Previous Up Next

13.3.4  Riemann sums

Given a function f on [0,1], the Riemann sum corresponding to dividing the interval into n equal parts and using the right endpoints is

  
n
k=1
f


x
n



1
n
.

The sum_riemann command determines if a sum is such a Riemann sum, and if it is, evaluates the integral.

Examples

Let Sn=∑k=1n k2/n3. Compute the limit of (Sn)n∈ℕ.

sum_riemann(k^2/n^3,[n,k])
     
1
3
          

Let Sn=∑k=1n k3/n4. Compute the limit of (Sn)n∈ℕ.

sum_riemann(k^3/n^4,[n,k])
     
1
4
          

Compute limn → +∞(1/n+1+ 1/n+2+⋯+1/2n).

sum_riemann(1/(n+k),[n,k])
     
ln
2
          

Let Sn=∑k=1n 32n3/16n4k4. Compute the limit of (Sn)n∈ℕ.

sum_riemann(32*n^3/(16*n^4-k^4),[n,k])
     
arctan


1
2



+ln
3
          

Previous Up Next