Advanced Crypto – Exercises

DLP-based oblivious transfers.

Oblivious transfer is a protocol between two participants, Alice and Bob. At the start of the protocol, Alice has two secrets s_0 and s_1 , and Bob has a secret bit $k \in \{0, 1\}$. If executed correctly, at the end of the protocol Bob knows the secret s_k , but learns no information on Alice's other secret s_{1-k} , and Alice learns no information about Bob's bit b. In other words, Bob chooses one of Alice's secrets to learn, but Alice does not know which one. Oblivious transfer is a fundamental building block for secure multiparty computations.

I. A first protocol : Wu-Zhang-Wang construction.

Let E be an elliptic curve and P a point of large prime order ℓ , such that the DLP is hard on $\langle P \rangle$.

- Alice's secrets s_0 and s_1 are encoded as points $S_0, S_1 \in \langle P \rangle \setminus \{\mathcal{O}\}.$
- Alice picks a uniformly random integer $a \in \{1, \ldots, \ell 1\}$. She computes $A_0 = aS_0$ and $A_1 = aS_1$ and sends them to Bob.
- Bob chooses a uniformly random integer $b \in \{1, ..., \ell 1\}$. According to the index k of the secret he is interested in, he computes the group element $B' = bA_k$ and sends it to Alice.
- Alice computes $B = a^{-1}B'$ and sends it to Bob.
- Bob computes $b^{-1}B$.
- 1) Show that the protocol is correct, i.e. Bob learns S_k .
- 2) Suppose that Alice is *malicious* and just wants to learn Bob's secret bit k; she can send two points A_0 and A_1 of her choosing to Bob. Can she learn information about k?
- 3) Suppose that Bob is *honest-but-curious*: he follows the protocol but would like to gain information on Alice's other secret. Show that this is not possible if the computional Diffie-Hellman problem is hard.
- 4) Suppose now that Bob is *malicious* and sends $b(A_1 A_0)$ to Alice. What does he get? Does it follow the specifications of an oblivious transfer protocol?
- 5) Propose a modification of this protocol that does not allow a malicious Bob to learn partial information on both secrets.

Hint : don't encode s_0 and s_1 as points on E; pick random S_0 and S_1 , and mask s_i with S_i .

6) The construction described above is actually a *1-out-of-2* oblivious transfer protocol. Can it be transformed in a 1-out-of-*n* protocol? *t*-out-of-*n* protocol?

II. A second protocol : Naor-Pinkas construction.

Let E be an elliptic curve and P a point of large prime order ℓ , such that the DLP is hard on $\langle P \rangle$.

- Alice's secrets s_0 and s_1 are encoded as points $S_0, S_1 \in \langle P \rangle$.
- Bob chooses random integers $a, b, d \in \{1, \dots, \ell-1\}$, sets $c_k = ab$ and $c_{1-k} = d$ where k is his secret bit. He sends Alice the tuple $(P, A, B, Q_0, Q_1) = (P, aP, bP, c_0P, c_1P)$.
- Alice checks that $Q_0 \neq Q_1$. She then picks uniformly random integers $x_0, y_0, x_1, y_1 \in \{0, \dots, \ell-1\}$, and computes and sends Bob the two couples $(T_0, C_0) = (x_0B + y_0P, S_0 + x_0Q_0 + y_0A)$ and $(T_1, C_1) = (x_1B + y_1P, S_1 + x_1Q_1 + y_1A)$.
- Bob computes $C_k aT_k$.
- 1) Show that the protocol is correct, i.e. Bob learns S_k .
- 3) Under what assumption(s) is this protocol secure against a malicious Alice? Is it always satisfied?