next up previous contents index
suivant: Find the matrix of monter: Isometries précédent: Isometries   Table des matières   Index


Recognize an isometry : isom

isom takes as argument the matrix of an linear application in dimension 2 or 3.
isom returns : Input :
isom([[0,0,1],[0,1,0],[1,0,0]])
Output :
[[1,0,-1],-1]
which means that this isometry is a 3-d symmetry with respect to the plane x  -  z  =   0.
Input :
isom(sqrt(2)/2*[[1,-1],[1,1]])
Output :
[pi/4,1]
Hence, this isometry is a 2-d rotation of angle $\displaystyle {\frac{{\pi}}{{4}}}$.
Input :
isom([[0,0,1],[0,1,0],[0,0,1]])
Output :
[0]
therefore this transformation is not an isometry.



giac documentation written by Renée De Graeve and Bernard Parisse