### 2.6.10 The integer Euclidean quotient : `iquo intDiv`

`iquo` (or `intDiv`) returns the integer quotient *q* of the
Euclidean division of two integers *a* and *b* given as arguments.
(*a*=*b***q*+*r* with 0≤ *r*< *b*).

For Gaussian integers, we choose *q* so that *b***q* is as near by *a* as
possible and it can be proved that *r* may be choosen so that
|*r*|^{2} ≤ |*b*|^{2}/2.

Input :

`iquo(148,5) `

Output :

`29`

`iquo` works with integers or with Gaussian integers.

Input :

`iquo(factorial(148),factorial(145)+2 )`

Output :

`3176375`

Input :

`iquo(25+12*i,5+7*i) `

Output :

`3-2*i`

Here *a*−*b***q*=−4+*i* and |−4+*i*|^{2}=17<|5+7**i*|^{2}/2=74/2=37