next up previous contents index
suivant: Derivatives of the DiGamma monter: Real numbers précédent: The function : Gamma   Table des matières   Index


The $ \beta$ function : Beta

Beta takes as argument two reals a, b.
Beta returns the value of the $ \beta$ function at a, b $ \in$ $ \mathbb {R}$, defined by :

$\displaystyle \beta$(x, y) = $\displaystyle \int_{0}^{1}$tx-1(1 - t)y-1 = $\displaystyle {\frac{{\Gamma(x)*\Gamma(y)}}{{\Gamma(x+y)}}}$

Remarkable values :

$\displaystyle \beta$(1, 1) = 1,    $\displaystyle \beta$(n, 1) = $\displaystyle {\frac{{1}}{{n}}}$,    $\displaystyle \beta$(n, 2) = $\displaystyle {\frac{{1}}{{n(n+1)}}}$

Beta(x,y) is defined for x and y positive reals (to insure the convergence of the integral) and by prolongation for x and y if they are not negative integers.
Input :
Beta(5,2)
Output :
1/30
Input :
Beta(x,y)
Output :
Gamma(x)*Gamma(y)/Gamma(x+y)
Input :
Beta(5.1,2.2)
Output :
0.0242053671402



giac documentation written by Renée De Graeve and Bernard Parisse