On the stability of $L^p$-norm of Riemannian curvature tensor
星期四, 19 六月, 2014 - 14:00
Résumé :
Let $M$ be a closed smooth manifold. Consider the Riemannian functional $\mathcal{R}_p$ defined by the $L^p$-norm of Riemannian curvature tensor. It is a real valued function defined on the space of unit volume Riemannian metrics on $M$. Compact irreducible symmetric spaces are critical metrics for every Riemannian functionals. I will talk about the stability and local minimizing properties of $\mathcal{R}_p$ at these metrics.
Institution de l'orateur :
Institut Fourier
Thème de recherche :
Théorie spectrale et géométrie
Salle :
4