suivant: QR decomposition (for TI
monter: Matrix factorizations
précédent: Cholesky decomposition : cholesky
Table des matières
Index
QR decomposition : qr
qr takes as argument a numeric
square matrix A of size n.
qr factorizes numerically
this matrix as Q*R where
Q is an orthogonal matrix (tQ*Q = I) and R is an upper triangular
matrix.
qr(A) returns only R, run Q=A*inv(R) to get Q.
Input :
qr([[3,5],[4,5]])
Output is the matrix R :
[[-5,-7],[0,-1]]
Input :
qr([[1,2],[3,4]])
Output is the matrix R :
[[-3.16227766017,-4.42718872424],[0,-0.632455532034]]
giac documentation written by Renée De Graeve and Bernard Parisse