of $\left(u_{1}^{i}, u_{2}^{i}\right)$ with $\left(u_{1}^{j}, u_{2}^{j}\right)$:

$$
f_{u_{1}^{i} u_{2}^{i}} f_{u_{1}^{j} u_{2}^{j}}
$$

Number of potential partners of $\left(u_{1}^{i}, u_{2}^{i}\right) \times$ their mean fertility

Reproduction without mutation: Probability $1-\mu_{K}$
\Rightarrow Mendelian rules: newborn getting genotype with coordinates that are sampled at random from each parent.

Reproduction

Reproduction rate of $\left(u_{1}^{i}, u_{2}^{i}\right)$ with $\left(u_{1}^{j}, u_{2}^{j}\right)$:

$$
f_{u_{1}^{i} u_{2}^{i}} f_{u_{1}^{j} u_{2}^{j}}
$$

Number of potential partners of $\left(u_{1}^{i}, u_{2}^{i}\right) \times$ their mean fertility

Reproduction without mutation: Probability $1-\mu_{K}$
\Rightarrow Mendelian rules: newborn getting genotype with coordinates that are sampled at random from each parent.

Reproduction with mutation:
Probability μ_{K}
\Rightarrow changing one of the two allelic traits of the newborn from a to b according to the kernel $M(a, b)$.

Birth and Death Rate

Let $\mathcal{U}=\{a, A\}$, and $\mu_{K}=0$.

- The populations increase by 1 with rate

$$
\begin{aligned}
b_{a a} & =\frac{\left(f_{a a} n_{a a}+\frac{1}{2} f_{a A} n_{a A}\right)^{2}}{f_{a a} n_{a a}+f_{a A} n_{a A}+f_{A A} n_{A A}} \\
b_{a A} & =2 \frac{\left(f_{a a} n_{a a}+\frac{1}{2} f_{a A} n_{a A}\right)\left(f_{A A} n_{A A}+\frac{1}{2} f_{a A} n_{a A}\right)}{f_{a a} n_{a a}+f_{a A} n_{a A}+f_{A A} n_{A A}} \\
b_{A A} & =\frac{\left(f_{A A} n_{A A}+\frac{1}{2} f_{a A} n_{a A}\right)^{2}}{f_{a a} n_{a a}+f_{a A} n_{a A}+f_{A A} n_{A A}}
\end{aligned}
$$

Birth and Death Rate

Let $\mathcal{U}=\{a, A\}$, and $\mu_{K}=0$.

- The populations increase by 1 with rate

$$
\begin{aligned}
b_{a a} & =\frac{\left(f_{a a} n_{a a}+\frac{1}{2} f_{a A} n_{a A}\right)^{2}}{f_{a a} n_{a a}+f_{a A} n_{a A}+f_{A A} n_{A A}} \\
b_{a A} & =2 \frac{\left(f_{a a} n_{a a}+\frac{1}{2} f_{a A} n_{a A}\right)\left(f_{A A} n_{A A}+\frac{1}{2} f_{a A} n_{a A}\right)}{f_{a a} n_{a a}+f_{a A} n_{a A}+f_{A A} n_{A A}} \\
b_{A A} & =\frac{\left(f_{A A} n_{A A}+\frac{1}{2} f_{a A} n_{a A}\right)^{2}}{f_{a a} n_{a a}+f_{a A} n_{a A}+f_{A A} n_{A A}}
\end{aligned}
$$

- The populations decrease by 1 with rate

$$
\begin{aligned}
d_{a a} & =\left(D_{a a}+C_{a a, a a} n_{a a}+C_{a a, a A} n_{a A}+C_{a a, A A} n_{A A}\right) n_{a a} \\
d_{a A} & =\left(D_{a A}+C_{a A, a a} n_{a a}+C_{a A, a A} n_{a A}+C_{a A, A A} n_{A A}\right) n_{a A} \\
d_{A A} & =\left(D_{A A}+C_{A A, A A} n_{A A}+C_{A A, a A} n_{a A}+C_{A A, a a} n_{a a}\right) n_{A A}
\end{aligned}
$$

Large populations limit

Proposition

Assume that the initial condition $\left(n_{a a}^{K}(0), n_{a A}^{K}(0), n_{A A}^{K}(0)\right)$ converges to a deterministic vector $\left(x_{0}, y_{0}, z_{0}\right)$ for $K \rightarrow \infty$. Then the process $\left(n_{a a}^{K}(t), n_{a A}^{K}(t), n_{A A}^{K}(t)\right)$ converges in law to the solution of

$$
\frac{d}{d t}\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=X(x(t), y(t), z(t))=\left(\begin{array}{c}
b_{a a}(x, y, z)-d_{a a}(x, y, z) \\
b_{a A}(x, y, z)-d_{a A}(x, y, z) \\
b_{A A}(x, y, z)-d_{A A}(x, y, z)
\end{array}\right)
$$

- $b_{A A}(x, y, z)=\frac{\left(f_{A A} z+\frac{1}{2} f_{a A} y\right)^{2}}{f_{a a} x+f_{a A} y+f_{A A} z}$
- $d_{A A}(x, y, z)=\left(D_{A A}+C_{A A, a a} x+C_{A A, a A} y+C_{A A, A A} z\right) z$
- and similar expressions for the other terms

The 3-System $(a a, a A, A A)$

Phenotypic viewpoint

- allele A dominant
- allele a recessive

The dominant allele A defines the phenotype $\Rightarrow \phi(a A)=\phi(A A)$

The 3-System $(a a, a A, A A)$

Phenotypic viewpoint

- allele A dominant
- allele a recessive

The dominant allele A defines the phenotype $\Rightarrow \phi(a A)=\phi(A A)$

- $c_{u_{1} u_{2}, v_{1} v_{2}} \equiv c, \quad \forall u_{1} u_{2}, v_{1} v_{2} \in\{a a, a A, A A\}$
- $f_{A A}=f_{a A}=f_{a a} \equiv f$
- $D_{A A}=D_{a A} \equiv D$ but $D_{a a}=D+\Delta$

The 3-System $(a a, a A, A A)$

Phenotypic viewpoint

- allele A dominant
- allele a recessive

The dominant allele A defines the phenotype $\Rightarrow \phi(a A)=\phi(A A)$

- $c_{u_{1} u_{2}, v_{1} v_{2}} \equiv c, \quad \forall u_{1} u_{2}, v_{1} v_{2} \in\{a a, a A, A A\}$
- $f_{A A}=f_{a A}=f_{a a} \equiv f$
- $D_{A A}=D_{a A} \equiv D$ but $D_{a a}=D+\Delta$
\Rightarrow type $a A$ is as fit as $A A$ and both are fitter than type $a a$

Work of Bovier, Neukirch (2015)

Start with $n_{i}^{K}(t)=\bar{n}_{a a} 1_{i=a a}+\frac{1}{K} 1_{i=a A}$ then :

The system converges to $\left(0,0, \bar{n}_{A A}\right)$ as $t \rightarrow \infty$ but slowly !

Genetic Variability ? Polymorphism?

Suppose a new dominant mutant allele B appears before $a A$ dies out.
Suppose that phenotypes a and B cannot reproduce.
Can the $a a$-population recover and coexist with the mutant population?

We will study the deterministic sytem and start with initial condition

$$
n_{i}(0)=\bar{n}_{A A} 1_{i=A A}+\epsilon 1_{i=a A}+\epsilon^{2} 1_{i=a a}+\epsilon^{3} 1_{i=A B}
$$

Model with a second mutant

Mutation to allele $B \rightarrow \mathcal{U}=\{a, A, B\}$

Model with a second mutant

Mutation to allele $B \rightarrow \mathcal{U}=\{a, A, B\}$

Model with a second mutant

Mutation to allele $B \rightarrow \mathcal{U}=\{a, A, B\}$

Differences in Fitness:

- fertility: $f_{a}=f_{A}=f_{B}=f$
- natural death: $D_{a}=D+\Delta>D_{A}=D>D_{B}=D-\Delta$

Birth Rates

No recombination between a and B

Birth Rates

birth-rate of $a a$-individual:

$$
\begin{aligned}
b_{a a}= & \frac{n_{a a}\left(n_{a a}+\frac{1}{2} n_{a A}\right)}{\operatorname{Pool}(a a)}+\frac{\frac{1}{2} n_{a B}\left(\frac{1}{2} n_{a A}+\frac{1}{2} n_{a B}\right)}{\operatorname{Pool}(a B)} \\
& +\frac{\frac{1}{2} n_{a A}\left(n_{a a}+\frac{1}{2} n_{a A}+\frac{1}{2} n_{a B}\right)}{\operatorname{Pool}(a A)}
\end{aligned}
$$

Pools of potential partners:
aa
$a A$
$a B$

Competition

No competition between a and B

Competition - first try

	aa	aA	AA	aB	AB	BB
aa	c	c	c	0	0	0
aA	c	c	c	c	c	c
AA	c	c	c	c	c	c
aB	0	c	c	c	c	c
AB	0	c	c	c	c	c
BB	0	c	c	c	c	c

Competition - first try

Competition - first try

Competition - second try

$$
\begin{array}{ccc}
\text { competition felt by } & < & \text { competition felt by } \\
n_{a A} \text { from } B \text {-individuals } & n_{A A} \text { from } B \text {-individuals }
\end{array}
$$

- the decay of $a A$-population slows down
- aa-population can recover

Competition - second try

	aa	aA	AA	aB	AB	BB
aa	c	c	c	0	0	0
aA	c	c	c	c	c	$c-\eta$
AA	c	c	c	c	c	c
aB	0	c	c	c	c	c
AB	0	c	c	c	c	c
BB	0	$c-\eta$	c	c	c	c

Competition - second try

Competition - second try

Recap - Dimorphism in two mutations

Mutation 2

Proof

1.Phase: Fixation of the mutant

- $A B$ grows to level ε_{0}
- $a B, B B \leq \varepsilon_{0}$
\Rightarrow perturbation of the 3 -system $(a a, a A, A A)$ of at most $\mathcal{O}\left(\varepsilon_{0}\right)$

Proof

2.Phase: Invasion of the mutant

- $a a, a A, a B \leq \varepsilon_{0}$
\Rightarrow perturbation of the new 3 -system $(A A, A B, B B)$ of at most $\mathcal{O}\left(\varepsilon_{0}\right)$
\Rightarrow use results of Bovier, Neukirch (2015)
- $n_{a A}+n_{a B}$ increases if $\eta>0$

Proof

3. Phase: Recovery of $a a$

- $A A$ small enough
- $a A$ big enough
$\Rightarrow a a$ starts to reproduce out of itself as much as with the other partners.

Proof

4. Phase: Coexistence

Delicate phase : $a a$ grows out of itself and feels no competition with $B B$ \Rightarrow convergence to coexistence-fixed-point $\bar{n}_{a a, B B}$
BUT meanwhile :
due to Mendelian recombination, $a A, a B, A B$ have a "bump" upwards, and due to competition with them $B B$ has a "bump" downwards.

