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Clonal Reproduction versus Sexual Reproduction

Clonal Reproduction

individual reproduces out of
itself

offspring = copy of the
parent

offspring genom:
I 100% of genes of the

parent

vs. Sexual Reproduction

individual needs a partner for
reproduction

offspring genom:
I 50% genes of mother
I 50% genes of father
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Clonal Reproduction versus Sexual Reproduction

Clonal Reproduction

+ fast growing populations

+ no time loss for partner
selection

- genes stay constant over
generations

- hard adaptation to changing
environment

Sexual Reproduction

- slowly growing population

- time cost for partner selection

+ genetic variability

+ possible adaptation to
changing environment

+ correction of genetic defects

+ elimination of disadvantageous
mutations
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Clonal reproduction model
Bolker, Pacala, Dieckmann, Law, Champagnat, Méléard,...

Θ ' N : Trait space
ni(t) : Number of individuals of trait i ∈ Θ

Dynamics of the process

n(t) = (n0(t), n1(t), . . .) ∈ NN :

Each individual of trait i

reproduces clonally with rate bi(1− µ)

reproduces with mutation with rate biµ according to some mutation
kernel M(i, j)

dies due to age or competition with rate di +
∑

j cijnj
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Clonal reproduction model
Bolker, Pacala, Dieckmann, Law, Champagnat, Méléard,...

Θ ' N : Trait space
ni(t) : Number of individuals of trait i ∈ Θ

Dynamics of the rescaled process (with competition cij/K)

nK(t) =
1

K
(n0(t), n1(t), . . .) ∈ (N/K)N :

The population nKi

increases by 1/K with rate bi(1− µ) ·KnKi
makes nKj increase by 1/K with rate biµM(i, j) ·KnKi
deceases by 1/K with rate (di +

∑
j cijn

K
j ) ·KnKi
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Large populations limit
µ = 0 and K →∞ Fournier, Méléard, 2004

Proposition

Let Θ = {1, 2}, assume that the initial condition (nK1 (0), nK2 (0))
converges to a deterministic vector (x0, y0) for K →∞. Then the process
(nK1 (t), nK2 (t)) converges in law, on bounded time intervals, to the
solution of

d

dt

(
x(t)
y(t)

)
= X(x(t), y(t)) =

(
(b1 − d1 − c11x− c12y)x
(b2 − d2 − c21x− c22y)y

)
.

with initial condition (x(0), y(0)) = (x0, y0).

Monomorphic equilibria : n̄i = bi−di
cii

Invasion fitness : fij = bi − di − cijn̄j .
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Large populations and rare mutations limit
µ = µ(K)� (K logK)−1

Champagnat, 2006

Start with nKi (0) = n̄x1i=x + 1
K 1i=y (time of the first mutation).

If y is fitter than x, i.e. fyx > 0 and fxy < 0, then with proba → 1:

O(logK) O(1) O(logK)

Supercritical BP LLN Subcritical BP 9 / 29



Trait Substitution Sequence Champagnat, 2006

Proposition

Assume

logK � 1
Kµ � exp(cK)

∀(i, j) ∈ Θ2, either fji < 0 or fji > 0 and fij < 0.

Then the rescaled process

(nKt/Kµ)
t≥0
⇒ (n̄Xt1Xt)t≥0

where Xt is a Markov chain on Θ with transition kernel

P (i, j) = bi
[fji]+
bj

M(i, j).
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Mendelian Diploid Model
Collet, Méléard, Metz, 2013

Let U be the allelic trait space, a countable set.
For example U = {a,A}.

An individual i is determined by two alleles out of U :

I genotype: (ui1, u
i
2) ∈ U2

I phenotype: φ((ui1, u
i
2)), with φ : U2 → R+

Rescaled population:
let Nt be the total number of individuals at time t,

nKu1,u2(t) =
1

K

Nt∑
i=1

1(ui1,ui2)
(t)
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Reproduction

Reproduction rate of (ui1, u
i
2) with (uj1, u

j
2):

fui1ui2
f
uj1u

j
2

Number of potential partners of (ui1, u
i
2)× their mean fertility

Reproduction without muta-
tion: Probability 1− µK
⇒ Mendelian rules: newborn get-
ting genotype with coordinates
that are sampled at random from
each parent.

Ab

aA bB

ab aB AB

Reproduction with mutation:
Probability µK
⇒ changing one of the two allelic
traits of the newborn from a to b
according to the kernel M(a, b).

Aĉ

aA cC

aĉ aĈ AĈ

âCâc Âc ÂC
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Birth and Death Rate

Let U = {a,A}, and µK = 0.

The populations increase by 1 with rate

baa =
(faanaa+

1
2 faAnaA)2

faanaa+faAnaA+fAAnAA

baA = 2
(faanaa+

1
2 faAnaA)(fAAnAA+ 1

2 faAnaA)

faanaa+faAnaA+fAAnAA

bAA =
(fAAnAA+ 1

2 faAnaA)2

faanaa+faAnaA+fAAnAA

The populations decrease by 1 with rate

daa = (Daa + Caa,aanaa + Caa,aAnaA + Caa,AAnAA)naa

daA = (DaA + CaA,aanaa + CaA,aAnaA + CaA,AAnAA)naA

dAA = (DAA + CAA,AAnAA + CAA,aAnaA + CAA,aanaa)nAA

aa

aa aa

aa aA

aA aa

aA aA

1

1/4

1/2

1/2
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Large populations limit Collet, Méléard, Metz, 2013

Proposition

Assume that the initial condition (nKaa(0), nKaA(0), nKAA(0)) converges to a
deterministic vector (x0, y0, z0) for K →∞. Then the process
(nKaa(t), n

K
aA(t), nKAA(t)) converges in law to the solution of

d

dt

(
x(t)
y(t)
z(t)

)
= X(x(t), y(t), z(t)) =

(
baa(x, y, z)− daa(x, y, z)
baA(x, y, z)− daA(x, y, z)
bAA(x, y, z)− dAA(x, y, z)

)
.

bAA(x, y, z) =
(fAAz+

1
2
faAy)

2

faax+faAy+fAAz

dAA(x, y, z) = (DAA + CAA,aax+ CAA,aAy + CAA,AAz)z

and similar expressions for the other terms
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The 3-System (aa, aA,AA)

Phenotypic viewpoint

allele A dominant

allele a recessive

The dominant allele A defines the phenotype ⇒ φ(aA) = φ(AA)

cu1u2,v1v2 ≡ c, ∀u1u2, v1v2 ∈ {aa, aA,AA}
fAA = faA = faa ≡ f
DAA = DaA ≡ D but Daa = D + ∆

⇒ type aA is as fit as AA and both
are fitter than type aa

AA aA

aa
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Work of Bovier, Neukirch (2015)

Start with nKi (t) = n̄aa1i=aa + 1
K 1i=aA then :

O(logK) O(1) ≥ O(K1/4+ε)

The system converges to (0, 0, n̄AA) as t→∞ but slowly !
17 / 29



Genetic Variability ? Polymorphism?

Suppose a new dominant mutant allele B
appears before aA dies out.

Suppose that phenotypes a and B cannot reproduce.

Can the aa-population recover and coexist with the
mutant population ?

We will study the deterministic sytem and start with initial condition
ni(0) = n̄AA1i=AA + ε1i=aA + ε21i=aa + ε31i=AB
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Model with a second mutant

Mutation to allele B → U = {a,A,B}

AAaa aA aB AB BB

⇒ 6 possible genotypes: aa, aA, AA, aB, AB, BB
⇒ Dominance of alleles a < A < B

Differences in Fitness:

fertility: fa = fA = fB = f

natural death: Da = D + ∆ > DA = D > DB = D −∆
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Birth Rates

No recombination between a and B

BBa
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Birth Rates

birth-rate of aa-individual:

baa =
naa

(
naa + 1

2naA
)

Pool(aa)
+

1
2naB

(
1
2naA + 1

2naB
)

Pool(aB)

+
1
2naA

(
naa + 1

2naA + 1
2naB

)
Pool(aA)

Pools of potential partners:

aa         aA         aB

aa aa
aA aA aA

AA AA AA
aB aBAB AB

BB BB
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Competition

No competition between a and B

BBa
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Competition - first try

aa aA AA aB AB BB

aa c c c 0 0 0

aA c c c c c c
AA c c c c c c

aB 0 c c c c c
AB 0 c c c c c
BB 0 c c c c c
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Competition - second try

competition felt by
naA from B-individuals

< competition felt by
nAA from B-individuals

the decay of aA-population slows down

aa-population can recover
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Competition - second try

aa aA AA aB AB BB

aa c c c 0 0 0

aA c c c c c c− η
AA c c c c c c

aB 0 c c c c c
AB 0 c c c c c
BB 0 c− η c c c c
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Recap - Dimorphism in two mutations

Mutation 1 Mutation 2
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Proof

1.Phase: Fixation of the mutant

AB grows to level ε0

aB,BB ≤ ε0
⇒ perturbation of the 3-system (aa, aA,AA) of at most O(ε0)
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Proof

2.Phase: Invasion of the mutant

aa, aA, aB ≤ ε0
⇒ perturbation of the new 3-system (AA,AB,BB) of at most O(ε0)
⇒ use results of Bovier, Neukirch (2015)

naA + naB increases if η > 0
29 / 29



Proof

3. Phase: Recovery of aa

AA small enough

aA big enough

⇒ aa starts to reproduce out of itself as much as with the other partners.
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Proof

4. Phase: Coexistence

Delicate phase : aa grows out of itself and feels no competition with BB
⇒ convergence to coexistence-fixed-point n̄aa,BB
BUT meanwhile :
due to Mendelian recombination, aA, aB,AB have a ”bump” upwards,
and due to competition with them BB has a ”bump” downwards.
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