suivant: Divergence : divergence
monter: Multivariate calculus
précédent: Laplacian : laplacian
Table des matières
Index
Hessian matrix : hessian
hessian takes two arguments : an
expression F of n real variables and a vector of these variable names.
hessian returns the hessian matrix of F, that is the matrix of the
derivatives of order 2.
Example
Find the hessian matrix of
F(x, y, z) = 2x2y - xz3.
Input :
hessian(2*x^
2*y-x*z^
3 , [x,y,z])
Output :
[[4*y,4*x,-(3*z^
2)],[2*2*x,0,0],[-(3*z^
2),0,x*3*2*z]]
To have the hessian matrix at the critical points, first input :
solve(derive(2*x^
2*y-x*z^
3,[x,y,z]),[x,y,z])
Output is the critical points :
[[0,y,0]]
Then, to have the hessian matrix at this points, input :
subst([[4*y,4*x,-(3*z^
2)],[2*2*x,0,0], [-(3*z^
2),0,6*x*z]],[x,y,z],[0,y,0])
Output :
[[4*y,4*0,-(3*0^
2)],[4*0,0,0],[-(3*0^
2),0,6*0*0]]
and after simplification :
[[4*y,0,0],[0,0,0],[0,0,0]]
giac documentation written by Renée De Graeve and Bernard Parisse