F4
Library for Gröebner basis computations over finite fields.
 All Classes Namespaces Files Functions Variables Friends Pages
check-cyclic6-gf2.cpp

Library check tests.

Author
Vanessa VITSE, Antoine JOUX, Titouan COLADON
/*
* Copyright (C) 2015 Antoine Joux, Vanessa Vitse and Titouan Coladon
*
* This file is part of F4.
*
* F4 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* F4 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with F4. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include <string>
#include <vector>
#include <libf4.h>
using namespace std;
int main (int argc, char **argv)
{
cout << "#########################################################" << endl;
cout << "# CHECK CYCLIC6 ON GF(2) #" << endl;
cout << "#########################################################" << endl << endl;
// Create polynomial array
vector<string> polynomialArray;
// Create variable name array
vector<string> variableName;
for(int i = 0; i < 6; i++)
{
variableName.push_back('x'+to_string(i));
}
// Fill the polynomial array
polynomialArray.emplace_back("x0+x1+x2+x3+x4+x5");
polynomialArray.emplace_back("x0*x1+x1*x2+x2*x3+x3*x4+x0*x5+x4*x5");
polynomialArray.emplace_back("x0*x1*x2+x1*x2*x3+x2*x3*x4+x0*x1*x5+x0*x4*x5+x3*x4*x5");
polynomialArray.emplace_back("x0*x1*x2*x3+x1*x2*x3*x4+x0*x1*x2*x5+x0*x1*x4*x5+x0*x3*x4*x5+x2*x3*x4*x5");
polynomialArray.emplace_back("x0*x1*x2*x3*x4+x0*x1*x2*x3*x5+x0*x1*x2*x4*x5+x0*x1*x3*x4*x5+x0*x2*x3*x4*x5+x1*x2*x3*x4*x5");
polynomialArray.emplace_back("x0*x1*x2*x3*x4*x5-1");
// Compute a reduce groebner basis
vector<string> basis = groebnerBasisGF2F4(6, variableName, polynomialArray, 1, 0);
// Fill reference vectors
vector<string> groebnerBasisCyclic6;
//for(size_t i = 0; i < basis.size(); i++)
//{
//cout << "groebnerBasisCyclic6.push_back(\"" << basis[i] << "\");" << endl;
//}
groebnerBasisCyclic6.push_back("(1*x0^1) + (1*x1^1) + (1*x2^1) + (1*x3^1) + (1*x4^1) + (1*x5^1)");
groebnerBasisCyclic6.push_back("(1*x1^2) + (1*x1^1*x3^1) + (1*x2^1*x3^1) + (1*x1^1*x4^1) + (1*x3^1*x4^1) + (1*x2^1*x5^1) + (1*x3^1*x5^1) + (1*x5^2)");
groebnerBasisCyclic6.push_back("(1*x2^1*x3^3*x5^4) + (1*x2^1*x3^2*x5^5) + (1*x3^3*x5^5) + (1*x3^2*x5^6) + (1*x2^1*x3^1) + (1*x2^1*x5^1) + (1*x3^1*x5^1) + (1*x5^2)");
groebnerBasisCyclic6.push_back("(1*x1^1*x2^1) + (1*x2^2) + (1*x1^1*x3^1) + (1*x2^1*x3^1) + (1*x1^1*x4^1) + (1*x2^1*x4^1) + (1*x3^1*x4^1) + (1*x4^2) + (1*x1^1*x5^1) + (1*x2^1*x5^1) + (1*x3^1*x5^1) + (1*x4^1*x5^1)");
groebnerBasisCyclic6.push_back("(1*x2^3) + (1*x2^2*x5^1) + (1*x2^1*x5^2) + (1*x5^3)");
groebnerBasisCyclic6.push_back("(1*x2^2*x3^1) + (1*x2^1*x3^1*x4^1) + (1*x2^2*x5^1) + (1*x2^1*x3^1*x5^1) + (1*x2^1*x4^1*x5^1) + (1*x3^1*x4^1*x5^1) + (1*x2^1*x5^2) + (1*x4^1*x5^2)");
groebnerBasisCyclic6.push_back("(1*x1^1*x3^3) + (1*x2^1*x3^3) + (1*x3^3*x4^1) + (1*x1^1*x4^3) + (1*x4^4) + (1*x1^1*x3^2*x5^1) + (1*x2^1*x3^2*x5^1) + (1*x3^3*x5^1) + (1*x3^2*x4^1*x5^1) + (1*x1^1*x4^2*x5^1) + (1*x4^3*x5^1) + (1*x1^1*x3^1*x5^2) + (1*x2^1*x3^1*x5^2) + (1*x3^2*x5^2) + (1*x1^1*x4^1*x5^2) + (1*x3^1*x4^1*x5^2) + (1*x4^2*x5^2) + (1*x2^1*x5^3) + (1*x3^1*x5^3) + (1*x5^4)");
groebnerBasisCyclic6.push_back("(1*x1^1*x3^2*x5^4) + (1*x2^2*x4^1*x5^4) + (1*x2^1*x3^1*x4^1*x5^4) + (1*x3^2*x4^1*x5^4) + (1*x1^1*x4^2*x5^4) + (1*x2^1*x4^2*x5^4) + (1*x4^3*x5^4) + (1*x2^2*x5^5) + (1*x2^1*x3^1*x5^5) + (1*x2^1*x4^1*x5^5) + (1*x3^1*x4^1*x5^5) + (1*x4^2*x5^5) + (1*x2^1*x5^6) + (1*x3^1*x5^6) + (1*x2^1) + (1*x5^1)");
groebnerBasisCyclic6.push_back("(1*x2^1*x4^3*x5^4) + (1*x2^1*x4^2*x5^5) + (1*x4^3*x5^5) + (1*x4^2*x5^6) + (1*x2^1*x4^1) + (1*x2^1*x5^1) + (1*x4^1*x5^1) + (1*x5^2)");
groebnerBasisCyclic6.push_back("(1*x2^1*x3^2*x5^6) + (1*x2^1*x4^2*x5^6) + (1*x3^2*x5^7) + (1*x4^2*x5^7) + (1*x2^1*x5^8) + (1*x5^9) + (1*x1^1*x3^2) + (1*x2^1*x3^2) + (1*x2^2*x4^1) + (1*x2^1*x3^1*x4^1) + (1*x3^2*x4^1) + (1*x1^1*x4^2) + (1*x4^3) + (1*x2^2*x5^1) + (1*x2^1*x3^1*x5^1) + (1*x3^2*x5^1) + (1*x2^1*x4^1*x5^1) + (1*x3^1*x4^1*x5^1) + (1*x2^1*x5^2) + (1*x3^1*x5^2)");
groebnerBasisCyclic6.push_back("(1*x1^1*x3^1*x4^1) + (1*x1^1*x4^2) + (1*x3^1*x4^2) + (1*x4^3) + (1*x1^1*x3^1*x5^1) + (1*x1^1*x4^1*x5^1) + (1*x3^1*x4^1*x5^1) + (1*x4^2*x5^1)");
groebnerBasisCyclic6.push_back("(1*x2^1*x3^2*x4^1) + (1*x2^1*x3^2*x5^1) + (1*x3^2*x4^1*x5^1) + (1*x3^2*x5^2) + (1*x2^1*x4^1*x5^2) + (1*x2^1*x5^3) + (1*x4^1*x5^3) + (1*x5^4)");
groebnerBasisCyclic6.push_back("(1*x2^2*x4^2) + (1*x2^2*x5^2) + (1*x4^2*x5^2) + (1*x5^4)");
groebnerBasisCyclic6.push_back("(1*x2^1*x3^1*x4^2) + (1*x2^1*x4^2*x5^1) + (1*x3^1*x4^2*x5^1) + (1*x2^1*x3^1*x5^2) + (1*x4^2*x5^2) + (1*x2^1*x5^3) + (1*x3^1*x5^3) + (1*x5^4)");
groebnerBasisCyclic6.push_back("(1*x3^2*x4^2*x5^2) + (1*x1^1*x3^1*x5^4) + (1*x2^1*x3^1*x5^4) + (1*x1^1*x4^1*x5^4) + (1*x3^1*x4^1*x5^4) + (1*x4^2*x5^4) + (1*x2^1*x5^5) + (1*x3^1*x5^5) + (1*x5^6) + (1*1)");
groebnerBasisCyclic6.push_back("(1*x1^1*x4^4*x5^2) + (1*x4^5*x5^2) + (1*x2^2*x4^1*x5^4) + (1*x2^1*x3^1*x4^1*x5^4) + (1*x2^1*x4^2*x5^4) + (1*x2^2*x5^5) + (1*x2^1*x3^1*x5^5) + (1*x2^1*x4^1*x5^5) + (1*x3^1*x4^1*x5^5) + (1*x4^2*x5^5) + (1*x2^1*x5^6) + (1*x3^1*x5^6) + (1*x1^1) + (1*x2^1) + (1*x4^1) + (1*x5^1)");
groebnerBasisCyclic6.push_back("(1*x2^2*x5^6) + (1*x5^8) + (1*x2^2) + (1*x5^2)");
groebnerBasisCyclic6.push_back("(1*x1^1*x3^1*x5^6) + (1*x2^1*x3^1*x5^6) + (1*x1^1*x4^1*x5^6) + (1*x3^1*x4^1*x5^6) + (1*x4^2*x5^6) + (1*x2^1*x5^7) + (1*x3^1*x5^7) + (1*x5^8) + (1*x1^1*x3^1) + (1*x2^1*x3^1) + (1*x1^1*x4^1) + (1*x3^1*x4^1) + (1*x4^2) + (1*x2^1*x5^1) + (1*x3^1*x5^1) + (1*x5^2)");
groebnerBasisCyclic6.push_back("(1*x2^1*x3^1*x4^1*x5^6) + (1*x2^1*x3^1*x5^7) + (1*x2^1*x4^1*x5^7) + (1*x3^1*x4^1*x5^7) + (1*x2^1*x5^8) + (1*x3^1*x5^8) + (1*x4^1*x5^8) + (1*x5^9) + (1*x2^1*x3^1*x4^1) + (1*x2^1*x3^1*x5^1) + (1*x2^1*x4^1*x5^1) + (1*x3^1*x4^1*x5^1) + (1*x2^1*x5^2) + (1*x3^1*x5^2) + (1*x4^1*x5^2) + (1*x5^3)");
/* 8 bits */
bool testCyclic6 = true;
size_t i = 0;
while(i < basis.size() && testCyclic6 == true )
{
testCyclic6 = testCyclic6 && (groebnerBasisCyclic6[i].compare(basis[i])==0);
i++;
}
if(testCyclic6==true)
{
cout << "Test cyclic6 GF(2) on 8 bits pass" << endl;
return 0;
}
else
{
cout << "Test cyclic6 GF(2) on 8 bits failed" << endl;
return -1;
}
}