next up previous contents index
suivant: Natural splines: spline monter: Polynomials précédent: Random list : ranm   Table des matières   Index


Lagrange's polynomial : lagrange interp

lagrange takes as argument two lists of size n (resp a matrix with two rows and n columns) and the name of a variable var (by default x).
The first list (resp row) corresponds to the abscissa values xk (k = 1..n), and the second list (resp row) corresponds to ordinate values yk (k = 1..n).
lagrange returns a polynomial expression P with respect to var of degree n-1, such that P(xi) = yi.
Input :
lagrange([[1,3],[0,1]])
or :
lagrange([1,3],[0,1])
Output :
(x-1)/2
since $ {\frac{{x-1}}{{2}}}$ = 0 for x = 1, and $ {\frac{{x-1}}{{2}}}$ = 1 for x = 3.
Input :
lagrange([1,3],[0,1],y)
Output :
(y-1)/2
Warning
f:=lagrange([1,2],[3,4],y) does not return a function but an expression with respect to y. To define f as a function, input
f:=unapply(lagrange([1,2],[3,4],x),x)
Avoid f(x):=lagrange([1,2],[3,4],x) since the Lagrange polynomial would be computed each time f is called (indeed in a function definition, the second member of the affectation is not evaluated). Note also that
g(x):=lagrange([1,2],[3,4]) would not work since the default argument of lagrange would be global, hence not the same as the local variable used for the definition of g.


next up previous contents index
suivant: Natural splines: spline monter: Polynomials précédent: Random list : ranm   Table des matières   Index
giac documentation written by Renée De Graeve and Bernard Parisse