next up previous contents index
suivant: Row reduction to echelon monter: Compute in /p[x] using précédent: Determinant of a matrix   Table des matières   Index


Inverse of a matrix in $ \mathbb {Z}$/p$ \mathbb {Z}$ : Inverse

Inverse is the inert form of inverse.
Inverse takes as argument a matrix with coefficients in $ \mathbb {Z}$/p$ \mathbb {Z}$.
Inverse returns inverse without evaluation. It is used in conjonction with mod in Maple syntax mode to find the inverse of a matrix with coefficients in $ \mathbb {Z}$/p$ \mathbb {Z}$.
Input in Xcas mode :
Inverse([[1,2,9] mod 13,[3,10,0] mod 13,[3,11,1] mod13])
Output :
inverse([[1%13,2%13,9%13],[3%13,10%13,0%13], [3%13,11%13,1%13]])
you need to eval(ans()) to get :
[[2%13,-4%13,-5%13],[2%13,0%13,-5%13], [-2%13,-1%13,6%13]]
which is the inverse of A = [[1, 2, 9],[3, 10, 0],[3, 11, 1]] in $ \mathbb {Z}$/13$ \mathbb {Z}$.
Input in Maple mode :
Inverse([[1,2,9],[3,10,0],[3,11,1]]) mod 13
Output :
[[2,-4,-5],[2,0,-5],[-2,-1,6]]



giac documentation written by Renée De Graeve and Bernard Parisse