next up previous contents index
suivant: Applications monter: Discrete Fourier Transform précédent: Discrete Fourier Transform   Table des matières   Index

The properties of the Discrete Fourier Transform

The Discrete Fourier Transform FN is a bijective transformation on periodic sequences such that
FN,$\scriptstyle \omega_{N}$-1 = $\displaystyle {\frac{{1}}{{N}}}$FN,$\scriptstyle \omega_{N}^{{-1}}$  
  = $\displaystyle {\frac{{1}}{{N}}}$$\displaystyle \overline{{F_{N}}}$     on $\displaystyle \mathbb {C}$  

i.e. :

(FN-1(x))k = $\displaystyle {\frac{{1}}{{N}}}$$\displaystyle \sum_{{j=0}}^{{N-1}}$xj$\displaystyle \omega_{N}^{{k\cdot j}}$

Inside Xcas the discrete Fourier transform and it's inverse are denote by fft and ifft:
fft(x)= FN(x), ifft(x)= FN-1(x)
Definitions
Let x and y be two periodic sequences of period N. Properties :
N*FN(x . y) = FN(x)*FN(y)  
FN(x*y) = FN(x) . FN(y)  


next up previous contents index
suivant: Applications monter: Discrete Fourier Transform précédent: Discrete Fourier Transform   Table des matières   Index
giac documentation written by Renée De Graeve and Bernard Parisse