suivant: GCD in /p[x] :
monter: Compute in /p[x] using
précédent: Euclidean quotient : Quo
Table des matières
Index
Euclidien remainder: Rem
Rem is the inert form of rem.
Rem returns the euclidean remainder between two polynomials
without evaluation.
It is used in conjonction with mod in Maple syntax mode to compute
the euclidean remainder of the division of two
polynomials with coefficients in
/p.
Input in Xcas mode :
Rem((x^
3+x^
2+1) mod 13,(2*x^
2+4) mod 13)
Output :
rem((x^
3+x^
2+1)%13,(2*x^
2+4)%13)
you need to eval(ans()) to get :
(-2%13)*x+-1%13
Input in Maple mode :
Rem(x^
3+x^
2+1,2*x^
2+4) mod 13
Output :
(-2)*x-1
Input in Maple mode :
Rem(x^
2+2*x,x^
2+6*x+5) mod 5
Output :
1*x
giac documentation written by Renée De Graeve and Bernard Parisse