Previous Up Next

13.3.3  Discrete summation

The sum command can evaluate sums, series, and find discrete antiderivatives. A discrete antiderivative of a sum ∑nf(n) is an expression G such that G|x=n+1G|x=n=f(n), which means that ∑n=MNf(n)=G|x=N+1G|M.

Examples

sum(1,k,-2,n)
     
n+1+2           
normal(sum(2*k-1,k,1,n))
     
n2           
sum(1/(n^2),n,1,10)
     
1968329
1270080
          
sum(1/(n^2),n,1,+(infinity))
     
1
6
 π 2
          
sum(1/(n^3-n),n,2,10)
     
27
110
          
sum(1/(n^3-n),n,2,+(infinity))
     
1
4
          

This result comes from the decomposition of 1/(n^3-n) (see Section 11.6.9).

partfrac(1/(n^3-n))
     
1
n
+
1

n−1
+
1

n+1
          

Hence:

     
  
N
n=2
 −
1
n
=−
N−1
n=1
 
1
n+1
=−
1
2
N−2
n=2
 
1
n+1
1
N
         
1
2
N
n=2
 
1
n−1
=
1
2



N−2
n=0
 
1
n+1
)=
1
2
(1+
1
2
+
N−2
n=2
1
n+1



         
1
2
N
n=2
 
1
n+1
=
1
2



N−2
n=2
 
1
n+1
+
1
N
+
1
N+1



         

After simplification by ∑n=2N−2, it remains:

1
2
+
1
2



1+
1
2



1
N
+
1
2



1
N
+
1
N+1



=
1
4
1
2N(N+1)
 

Therefore:

sum(1/(x*(x+1)),x)
     
1
x
          

Previous Up Next