suivant: Chinese remainders : chinrem
monter: Arithmetic and polynomials
précédent: Bézout's Identity : egcd
Table des matières
Index
Solving au+bv=c over polynomials: abcuv
abcuv solves the polynomial equation
C(x) = U(x)*A(x) + V(x)*B(x)
where A, B, C are given polynomials and U and V are unknown
polynomials. C must be a multiple of the gcd of A and B
for a solution to exist. abcuv takes 3 expressions as argument,
and an optional variable specification (which defaults to x)
and returns a list of 2 expressions (U and V). Alternatively, the
polynomials A, B, C may be entered as list-polynomials.
Input :
abcuv(x^
2+2*x+1 ,x^
2-1,x+1)
Output :
[1/2,1/-2]
Input :
abcuv(x^
2+2*x+1 ,x^
2-1,x^
3+1)
Output :
[1/2*x^
2+1/-2*x+1/2,-1/2*x^
2-1/-2*x-1/2]
Input :
abcuv([1,2,1],[1,0,-1],[1,0,0,1])
Output :
[poly1[1/2,1/-2,1/2],poly1[1/-2,1/2,1/-2]]
giac documentation written by Renée De Graeve and Bernard Parisse