next up previous contents index
suivant: Potential : potential monter: Multivariate calculus précédent: Divergence : divergence   Table des matières   Index


Rotationnal : curl

curl takes two arguments : a 3-d vector field depending on 3 variables.
curl returns the rotationnal of the vector, defined by:
curl([A,B,C],[x,y,z])= [$\displaystyle {\frac{{\partial C}}{{\partial y}}}$ - $\displaystyle {\frac{{\partial B}}{{\partial z}}}$$\displaystyle {\frac{{\partial A}}{{\partial z}}}$ - $\displaystyle {\frac{{\partial C}}{{\partial x}}}$$\displaystyle {\frac{{\partial B}}{{\partial x}}}$ - $\displaystyle {\frac{{\partial A}}{{\partial y}}}$]
Note that n must be equal to 3.
Input :
curl([x*z,-y^2,2*x^y],[x,y,z])
Output :
[2*x^y*log(x),x-2*y*x^(y-1),0]



giac documentation written by Renée De Graeve and Bernard Parisse