next up previous contents index
suivant: Euclidien remainder: Rem monter: Compute in /p[x] using précédent: Compute in /p[x] using   Table des matières   Index


Euclidean quotient : Quo

Quo is the inert form of quo.
Quo returns the euclidean quotient between two polynomials without evaluation.
It is used in conjonction with mod in Maple syntax mode to compute the euclidean quotient of the division of two polynomials with coefficients in $ \mathbb {Z}$/p$ \mathbb {Z}$.
Input in Xcas mode:
Quo((x^3+x^2+1) mod 13,(2*x^2+4) mod 13)
Output :
quo((x^3+x^2+1)%13,(2*x^2+4)%13)
you need to eval(ans()) to get :
(-6%13)*x+-6%13
Input in Maple mode :
Quo(x^3+x^2+1,2*x^2+4) mod 13
Output :
(-6)*x-6
Input in Maple mode :
Quo(x^2+2*x,x^2+6*x+5) mod 5
Output :
1



giac documentation written by Renée De Graeve and Bernard Parisse