suivant: Expand and reduce :
monter: The CAS functions
précédent: Rational function given by
Table des matières
Index
Computing in
/p or in
/p[x]
The way to compute over
/p or over
/p[x] depends
on the syntax mode :
- In Xcas mode, an object n over
/p is written
n%p. Some examples of input for
- an integer n in
/13
n:=12%13.
- a vector V in
/13
V:=[1,2,3]%13 or
V:=[1%13,2%13,3%13].
- a matrix A in
/13
A:=[[1,2,3],[2,3,4]]%13 or
A:=[[1%13,2%13,3%13],[[2%13,3%13,4%13]].
- a polynomial A in
/13[x] in symbolic representation
A:=(2*x^
2+3*x-1)%13 or
A:=2%13*x^
2+3%13*x-1%13.
- a polynomial A in
/13[x] in list representation
A:=poly1[1,2,3]%13 or
A:=poly1[1%13,2%13,3%13].
To recover an object o with integer coefficients instead of modular
coefficients, input o % 0. For example, input o:=4%7 and
o%0,then output is -3.
- In Maple mode, integers modulo p are represented like
usual integers instead of using specific modular integers.
To avoid confusion with normal commands, modular
commands are written with a capital letter (inert form) and followed
by the mod command (see also the next section).
Remark
- For some commands in
/p or in
/p[x], p must be
a prime integer.
- The representation is the symetric representation :
11%13 returns -2%13.
Sous-sections
suivant: Expand and reduce :
monter: The CAS functions
précédent: Rational function given by
Table des matières
Index
giac documentation written by Renée De Graeve and Bernard Parisse