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Université Grenoble Alpes, F-38000 Grenoble, France

Date de soutenance : le 10 avril 2015

Composition du jury :
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Introduction

The topics discussed in this thesis are at the interface of two fields in quantum mechanics: the theory of open
quantum systems and quantum information theory. The first field studies the dynamics of quantum systems
coupled to their environment. The second one investigates how quantum systems can be used to accomplish
information-processing tasks more efficiently than can be done classically, and what kinds of “quantum corre-
lations” are responsible for that. A major role is played in these two subjects by quantum measurements.

Entanglement is one of the most intriguing features of the quantum world. It usually originates from
interactions between the different parts (subsystems) of a composite quantum system. It manifests itself in
particular in the experimentally demonstrated violation of the Bell inequalities. Entanglement of a system with
its environment or with a measuring apparatus also plays a key role in irreversible dynamical processes like
decoherence and the wave packet reduction. For a long time, entanglement has been identified with quantum
correlations, that is, correlations which cannot be described by classical probability theory. This identification
is fully justified for bipartite systems in pure states |Ψ〉: then the two subsystems are either entangled or fully
decorrelated, the latter situation occurring when |Ψ〉 = |ψ〉⊗ |φ〉 is a tensor product of two subsystem states |ψ〉
and |φ〉. In contrast, statistical ensembles of states may exhibit quantum correlations even if the corresponding
mixed state has no entanglement. The quantum discord introduced in 2001 by Ollivier and Zurek [184] and
Henderson and Vedral [120] is believed to be a more general measure of quantum correlations than entanglement.
A full characterization and classification of the different kinds of quantum correlations in bipartite systems is,
however, still lacking, and the situation is even worse in multipartite systems composed of three or more
subsystems. A way to classify quantum correlations is to look them as resources required to accomplish specific
tasks which either cannot be done classically or are less efficiently performed on classical systems. Such tasks
may be related to a computational problem or to communication, for instance, sending encrypted information
in a secure way [180]. Computational tasks are performed on a quantum computer made of qubits, that is,
two-level quantum systems in arbitrary superpositions of |0〉 and |1〉 instead of being either in state 0 or 1
as with classical bits. A quantum algorithm is a unitary quantum evolution on a set of qubits followed by a
measurement, the outcomes of which should provide the solution of the problem. It has been recently shown [145]
that in order to offer an exponential speedup over classical computers, a quantum computation using pure states
must necessarily produce multipartite entanglement which is not restricted to blocks of qubits of fixed size as
the problem size increases. In contrast, the so-called quantum computation with one qubit (DCQ1) [147] is
an algorithm using (n + 1) qubits to compute the trace of a 2n × 2n unitary matrix exponentially faster than
all known classical algorithms, in spite of the fact that the amount of entanglement for any bipartition of the
(n + 1) qubits is bounded independently of n [71]. The mixed states appearing in the computation have in
general a non vanishing quantum discord [72].

Unlike classical systems, quantum systems cannot typically be considered as completely isolated from their
environment. This is especially true for large systems, because the energy differences between their nearest levels
can be extremely small (excepted for gaped systems), so that even a very weak coupling with the environment
may induce level transitions. Theoretical tools to study the dynamics of open quantum systems have been
developed in the last century first in nuclear physics and then in quantum optics [65, 46]. As soon as the
particles composing the system have interacted in the past with surrounding particles in their environment,
and are subsequently entangled with them, the system properties cannot be fully understood independently
of the environment [194]. However, one is usually not interested by the environment itself, but only by its
action on the system. One then traces out the environmental degrees of freedom in the system-environment
wave function |ΨSE〉. This leads to a non-negative trace-one operator ρS = trE |ΨSE〉〈ΨSE| (here trE stands for
the partial trace over the environment E), which can be identified with a density matrix (mixed state) called
the reduced state of S. The necessity to describe the state of an open quantum system by a density matrix
instead of a wave function does not arise from some lack of knowledge on the system state like in classical
statistical physics. Rather, it testifies that S and E are entangled and therefore S has no definite state on its
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own. Considering that S and E together form an isolated bipartite system SE, the wave function |ΨSE(t)〉 of SE
undergoes a unitary evolution. In contrast, the time evolution of the reduced state ρS(t) is irreversible because
some information leaks into the environment and is irremediably lost. A widespread theoretical approach to
study this irreversible dynamics is to derive and solve first-order (in time) differential equations for ρS(t), called
master equations [65, 46]. These equations are obtained from the unitary evolution of |ΨSE(t)〉 under suitable
approximations, in which the system-environment coupling is almost always treated perturbatively. The most
popular master equations are the Lindblad [159] and Bloch-Redfield [201] equations.

The irreversible dynamics of ρS(t) is characterized by two kinds of dynamical processes:

(i) Decoherence: depending on the coupling between S and E, certain linear superpositions are transformed
into statistical mixtures of the same states, such that interferences as well as purely quantum effects like
entanglement disappear.

(ii) Relaxation: the evolution towards an equilibrium state or an out-of-equilibrium stationary state.

The time scales of these two processes, τdec and τdiss, may be very different. The decoherence time τdec depends
crucially, in addition to the coupling between S and E, on the initial state of S, that is, on the initial linear
combination of system states. It typically decreases with the distance between these states, in such a way that
τdec ≪ τdiss for linear combinations of macroscopically distinguishable states (macroscopic superpositions, also
called “Schrödinger cat states” [211]). However, we will see below that for specific system-environment couplings
this separation of time scales may not occur.

Since entangled states are linear superpositions of product states, decoherence processes usually destroy
entanglement. However, it is possible to engineer artificial environments with the property that the system
evolves towards an entangled stationary state [150]. When the different subsystems are coupled to the same
degrees of freedom of the environment, the environment-mediated effective interaction between these subsystems
may also produce entanglement, even if they are initially disentangled [44].

In this thesis we are interested by the time evolution of the amount of quantum correlations in composite
quantum systems coupled to their environment. The impact of decoherence on these correlations is analyzed
quantitatively in different situations: systems coupled to a macroscopic measuring apparatus, two qubits cou-
pled to independent reservoirs, and cold atomic gases. We also present a general geometrical framework to
quantify entanglement-like or discord-like quantum correlations. In many previous studies, the generation of
entanglement by inter-particle interactions in the unitary dynamics of the system is treated separately from
decoherence processes. In other words, one imagines that the particles first interact between themselves to get
entangled, and then one studies how the resulting entangled state looses its entanglement under the influence of
the environment. In this work, we treat the more realistic situation where both entanglement and decoherence
processes occur simultaneously. Then the amount of quantum correlations in the system typically reaches a
maximum at a certain time, as a result of a competition between the production of quantum correlations by
the unitary dynamics and the decrease of quantum correlations due to decoherence effects.

The manuscript is divided into three parts. The first part is devoted to dynamics and relates our results on
measurement processes and entanglement losses. More specifically, we will discuss:

1) a specific model and the time scales for a quantum measurement (chapter 1);

2) the time evolution of entanglement for quantum trajectories of two qubits coupled to independent reservoirs
(chapter 2);

3) the time evolution of quantum correlations useful for high-precision interferometry in Bose-Josephson
junctions (chapter 3).

The first chapter is a bit longer than the following ones, the reason being that it deals with fundamental issues
in quantum mechanics that I particularly like. In this chapter, we describe a model for a projective quantum
measurement in which the measured system is coupled during a finite time with a measuring apparatus, in
such a way that it becomes entangled with a single degree of freedom of the apparatus (pointer). The pointer
is in turn coupled to infinitely many other degrees of freedom of the macroscopic apparatus, which may be
regarded as the environment. This coupling produces decoherence and occurs simultaneously with the system-
pointer interaction. At the end of the measurement, a disentangled system-pointer state agreeing with the von
Neumann projection postulate is obtained. The entanglement and decoherence times are determined explicitly
in this model. This material is based on a joint work with F. Haake (see (1a)-(1c) in the publication list).

The second chapter presents some results obtained with S. Vogelsberger, who did his Ph.D. at the Institut
Fourier under my co-supervision (2008-2012), his other supervisor being A. Joye. We consider the simplest
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bipartite system composed of two qubits (Hilbert space C2 ⊗ C2 ≃ C4), coupled to two independent infinite
reservoirs. We focus on the Markovian dynamics of the qubits when continuous measurements are performed
on the reservoirs. This dynamics consists of a random pure state evolution (quantum trajectory) given by a
quantum jump process or a stochastic Schrödinger equation with classical white noises. We show that the mean
entanglement of the quantum trajectories decreases exponentially, as opposed to the known complete loss of
entanglement after a finite time in the absence of measurements obtained from the master equation for the
density matrix [79, 81, 268]. Furthermore, we identify the measurement schemes on the reservoirs that better
protect entanglement (see (2a) and (2b) in the publication list).

The third chapter summarizes a series of works in the field of cold atoms, which result from a collaboration
with G. Ferrini during her Ph.D. at the LPMMC, with her thesis supervisors A. Minguzzi and F. Hekking,
and, more recently, with K. Pawlowski (see (3a)-(3d) in the publication list). These works are devoted to
Bose-Josephson junctions formed by clouds of ultracold atoms in Bose-Einstein condensates in two different
modes (e.g. two hyperfine energy levels). Because of interactions between atoms, starting from an initial
coherent state the unitary dynamics generates quantum correlated states such as spin squeezed states and
macroscopic superpositions of coherent states. In experiments, decoherence due to noise and atom losses occurs
simultaneously with the formation of these states, thereby limiting the amount of quantum correlations that
can be reached. This research program has been initiated during a “délégation au CNRS” at the LPMMC in
2009 and 2010. The main motivation is to find experimentally realizable conditions under which superpositions
of coherent states could be not too much degraded by decoherence and could be observed. I enjoyed the close
connexion to experiments in this research, which gave me the opportunity to discuss with experimentalists from
the groups of M. Oberthaler in Heidelberg and, more recently, P. Treutlein in Basel.

While we focus in the first part on the physical ideas and main results without entering too much in their
technical derivations, the second part goes much deeper into mathematical details. One may say that the first
part is physically oriented and the second one mathematically oriented. This second part is a (slightly revised
version of a) survey article published recently in J. Math. Phys. (see (4a) in the list of publications). This
explains the length of this part, made of 9 chapters. The material of these chapters is completely self-contained
and independent of the first part. Needless to say, most of the results are not due to the author; the original work
by the author is given in Sec. 12.2. We review some topics in quantum information theory related to quantum
correlations and to the discrimination of non-orthogonal states, without any reference to a particular physical
system and dynamical evolution. The results presented, whose proof are given explicitly, apply to any quantum
system with a finite-dimensional Hilbert space. Chapter 12 is devoted to a geometrical measure of discord-like
quantum correlations based on the Bures distance on the set of quantum states. We show an explicit link of this
measure with a quantum state discrimination problem, pointed out in a joint paper (4c) with M. Orszag. The
other topics covered in this second part include generalized and least square measurements (chapter 5), state
discrimination (chapter 6), quantum relative entropies (chapter 7), the Bures distance (chapter 8), the quantum
Fisher information and the quantum Chernoff bound (chapter 9), bipartite entanglement (chapter 10), and the
quantum discord (chapter 11).

Finally, the third (and shorter) part presents some perspectives of our work.
Some of the works I have done in the last ten years are not included here (see the publication list). The

reason is that they are either too recent or outside the scope of this manuscript.
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Chapter 1

Models for a quantum measurement

Diese Apparate haben zur Folge, daß sich die “Phase” des Atoms um prinzipiell, unkontrollierbare Beträge ändert,

ebenso, wie sich bei einer Bestimmung des Elektronenortes der Impuls ändert [...] Die endgültige Transformations-

matrix enl [...] nicht mehr durch
∑

m cnmdml gegeben ist, sondern jedes Glied der Summe hat noch einen unbekann-

ten Phasenfaktor. Wir können also nur erwarten, daß der Mittelwert von enlenl über alle diese eventuellen Phasen-

änderungen gleich
∑

m cnmcnmdmlcml ist.
1 (W. Heisenberg, 1927) [117].

1.1 Motivations

Since the birth of quantum mechanics, physicists and mathematicians have devoted a lot of efforts to under-
stand and describe theoretically measurement processes in quantum systems (see the monographs and survey
articles [253, 258, 40, 102, 194, 277, 210, 6]). The primary motivation of these works was to investigate the
foundations of the quantum theory and its interpretation problems, a subject still under debate. The strong
perturbation of a quantum system by the measuring apparatus makes measurements in quantum mechanics
quite peculiar, this perturbation being related to fundamental principles such as the uncertainty principle and
the statistical nature of the quantum predictions [117]. A renewal of interest for measurement processes came
in the last decades from experiments which have achieved to store, manipulate, and observe single quantum
systems. In these experiments mostly stimulated by applications to quantum information technologies, mea-
surements are performed to monitor the system state. For instance, a single measurement is used to teleport a
state or to entangle two subsystems. Repeated measurements lead to the quantum Zeno effect [94, 235] when
done directly on the system and to quantum trajectories [199] when done on the environment interacting with
it. Beside the possibility to monitor single systems, measurements are crucial in quantum algorithms to get
the result of a quantum computation and in quantum communication to extract classical information out of
transmitted quantum information. In this chapter, we restrict ourselves to von Neumann projective measure-
ments. More general kinds of measurements are obtained by letting the system interact with an ancilla and
performing projective measurements on the latter. These generalized measurements play an important role in
quantum information theory and will be considered in chapters 5 and 6. In particular, we will show that they
can sometimes be useful to distinguish in a more reliable way non-orthogonal states from a given ensemble.

As one learns during a first year course in quantum theory, the effect of a single run of a measurement is
to transform the system state into the projection of this state on an eigenspace of the measured observable,
up to normalization. This state transformation is called the reduction of the wave packet. It was considered
by the founding fathers of quantum mechanics (in particular von Neumann) as a specific postulate of the
theory, completely independent from the “natural” state evolution given by unitary transformations according
to the Schrödinger equation [253, 258]. A fundamental question is to know whether such a postulate is actually
needed, that is, if the reduction of the wave packet could be derived from Schrödinger’s equation applied to the
system and measuring apparatus. A positive answer seems to have emerged over the years, the most convincing
arguments being in our opinion given in a recent work by Allahverdyan, Balian, and Nieuwenhuizen [6, 7]. To
tackle this problem, these authors, as many other authors in the last decades [48, 276, 277, 210, 223, 224],
consider a particular model of a system coupled to a macroscopic apparatus and study the corresponding

1“The consequence of this apparatus is that the ‘phase’ of the atom changes by quantities that are uncontrollable in principle,
just as the impulse was changed in the determination of the electron’s position [...] The final transformation matrix enl [...] is no
longer given by

∑

m cnmdml, and instead each term of the sum will have, in addition, an unknown phase factor. Hence, all we can
expect is for the average value of enlenl, over all eventual phase changes, to be equal to

∑

m cnmcnmdmlcml.”
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dynamics. A measurement is viewed as a quantum dynamical process originating from some unitary evolution
of the measured system and apparatus.

In this first chapter, we focus on the general features and a specific model of an ideal quantum measurement.
It is neither our purpose here to discuss refinements or alternative interpretations of the Copenhagen formula-
tion of quantum mechanics like the consistent histories approach or Everett’s many-worlds interpretation, nor to
describe non-local hidden variable theories like Bohmian mechanics2. In Sec. 1.2, we elaborate on the physical
meaning of the wave packet collapse, the origin of irreversibility, and the role played by decoherence in mea-
surement processes. We then describe in Sec. 1.3 a particular model proposed by the author and F. Haake (see
(1a)-(1c) in the publication list). Most interestingly, we determine explicitly the various time scales of the
measurement process. To our knowledge, this has not been done before in a realistic process excepted in the
Curie-Weiss model of Refs. [5, 6]. Finally, inspired by the work of Allahverdyan et al., we use in Sec. 1.4 the
statistical ensemble interpretation of quantum states, according to which a wave function does not describe the
state of a single system but of an ensemble of similarly prepared systems, to explain how in our model individual
runs of a measurement yield single outcomes when the value of the pointer macroscopic observable is read by
an observer.

1.2 General features of measurement processes

1.2.1 Macroscopic measuring apparatus

In order to measure the value of an observable of a system S, this system must interact during a finite period of
time tint with a measuring apparatus M, in such a way that some information on the state of S be transferred to
M. If S is classical, the perturbation of its state resulting from this interaction can be neglected, at least for a
good enough apparatus (which could in principle be constructed via technical improvements). In contrast, it is
never possible to neglect the perturbation made by the apparatus on the state of a quantum system, excepted
when it is initially in an eigenstate of the measured observable. For instance, if one sheds light on a particle
to measure its position, the photons will give small momentum kicks to the particle in arbitrary directions; the
resulting uncertainty ∆p in the momentum of the particle satisfies ∆x∆p ≥ ~, where ∆x is the precision of the
position measurement [118].

In an ideal quantum measurement, the measuring apparatus M must fulfill the following requirements:

1. M is macroscopic and possesses a “pointer” variable X with a quasi-classical behavior, to be used as
readout of the measurement outcomes. At time t = 0 when S starts to interact with M, the value x0 of X
is precisely known.

2. After the S-M interaction has been switched off at time t = tint, the eigenvalues si of the measured
observable S are perfectly correlated with the values xi of the pointer observable X .

3. At the end of the measurement (time t = tmeas), M should be in one of distinct stable equilibrium states
with expectation value xi of X and X having negligible fluctuations on the macroscopic scale. Moreover,
the xi must be macroscopically distinguishable for distinct eigenvalues si (registration of the result).

One may think of the pointer observable X as the position of the center of mass of the needle of a meter.
Thanks to conditions 1 and 3, the value of X will not be perturbed noticeably by an observer looking at the
measurement result, so that he does not need to perform a new quantum measurement to obtain it. Further-
more, the measurement outcomes being encoded in stable equilibria of the apparatus, they are registered in a
robust and permanent way. This enable to disregard the observer in the measurement process3. Conditions 2
and 3 mean that the interaction between S and M provokes a macroscopic change in the state of M. For in-
stance, if X is the position of a meter needle, the expectation values xi tied up with distinct eigenvalues si
should be separated by macroscopic distances at time tmeas. Since S is typically a small system, it can only
perturb M weakly. This small perturbation must be either subsequently amplified, so as to lead to macroscopic
changes of X , or it must provoke a symmetry breaking in the apparatus initially in a metastable state, so as
to drive M into one particular equilibrium. Amplifications of small signals are used e.g. in photo-detectors.
Many measurements actually involve a chain {Mn}n=1,...,N of apparatus (cascade): only the first apparatus M1

(which is not necessarily macroscopic) is in contact with S; each apparatus Mn measures one after the other the

2Two reasons for not discussing these approaches here are: (1) I am not familiar with them (2) the main goal of this chapter is
to study a concrete model of measurement within the framework of the Copenhagen interpretation and using a statistical physics
viewpoint.

3For a discussion about the problem of including the observer in the description a measurement, see e.g. [40].
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observable Xn−1 of the previous apparatus; finally, the observer reads the result on the pointer variable XN of
the last apparatus MN , which satisfies conditions 1-3 above. We will not consider here such complicated chains.
Rather, we restrict our discussion to a single apparatus M, assumed to be initially in a metastable state. As
emphasized in Refs. [4, 5, 6], the relaxation of M towards one among several equilibrium states can be achieved
if M is in a metastable phase of a phase transition. This is the case for instance in a bubble chamber, where a
particle moving in an overheated liquid produces local transitions to a stable gaseous phase along its trajectory.
One may also think of an apparatus cooled below the critical temperature of a second order phase transition.
An example is given by N ≫ 1 interacting spins identically coupled to a single spin, the latter constituting
the measured system (Curie-Weiss model) [5, 6]. Then the pointer observable X is the magnetization of the N
spins, which is the order parameter of the transition. In Sec. 1.3, we will consider instead an apparatus M with
a single degree of freedom pointer, whose position X is initially at the center x = 0 of a symmetric potential
up to small thermal fluctuations. The potential is chosen such that an instability occurs when M is coupled to
the system, so that the latter can easily drive the pointer outside of the central well.

Because the macroscopic apparatus M is made of atoms, it can be described quantum-mechanically, but
statistical physics is required. The initial state of M is given by a density matrix ρM(0), associated to a
statistical ensemble of states4. Inasmuch as S and M have not interacted before t = 0, they are not correlated
at that time and the bipartite system SM is initially in the product state

ρSM(0) = ρS(0)⊗ ρM(0) , (1.1)

where ρS(0) is the state of the system S just before the measurement. Hereafter, we denote by Πi =
∑
l |αil〉〈αil|

the eigenprojector with eigenvalue si of the measured observable S =
∑

i siΠi, with S|αil〉 = si|αil〉 and
〈αil|αjm〉 = δijδlm (the index l accounts for spectral degeneracies). The apparatus state tied up with the
eigenvalue si at time t ≥ tint is denoted by ρM|i(t). According to condition 3, each of these states evolve towards
an equilibrium with density matrix ρM|i(tmeas) = ρeq

M|i and expectation value xi = tr(ρeq
M|iX) of the pointer

observable. Furthermore, the ρeq
M|i are almost orthogonal,

tr
(
ρeq
M|iρ

eq
M|j

)
≃ 0 for i 6= j. (1.2)

1.2.2 Reduction of the wave packet

Within the standard interpretation of quantum mechanics, only the probabilities of the measurement outcomes
can be predicted, even if the initial wave function of S is perfectly known (i.e., S is in a pure state). Probabilities
are introduced as a fundamental ingredient of the theory, unlike in classical statistical physics where they
arise from the impossibility to know in practice the positions and velocities of all particles. It is meaningless
to give definite values to outcomes of unperformed measurements, this would indeed lead to contradictions
with the theory [194]. Local and even some non-local hidden-variable descriptions, which stipulate that the
outcomes depend on pre-existing properties of the system independently of the measurement, have been ruled
out experimentally by the observation of the violation of the Bell and similar inequalities [15, 105].

In ideal measurements, repeated consecutive measurements of the same observable on a single system always
give the same result. For indeed, the signature of imperfect measurements is a nonzero gain of information on
the system when one performs the same measurement a second time. A related property of ideal measurements
is that if one repeats them twice on a single system, its state does not change during the second measurement.
This condition and condition 2 of Sec. 1.2.1 are satisfied if the system-apparatus density matrix is transformed
as follows5

ρS(0)⊗ ρM(0) −→ ρSM(t) =
∑

i

piρS|i ⊗ ρM|i(t) for t ≥ tint , (1.3)

with
piρS|i = ΠiρS(0)Πi , pi = tr[ΠiρS(0)] . (1.4)

In fact, the state (1.3) encompasses perfect classical correlations6 between S and M. If as stated previously,
ρM|i(t) relaxes to an equilibrium ρeq

M|i in the absence of system-apparatus interaction, then condition 3 is ful-

filled for tmeas − tint larger than the relaxation time τrel. To the expense that ρSM(t) can be interpreted as
a statistical ensemble of states ρS|i ⊗ ρM|i(t) with probabilities pi, (1.3) is a mathematical formulation of the
measurement postulate, namely:

4Pure states are produced experimentally by measuring a complete set of commuting observables and post-selecting a set of
measurement outcomes. This cannot be done on a macroscopic body, since the number of observables to measure is too large.

5Conversely, the invariance of the system state under repeated measurements implies that this state is transformed as ρS(0) →∑

i piρS|i with pi and ρS|i given by (1.4) [21].
6See chapter 11 for a definition of classical correlations, as opposed to quantum correlations.
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• Born rules: the probability to find at the end of the measurement the outcome i (that is, the expectation
value xi of the pointer observable) is equal to pi = tr[ΠiρS(0)].

• Reduction of the wave packet: given that the outcome is i, the system is at time t = tmeas in the
state ρS|i.

The meaning of the Born rules is as follows: if one runs the measurement many times on identical systems
initially in the same state ρS(0), the fraction of outcomes i will be pi. The reduction of the wave packet, on the
contrary, concerns a single run. It can be interpreted in various ways, depending on the physical meaning given
to the collapse

ρS(0)⊗ ρM(0) −→ ρS|i ⊗ ρeq
M|i if the measurement outcome is i. (1.5)

Some authors consider the transformation (1.5) as a proper dynamical process. Instead, we think that (1.5) is
simply due to the gain of information when the pointer value is readout at the end of the measurement. This
point of view is shared for instance by D. Bohm in his 1951 book. Bohm writes that “the sudden replacement of
the statistical ensemble of wave functions by a single wave function represents absolutely no change in the state,
but is analogous to the sudden changes in classical probability functions which accompany an improvement of the
observer’s information” (opus cit. [40], Sec. 22.10)7. In mathematical terms, (1.5) is nothing but a conditioning
given the event X = xi (hence the notation ρS|i used for the corresponding post-measurement state). Therefore,
it makes no sense to look for models exhibiting real collapses as in (1.5). The measurement postulate can be
fully established if one is able to

1) show that the dynamical evolution of the density matrix of the system and apparatus is given by (1.3);

2) explain how the final system-apparatus state ρSM(tmeas) can be interpreted as the state ensemble {ρS|i ⊗
ρeq
M|i, pi}.

According to the Bohr interpretation of quantum mechanics, one should adopt a minimalist description in
which the state of a given system solely contains the information about this system that we may have access to.
Inasmuch as measurements are the only mean by which one can gain information about a system, a state should
enable us to compute the probabilities of all measurement outcomes, but does not contain any indication on
which precise outcome will occur in a single measurement. Using the language of statistical physics, a state
actually describes a thought ensemble of identical systems, from which one has one randomly chosen copy.
This statistical interpretation of quantum states is a consequence of the minimalist prescription and of the
measurement postulate.

Our contribution concerns the point 1) above. We will indeed present in Sec. 1.3 a physical model of an
apparatus for which the transformation (1.3) is realized. Note that this transformation cannot result from a
unitary evolution, i.e., it cannot be implemented by a unitary operator acting on the system and apparatus.
This is not so surprising because irreversibility (and thus non-unitary dynamics) should be expected from the
macroscopic nature of M. Irreversibility is acknowledged by noting that different initial states (1.1) may be
transformed into the same final state (take for instance ρS(0) not commuting with S and ρ′

S
(0) =

∑
iΠiρS(0)Πi).

Another confirmation is given by determining the von Neumann entropy production8 (∆S)v.N. between t = 0
and t = tmeas. A simple calculation yields

(∆S)v.N. = Sv.N.

(∑

i

piρS|i
)
− Sv.N.

(
ρS(0)

)
+
∑

i

piSv.N.

(
ρeq
M|i

)
− Sv.N.

(
ρM(0)

)
. (1.6)

The difference of the two first terms corresponds to the increase of entropy in the decoherence process

ρS(0) =
∑

ij

ΠiρS(0)Πj −→ ρS(tmeas) =
∑

i

ΠiρS(0)Πi (1.7)

in which the off-diagonal terms i 6= j have been erased (see Sec. 1.2.5 below). This sum is strictly positive9

provided that ρS(0) does not commute with the projectors Πi. The two last terms in (1.6) quantify the average
increase of entropy due to the relaxation of the initial apparatus state ρM(0) towards its stable equilibria

7This point of view was already expressed by Heisenberg in his pioneering paper [117].
8For a definition and properties of the von Neumann and other entropies, see chapter 7.
9In fact, using (1.4) and (1.7) one finds that Sv.N.

(
ρS(tmeas)

)
− Sv.N.

(
ρS(0)

)
is equal to the conditional entropy

Sv.N.

(
ρS(0)||ρS(tmeas)

)
= tr

[
ρS(0)

(
lnρS(0) − lnρS(tmeas)

)]
,

which is known to be strictly positive if ρS(0) 6= ρS(tmeas) (see chapter 7).
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ρeq
M|i which have maximal entropies10 Sv.N.(ρ

eq
M|i) > Sv.N.(ρM(0)). The positivity of (∆S)v.N. means that the

measurement process erases some information in the system and apparatus. However, if the final pointer value
xi is known, the final state being as in (1.5) with probability pi, the entropy balance for the system is negative,

∑

i

piSv.N.

(
ρS|i

)
− Sv.N.

(
ρS(0)

)
≤ 0 . (1.8)

As it should be the case, the measurement increases our knowledge about the system, in spite of the loss of
information in the system and apparatus in the absence of readout of the pointer value. A rigorous proof of (1.8)
can be found in Ref. [156].

1.2.3 Density matrices and state ensembles

We now come back to the point 2) raised above. It is important here to stress the difference between density
matrices and statistical ensembles of states, i.e., collections of quantum states ρi ≥ 0 (with tr ρi = 1) to which
one attaches some probabilities pi > 0 (with

∑
i pi = 1). A density matrix is associated to the ensemble {ρi, pi}

if ρ =
∑

i piρi, that is, the ensemble defines a convex decomposition of ρ. It is convenient to think of this
decomposition as a (fictitious) state preparation. More precisely, let us imagine that some experimental device
(“black box”) prepares many identical systems with a fraction pi of them in state ρi. An observer receives one
of such systems chosen at random. He only knows that he has a chance pi to get a system in state ρi. It is
an obvious mathematical fact that a density matrix admits infinitely many convex decompositions (excepted of
course if it is a pure state)11. This statement has a fundamental physical interpretation in the quantum theory,
which has strong implications and whose importance is disregarded in many textbooks. Indeed, let us consider
two state preparations {ρi, pi}mi=1 and {σj , qj}pj=1 made by two different devices operating on identical systems,
which correspond to the same density matrix ρ =

∑
i piρi =

∑
j qjσj . Since ρ contains all knowledge about

the outcome probabilities of any measurement according to Born’s rules, an observer receiving many copies of
the system has absolutely no way to know from which of the two devices they come from. In other words, the
full information that one can collect on a system via measurements is encoded in ρ and does not require the
knowledge of the ensemble involved in the state preparation12. A measurement process including the reduction
of the wave packet must be viewed as a state preparation. More precisely, if the measurement is repeated many
times on identical copies and one selects all runs giving the pointer value xi, one thereby prepares the system
and apparatus in the state ρSM|i = ρS⊗ρeqM|i with probability pi. A polarizer transmitting light linearly polarized

along the x direction is an example of such a state post-selection: when a single photon with polarization along
the unit vector n is sent to the polarizer, it is either absorbed with probability (n · ey)2 or transmitted with
probability (n · ex)2, and in the latter case it has a polarization ex at the exit of the polarizer.

Therefore, to derive the measurement postulate one has not only to show that the density matrix of the
system and apparatus is transformed according to (1.3), but also to prove that the system-apparatus dynamics
prepares the state ensemble {ρSM|i, pi} and that the readout of the pointer variable provides us complete
information about this ensemble. In other words, in order to explain that individual runs of a measurement lead
to well-defined outcomes i and to the collapse (1.5) if outcome i occurs, the sole knowledge of the density
operator ρSM(tmeas) is not enough. One has in addition to argue that the measurement process is equivalent
to a preparation of SM in the states ρSM|i with probabilities pi given by Born’s rules. It is indeed not granted
from (1.3) that if one knows the outcome i of a single run, the corresponding state that emerges should be
ρSM|i, instead of some state from another ensemble with the same density matrix ρSM(tmeas). A related deeper
question is to understand how classical probabilities may emerge from a quantum evolution. We will come back
to these issues in Sec. 1.4.

1.2.4 Origin of the irreversibility of a measurement

As stated in the introduction, macroscopic bodies cannot be considered as isolated from their environment. This
is in particular the case for the macroscopic apparatus M. Hence statistical physics is not only required because
the initial state of M is a statistical mixture, but also because one must take into account the coupling of M

10In order to avoid any bias in the measurement, one should in fact require that all equilibria ρeq
M|i

have the same entropy.
11Actually, given two orthogonal eigenstates |ψk〉 and |ψl〉 of ρ with eigenvalues pk and pl, one has

pk|ψk〉〈ψk |+ pl|ψl〉〈ψl| = p+|ψ+〉〈ψ+|+ p−|ψ−〉〈ψ− | with
√
p±|ψ±〉 = √

pk|ψk〉 ± eiϕ
√
pl|ψl〉 ,

where ϕ is an arbitrary phase.
12This “quantum ambiguity” explains why meaningful definitions of entanglement based on the entanglement of the pure states

|Ψi〉 in a convex decomposition ρ =
∑

i pi|Ψi〉〈Ψi| must involve a minimization over all such decompositions (see Sec. 2.3).
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Figure 1.1: Model for a quantum measurement: the system S interacts with the pointer of a measuring apparatus
which is itself coupled to an infinite reservoir formed by the microscopic degrees of freedom of the apparatus.

with its environment. This environment may consist of the inaccessible microscopic degrees of freedom of the
apparatus itself. It is convenient to redefine the apparatus in such a way that it contains only the macroscopic
degrees of freedom, the other ones being included in the environment which acts as an infinite reservoir R
(this separation is of course arbitrary, but the only important point in what follows is that R is infinite; this
is always the case for a macroscopic apparatus in the thermodynamic limit). The irreversible dynamics of the
system and apparatus results from a transfer of information from SM to R caused by the coupling between M
and R. As time evolves, this transferred information is spread over infinitely many degrees of freedom of R
and cannot be retrieved. Therefore, a realistic quantum measurement model must take into account both the
system-apparatus and the apparatus-reservoir couplings. The three-partite system SMR can be assumed to be
isolated, its dynamics being reversible and given by the Schrödinger equation. As it has been recalled in the
introduction, the system-apparatus reduced state is defined as the partial trace over the reservoir of the density
matrix ρSMR(t) of SMR,

ρSM(t) = trR[ρSMR(t)] , ρSMR(t) = e−itHSMRρSMR(0) e
itHSMR . (1.9)

The Hamiltonian HSMR is the sum of the free Hamiltonians HS, HM, and HR of S, M, and R, and of the
system-apparatus and apparatus-reservoir couplings HSM

int and HMR
int ,

HSMR = HS ⊗ 1M ⊗ 1R + 1S ⊗HM ⊗ 1R + 1S ⊗ 1M ⊗HR +HSM

int ⊗ 1R + 1S ⊗HMR

int . (1.10)

Hereafter, 1A denotes the identity operator acting on the Hilbert space of the system indicated by the subscript
A (which will not always appear explicitly). For brevity, we will sometimes omit these identity operators when
the Hilbert space is clear from the context, e.g. we identify HS with HS ⊗ 1M ⊗ 1R. The interaction between S
and R does not play an important role in the measurement13 and can be neglected.

We can now formulate the fourth requirement characterizing ideal measurements [259]:

4. The coupling between S and M commutes with all eigenprojectors of S, that is, for all orthonormal eigen-
basis {|αil〉} of S, [HSM

int ,Πil ⊗ 1] = 0 with Πil = |αil〉〈αil|.

This condition ensures that if S is initially in an eigenstate |αil〉 of S, then its state will be unchanged. In
other words, an ideal measurement does not modify the measured observable. In principle, it is necessary that
the whole Hamiltonian (1.10) commutes with the projectors Πil, so that one should also require [HS,Πil] = 0.
However, in practice it is sufficient that the time TS of the evolution of the eigenvectors |αil〉 of S under the
dynamics generated by HS be much larger than the time duration tmeas of the measurement. Hence the system
Hamiltonian HS can be completely disregarded in the measurement process. Under these assumptions, (1.9)
yields ρSMR(t) = Πil ⊗ ρMR(t) whenever ρSMR(0) = Πil ⊗ ρMR(0).

An example of coupling satisfying our fourth condition is

HSM

int = gS ⊗ P , (1.11)

13Actually, it turns out that for a system S strongly coupled to M, decoherence caused by a direct coupling of S with the reservoir
R has a much smaller effect than decoherence due to the indirect coupling between S and R mediated by the apparatus M [224].
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where g is a coupling constant and P an observable of the apparatus. For instance, let us consider a spin

one-half, labelled with the index 0, from which one wants to measure the z-component S = σ
(0)
z . The apparatus

is composed of N ≫ 1 spins one-half labelled from 1 to N (Curie-Weiss model). A coupling of the form (1.11)

is HSM
int = −(g/µ)σ

(0)
z ⊗ Mz, where Mz = µ

∑N
n=1 σ

(n)
z is the total magnetization of the apparatus (Mz is

the pointer observable, see above) and µ is the magnetic moment of the spins. Depending on the spin values
s± = ±1/2, HSM

int acts as an external effective magnetic field Beff = ∓gMz/2 provoking a symmetry breaking
with a spontaneous magnetization in the critical phase [5, 6]. Another example, which will be analyzed in
Sec. 1.3, is to define P as the total momentum of the apparatus. Then HSM

int generates translations of the
center-of-mass position X by a distance gsi depending on the eigenvalue si.

For the coupling (1.11), the Gibbs state associated to the system-apparatus Hamiltonian HSM = HM +HSM
int

with the constraints of fixed energy (micro-canonical ensemble) and fixed values of all observables commuting
with S is of the form given by the post-measurement state (1.3) [6]. This Gibbs state is defined as ρeq

SM
=

Z−1
SM

e−βHSM−
∑

i Yi with Yi =
∑

l,m yilm|αil〉〈αim|. Similarly, an easy calculation gives the state of SM at time t
in the absence of coupling with the reservoir,

ρentSM(t) =
∑

i,j

ΠiρS(0)Πj ⊗ e−itH
(i)
M ρM(0)e

itH
(j)
M , H

(i)
M

= HM + gsiP , (1.12)

where we have neglected the system Hamiltonian HS. The state (1.12) is in general entangled. It differs from the
classical state (1.3) by the presence of the off-diagonal terms i 6= j in the sum (coherences). To see entanglement
more clearly, let us assume that S has a non-degenerate spectrum and that S and M are initially in pure states
|ψ(0)〉 and |µ(0)〉 (as stressed above, the latter assumption is not realistic as far as M is concerned). Then SM
is at time tmeas in the pure state

|Ψent
SM〉 =

∑

i

ci|αi〉|µeq
i 〉 , ci = 〈αi|ψ(0)〉 , |µeq

i 〉 = e−i(tmeas−tint)HMe−itintH
(i)
M |µ(0)〉 . (1.13)

If |ψ(0)〉 is not an eigenstate of S and |µ(0)〉 is not an eigenstate of eitintH
(j)
M e−itintH

(i)
M for all i and j, then |Ψent

SM
〉

cannot be written as a product state and is thus entangled14.
Under the condition 3 of Sec. 1.2.1, the apparatus states |µeq

i 〉 are macroscopically distinguishable. Hence
(1.13) is a superposition of macroscopically distinct states (“Schrödinger cat state”). Such superpositions are
known to be very fragile under a coupling to an environment, namely, they are transformed after an extremely
short time τdec into a statistical mixture,

|Ψent
SM〉〈Ψent

SM | −→ ρSM(tmeas) =
∑

i

|ci|2|αi〉〈αi| ⊗ |µeq
i 〉〈µeq

i | . (1.14)

Therefore, thanks to the decoherence process (1.14) we obtain the desired irreversible transformation (1.3) in a
quantum measurement. Note that this process gets rid of the quantum correlations between S and M contained
in the off-diagonal (i 6= j) terms in (1.12).

1.2.5 Decoherence

Before presenting a careful analysis of the dynamics of SM given by (1.9) and (1.10), which will be done in
Sec. 1.3.3, let us explain the decoherence process (1.14) by means of a simplified textbook-like model. In this
model, one keeps only the apparatus-reservoir coupling HMR

int in the total Hamiltonian (1.10) [276]. We take

HMR

int = X ⊗B , B = N− 1
2

N∑

ν=1

Bν , (1.15)

where Bν are operators acting on single degrees of freedom15 of R. The initial state of SMR is ρSMR(0) =
|Ψent

SM
〉〈Ψent

SM
| ⊗ ρR, where |Ψent

SM
〉 is the system-apparatus entangled state (1.13) and ρR is the reservoir initial

state. We assume for simplicity that 〈Bµ〉R = tr(BµρR) = 0. For any i, the modulus square |〈x|µeq
i 〉|2 of the

apparatus wave function is assumed to present a sharp peak at the value xi. The reduced system-apparatus
state at time τ then reads

ρSM(τ) = trR[ρSMR(τ)] ≃
∑

i,j

cic
∗
jKij(τ)|αi〉〈αj | ⊗ |µeq

M|i〉〈µ
eq
M|j | (1.16)

14Actually, under these assumptions the vectors |µeqi 〉 are not all collinear and the reduced apparatus state trS |Ψent
SM

〉〈Ψent
SM

| =
∑

i |ci|2|µ
eq
i 〉〈µeqi | has a non-zero entropy, which means that |Ψent

SM
〉 is entangled (see Sec. 2.3).

15One may think of Bµ as self-adjoint linear combinations of creation and annihilation operators of a photon in mode ν.
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with the decoherence factorKij(τ) = 〈e−iτ(xi−xj)B〉R. Since the operators Bµ act on distinct degrees of freedom,
they commute between themselves and can be considered as independent random variables. The central limit
theorem implies that for N ≫ 1,

Kij(τ) = exp

{
− τ2

τdec(xi, xj)2

}
, τdec(xi, xj) =

1

〈B2〉
1
2

R
|xi − xj |

(1.17)

(here 〈B2〉R is the limit of N−1
∑

ν〈B2
ν〉R). Defining the decoherence time τdec = maxi6=j τdec(xi, xj), one

concludes that the system and apparatus are approximately in the statistical mixture given in the right-hand
side of (1.14) at times τ & τdec.

The Gaussian decay of Kij(τ) is characteristic of the universal short time regime [43] in which τdec is
much smaller than the time scales of evolution under the respective Hamiltonians of SM and R. It is worth
noting that the decoherence time decreases with the distance d = |xi − xj | separating the components of the
superposition (1.13). This is a generic feature occurring in most decoherence processes, albeit it is not a general
one16. Let us also point out that for more realistic translation invariant apparatus-reservoir couplings17, the
decoherence time is found to decrease like d−2 at small distances and to saturate to a finite value τdec(∞) >
0 at large distances [97, 126]. However, even in this case, for typical system-reservoir coupling strengths,
τdec is ridiculously small when d reaches a macroscopic magnitude18. It thus makes sense when dealing with
macroscopic superpositions to neglect the Hamiltonians HSM and HR, which generate state evolutions on larger
time scales than τdec. This justifies a posteriori that one can retain only the interaction between SM and R in
the total Hamiltonian [43].

We emphasize that the decoherence factor Kij(τ) quantifies in some sense the overlap between the time-
evolved conditional states ρR|i(τ) and ρR|j(τ) of the reservoir, with ρR|i(τ) = e−iτxiBρRe

iτxiB. This is more
clearly seen when R is initially in a pure state |φR〉. In this (unrealistic) case, the three-partite system SMR is
at time τ in the pure state

|Ψent
SMR(τ)〉 =

∑

i

ci|ΨSMR|i(τ)〉 , |ΨSMR|i(τ)〉 = |αi〉|µeq
M|i〉|φR|i(τ)〉 (1.18)

with |φR|i(τ)〉 = e−iτxiB|φR〉. Then Kij(t) coincides with the scalar product 〈φR|i(τ)|φR|j(τ)〉. Consequently,
decoherence comes from the establishment of perfect correlations between the components of the superposition
(1.13) and nearly orthogonal states ρR|i(τ) of the reservoir at times τ & τdec. This process is analogous to
a measurement in which the state of SM would be measured by the reservoir, as evidenced by the formal
similarity between (1.13) and (1.18) and the almost orthogonality of the ρR|i(τ) as in (1.2). Such an analogy is
only formal, because the aforementioned orthogonality is due to intricated phases in the large Hilbert space of
R. The states ρR|i(τ) are not associated to macroscopic distinct behaviors of the reservoir, hence a readout of
the outcome is impossible. Like in a perfect measurement, each component of the superposition is left invariant
by the decoherence process (ρSM(τ) ≃ ρSM(0) if all ci but one vanish), meaning that the apparatus states |µeq

M|i〉
are robust against the coupling with R via the Hamiltonian (1.15). Using the analogy between decoherence and
measurements, Zurek [275] has proposed to call “pointer states” the states of an open quantum system which
are weakly affected by the dynamics in the time interval [0, τdec], whereas in this time interval superpositions
of such states are strongly affected and decohere into statistical mixtures19.

It is often claimed that the pointer states are determined by the coupling with the reservoir. This statement
is not true in general. For instance, as it has been shown in [233], if one replaces the position operator X by
the momentum P in the Hamiltonian (1.15), the macroscopic superposition |Ψent

SM
〉 evolves at short times to the

same state ρSM(τ) as in (1.16), albeit with a decoherence factor Kij(τ) decaying like e−(τ/τdec)
3

and a larger
decoherence time τdec. This comes from the apparatus Hamiltonian HM, which transforms the off-diagonal
contributions involving states with macroscopically distinct positions into terms involving states with distinct
momenta, the latter being washed out rapidly by the coupling HMR

int = gP ⊗ B (the diagonal contributions are
also affected but at longer time scales). Therefore, the pointer states |µeq

M|i〉 of the apparatus are determined

by the apparatus Hamiltonian HM rather than by the precise form of the apparatus-bath coupling. This is

16We will see in chapter 3 an example of decoherence process having an impact on a superposition of coherent states which is
independent of the distance between these coherent states.

17Such translation-invariant coupling Hamiltonians can be approximated by (1.15) for distances d smaller than the mean wave-
length of the photons/phonons in the reservoir (dipole approximation).

18This is due to the factor ~ in the numerator of the expression (1.17) of τdec, which is here (and in all what follows) set to unity!
19This terminology has an insightful physical meaning but is not mathematically precise and should be used with some care. In

fact, the pointer basis is ambiguously defined when both the system Hamiltonian and the system-reservoir coupling play a role in
the dynamics (i.e., when τdec is of the same order of magnitude than the time scale of the free evolution of SM).
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consistent with condition 3 of Sec. 1.2.2, according to which the final states of M should be equilibrium states.
In contrast, in view of (1.16) the system state becomes ρS(τ) ≃

∑
i |ci|2|αi〉〈αi| at time τ ≫ τdec, independently

of the system Hamiltonian HS. The basis in which this state is diagonal is selected by the system-apparatus
coupling HSM

int satisfying condition 4 above.
Let us point out that the central limit theorem implies a stronger result than the Gaussian decay of the

decoherence factor Kij(τ). Namely, the expectation value 〈e−iτ(xi−xj)BO〉R also decays like a Gaussian with
the rate τ−1

dec for any local observable20 O of the three-partite system SMR.
We end this subsection by some comments related to the point 2) raised in Sec. 1.2.2. Although it is

easy to obtain the system-apparatus density matrix ρSM(tmeas) in the right-hand side of (1.14) from the total
microscopic state ρSMR(tmeas) by tracing out the microscopic degrees of freedom of the reservoir, it is not
clear how to associate a state ensemble to ρSM(τ). Due to the vanishing of 〈e−iτ(xi−xj)BO〉R for any local
observable O of SMR, it is impossible in practice to distinguish at times τ & τdec the entangled state (1.18)
from an incoherent mixture of the states |ΨSMR|i(τ)〉 with probabilities |ci|2. For indeed, the expectation value
of any local observable O will be the same in the two states and measurements of O give no information
about the terms cic

∗
j |ΨSMR|i(τ)〉〈ΨSMR|j(τ)| for i 6= j in the expansion of |Ψent

SMR
(τ)〉〈Ψent

SMR
(τ)|. However, the

identification of ρSM(τ) with a statistical mixture amounts to replace a linear superposition in a much larger
space by classical probabilities, i.e., to ignore quantum correlations that cannot be measured but nevertheless
exist. We thus have to face a much more subtle situation than in classical statistical physics, where one usually
ignores some microscopic degrees of freedom without being obliged to ignore at the same time some fundamental
correlations21. Even by invoking ignorance about inaccessible quantum correlations, it is not clear how one could
replace them by classical probabilities and say that SM is in one of the states |αi〉|µeq

M|i〉 with probability |ci|2.

1.2.6 Example: the Stern-Gerlach apparatus

To illustrate the above considerations, it is instructive to consider a simple textbook example of quantum
measurement in which the measured system is the spin degree of freedom of a moving atom with spin one half,
the measured observable S = σz/2 is the spin along (Oz), and the pointer variable X is the atomic position [40].
The atom moves on the line y = z = 0 and crosses a magnet with an inhomogeneous magnetic field. This field
is approximated in the vicinity of the atom trajectory by B(z) ≃ (Bz(0) + ∂zBz(0)z) ez. The corresponding
Stern-Gerlach apparatus is represented in Fig. 1.2. The system-apparatus coupling Hamiltonian has the form
(1.11),

HSM

int = µB∂zBz(0)S ⊗ Z , (1.19)

where Z is the atomic position operator along (Oz) and µB the Bohr magneton. The constant part in B(z)
contributes to the system Hamiltonian HS = µBBz(0)S, which commutes with S since we ignore the x and
y-components of the magnetic field. In a first approximation, the atom moves freely in the vacuum. The
apparatus Hamiltonian is HM = P 2/(2M), where M is the atomic mass. The reservoir is the screen and
eventually the scatterers in the imperfect vacuum between the magnet and the screen. Even if the apparatus
is just composed of the orbital atomic degree of freedom and is therefore not macroscopic, its positions on the
screen correlated to the spin up and down may be separated by large distances, provided that the distance L
between the magnet and the screen is much larger than the length ℓ of the magnet. If one includes the screen,
a macroscopic apparatus is obtained. Before the entrance in the magnet, the atom is in an arbitrary spin
linear superposition |ψ(0)〉 = c↑|↑〉+ c↓|↓〉 of eigenstates of σz and its wave packet |µ(0)〉 has a sharply defined
momentum p(0) = pxex in the x direction. We denote by ∆px, ∆py and ∆pz the momentum uncertainties. We
neglect spin-orbit coupling, so that spin and position are initially uncorrelated and the atom is initially in the
state (1.1).

The time spent in the magnet is tint = Mℓ/px. The crossing of the magnet entangles the atomic spin and
position,

(c↑|↑〉+ c↓|↓〉)|µ(0)〉 −→ c↑|↑〉|µ+(tint)〉+ c↓|↓〉|µ−(tint)〉 , (1.20)

where |µ±(tint)〉 = e∓iµB∂zBz(0)Ztint/2|µ(0)〉 is a wave packet with sharply defined momentum p± = pxex ±
µB∂zBz(0)tint ez/2. At the exit of the magnet, the two wave packets |µ±(t)〉 separate from each other as

20By local observable we mean here an observable which does not act on a part of R containing infinitely many of degrees of
freedom.

21Let us quote H.D. Zeh in this respect: “Identifying the [system-apparatus] superposition with an ensemble of states (represented
by a statistical operator ρ) which merely leads to the same expectation values 〈O〉 = tr(Oρ) for an axiomatically limited set of

observables O (such as local ones) would obviously beg the question. This insufficient argument is nonetheless found widely in
the literature (cf Haag 1992). It would be equivalent to a quantum mechanical state space smaller than required by a general
superposition principle.” (opus cit. from [102], chapter 2). See also [277] for a different perspective.
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Figure 1.2: Stern-Gerlach apparatus for measuring the spin 1/2 of an atom.

they propagate. If one assumes a perfect vacuum, the state of the atom just before it hits the screen (time
tmeas ≃ ML/px ≫ tint) is given by (1.13) with |µeq

± 〉 having mean position z± = ±µB∂zBz(0)tinttmeas/(2M) =
±d/2. According to conditions 1-3 of Sec. 1.2.1, the distance d between the two wave packet centers should
be macroscopic. Moreover, the position uncertainty ∆z of the wave packets should be much smaller than d.
Taking into account the spreading of each wave packet, it is easy to show that this is the case when [40]

∆pz ≪ µB∂zBz(0)tint . (1.21)

This condition means that the peaks in momentum of the two wave packets can be resolved at the exit the
magnet. The motion of the centers of the wave packets after the exit of the magnet is well described by classical
mechanics.

The last stage of the measurement is the decoherence process. As a result of the interaction of the atom with
the molecules in the screen (or with any device measuring the position of the atom), all information about the
coherences between the two wave packets is transferred to the screen degrees of freedom and irremediably lost.
The linear superposition |Ψent

SM
〉 is then transformed into the density matrix ρSM(tmeas) as in (1.3). Let us stress

again that the two states are quite different. For an atom in state |Ψent
SM

〉, one could in principle reconstruct
a localized wave packet and the initial spin state |ψ(0)〉 by recombining the two beams. For instance, if
c↑ = c↓ = 1/

√
2 this would lead to an eigenstate of σx with eigenvalue 1. In contrast, for an atom in the

statistical mixture ρSM(tmeas), the same state would be obtained by recombining the two beams. This state has
a vanishing expectation of σx whatever the values of c↑ and c↓ are.

1.3 Determination of the time scales in a measurement process

1.3.1 Our model of measuring apparatus

In the dynamical analysis of Secs. 1.2.4-1.2.6, we have made the unrealistic assumption that the system-
apparatus and apparatus-reservoir couplings are switched on and off one after the other. We would like now
to study what happens when both couplings are present simultaneously between times t = 0 and tint. In this
situation, the system-apparatus interaction does not produce macroscopic superpositions such as (1.13), because
the superposition is transformed into a statistical mixture simultaneously as it is produced.

We consider a specific model of measuring apparatus M, designed to measure a given observable S with
discrete spectrum of the system S. As in Sec. 1.2.4, we identify M with the pointer, assumed here to have a
single degree of freedom with associated Hilbert space HM = L2(R). All the other degrees of freedom of the
measuring device are included in the reservoir R, which has Hilbert space HR = ⊗Nν=1Hν , Hν being the Hilbert
space associated to the νth degree of freedom. All formulas below are valid in the limit N ≫ 1, taken before
any other limit (such as large time limits) as it is the rule in statistical physics. The pointer observable is the
position X , acting as a multiplication operator in HM. The pointer Hamiltonian reads

HM =
P 2

2M
+ V (X) , (1.22)
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Figure 1.3: Pointer potential V (x) (plain line) and effective potential Veff(x) (broken lines) in arbitrary units.
The widths W and Weff of the potential barriers around x = 0 of the two potentials are much larger than the
width ∆eff ≈ ∆th of the density of pointer position density 〈x|ρP (0)|x〉, represented in green in the figure.

where P is the momentum canonically conjugated to X and M the pointer mass. The potential V (x) is even
and has a local minimum at x = 0, i.e., V ′(0) = 0 and V ′′(0) > 0. The height of the two potential barriers
surrounding this minimum is much larger than the thermal energy β−1, in such a way that M has a well-defined
rest state at x = 0 (see Fig. 1.3). The system-apparatus coupling is of the form (1.11). It is chosen such
that (i) it does not change the measured observable S (condition 4 of Sec. 1.2.4); (ii) it is capable of shifting
the pointer position by an amount proportional to S, so as to tie up each eigenvalue si of S with a specific
pointer position; (iii) it involves a large coupling constant g, so that different eigenvalues end up in one-to-one
correspondence with pointer states separated by large distances.

Finally, we choose the apparatus-reservoir coupling22 of the form (1.15), with operators Bν acting on the
Hilbert space Hν and satisfying tr(BνρR) = 0. The additivity of B in contributions Bν acting on single degrees
of freedom will enable us to invoke the quantum central limit theorem (QCLT) [183, 247]. We make no specific
assumption on the reservoir Hamiltonian HR excepted that there should be no long-range correlations in the
free reservoir Gibbs state ρR = Z−1

R
e−βHR (more precisely, tr(BµBνρR) must decay to zero faster than 1/|µ− ν|

for |µ− ν| ≫ 1 [247]). Such long-range correlations would invalidate the QCLT, which basically shows that R
behaves as a collection of harmonic oscillators linearly coupled to M in the limit N → ∞. This implies Gaussian
statistics (Wick theorem) for the time-correlation functions associated to B with respect to ρR. The 2n-point
correlation functions are then fully determined in terms of the two-point correlator

KR(t) = 〈B(t)B〉R = tr
(
B(t)BρR

)
, B(t) = eiHRtBe−iHRt , (1.23)

and the (2n+ 1)-point correlation functions vanish.
We shall make use of a few general properties and assumptions on the correlator (1.23). Firstly, KR(t) and its

real part ReKR(t) are of positive type, i.e., they have non-negative Fourier transforms. Since KR(t)
∗ = KR(−t),

the Fourier transforms R̂eKR(ω) and (ÎmKR)(ω) of the real and imaginary parts of KR(t) are even and odd
functions of ω, respectively. We assume that these functions admit derivatives of sufficiently high orders, in

such a way that K(t) decays rapidly to zero as t→ ∞. Furthermore, we suppose that (ÎmKR)(ω) ∼ −i γ̂ ωm as
ω → 0 with m = 1, 3, . . . a positive odd integer and γ̂ > 0. By analogy with the case of a reservoir of harmonic
oscillators linearly coupled to M, we speak of Ohmic damping when m = 1 and of super-Ohmic damping when

m > 1 [256]. The small frequency behavior (R̂eKR)(ω) ∼ 2 γ̂ ωm−1/β of the Fourier transform of ReKR(t) can

22For a translation-invariant apparatus, a more physical coupling Hamiltonian would be

HMR

int = N− 1
2

∑

q

eiqX ⊗ (Bq + B†
−q)

with q the momentum of the mode q of the reservoir and the operators Bq acting on this mode transformed as Bq → Bqeiqa under
space translations by distances a. For small separations between the pointer positions, this Hamiltonian can be approximated by the
Hamiltonian (1.15) which is not translation invariant but is easier to handle (see also the discussion in Sec. 1.2.5). Our assumptions
on the apparatus-reservoir interaction are here dictated by technical rather than by fundamental reasons. A straightforward
generalization of the foregoing results to couplings of the form HMR

int = Xα ⊗B with α ∈ N⋆ is given in [224].
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be deduced from that of ImKR(t) thanks to the Kubo-Martin-Schwinger (KMS) relation

(R̂eKR)(ω) = i
(ÎmKR)(ω)

tanh(βω/2)
. (1.24)

The KMS relation holds for all frequencies. It follows from the properties of the Gibbs state ρR [42] entering in
the correlator (1.23).

Before going further, it is important to identify the different time scales of the model described above:

(1) the characteristic time TM for the motion of the pointer under its Hamiltonian HM, defined as the period
TM = 2π(M/V ′′(0))1/2 of oscillations around the minimum of the potential V (x);

(2) the characteristic time23 TS for the evolution of the measured observable S under the Hamiltonian HS;

(3) the system-pointer interaction time tint;

(4) the decoherence time τdec (to be estimated below);

(5) the reservoir correlation time τR, thermal time β, and characteristic time tR of evolution of B under the
reservoir Hamiltonian HR. The first and last times are respectively the smallest time such that KR(t) ≃ 0
for t & τR and the largest time such that KR(t) ≃ K(0) for |t| . tR. Note that tR ≤ β ≤ τR, with equality
τR = β at low enough temperature.

As discussed in Sec. 1.2.4, in an ideal measurement the free dynamics of S remains ineffective on the measured
observable S during the measurement. Furthermore, the pointer time TM is a classical time, which should be
much larger than all quantum time scales in the model. We thus assume the following separation of time scales

τdec, tint ≪ TS , τdec, tint, β ≪ TM . (1.25)

1.3.2 Initial state

We start at time t = 0 with a system-apparatus-reservoir state

ρSMR(0) = ρS(0)⊗ ρMR(0) (1.26)

with no correlations between S and the apparatus and reservoir. In contrast, the two latter are initially correlated

and in a metastable local thermal equilibrium24 ρMR(0) = Z−1
MR
e−β(HM+HR+H

MR

int) in which the apparatus is
localized near x = 0. By invoking the high-temperature limit β ≪ TM and the Gaussian statistics of B (as
implied by the QCLT), one finds that the initial reduced density matrix ρM(0) = trR[ρMR(0)] of the pointer is
given in the position representation by (see below)

〈x|ρM(0)|x′〉 ∝ e−β(Veff (x)+Veff (x
′))/2 e−2π2(x−x′)2/λ2

th , (1.27)

where λth = 2π(β/M)1/2 is the thermal de Broglie wavelength. The pointer potential appears renormalized by
the apparatus-reservoir interaction as

Veff(x) = V (x) − γ0x
2 , γ0 =

∫ 0

−∞
dt ImKR(t) ≥ 0 . (1.28)

For local stability of the apparatus, the apparatus-reservoir coupling must be weak enough so that V ′′
eff(0) > 0;

we even bound the latter curvature finitely away from zero by, say, V ′′
eff(0) > V ′′(0)/2, i.e.,

γ0 <
1

4
V ′′(0) . (1.29)

This makes sure that the initial density of pointer positions

〈x|ρM(0)|x〉 ∝ exp

(
− x2

2∆2
eff

)
, |x| . ∆eff (1.30)

23This time is by definition the largest time t such that tr[S(0)(t1) . . . S(0)(tn)ρS(0)] ≃ tr[SnρS(0)] for |t1|, . . . , |tn| ≤ t, with
S(0)(t) = eiHStSe−iHSt.

24This formula for ρMR(0) should not be taken too seriously. In fact ρMR(0) is not a true equilibrium and the Hamiltonian
HM +HR +HMR

int is unbounded from below.
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has a single peak at x = 0 with a renormalized width ∆eff = (βV ′′
eff(0))

−1/2 of the order of the bare thermal fluc-
tuation ∆th = (βV ′′(0))−1/2. By virtue of the inequality γ0 ≤ βKR(0)/2 (which follows from the KMS relation
(1.24), see [224], Appendix C), one finds that the stability condition (1.29) is fulfilled when ∆2

thKR(0)β
2 < 1/2.

Let V0 andW ≈ (V0/V
′′(0))1/2 be the height and width of the two potential barriers of V (x) surrounding the

local minimum at x = 0. If V (x) = o(x2) at large distances |x| &W , the effective potential Veff(x) is unstable.
The pointer initial state (1.27) is then a metastable local thermal equilibrium. In order to be able to prepare the
apparatus in such a local equilibrium, the height V0,eff of the potential barriers of the effective potential Veff(x)
around x = 0 must be large compared with the thermal energy25. Thanks to (1.29), this is the case provided that
the bare potential V (x) satisfies the same requirement26, i.e., V0 ≫ β−1. Interestingly, V (x) can be chosen such
that the two potential barriers of Veff(x) are separated by a mesoscopic distanceWeff ≈ (V0,eff/V

′′
eff(0))

1/2 ≫ ∆eff

which is small compared with the macroscopic readout scale ∆class, as illustrated in Fig. 1.3. The system-
apparatus interaction then just has to get the pointer out of the well, leaving the subsequent displacement
growth to the action of the effective potential. The instability of this potential thus provides the amplification
mechanism necessary to fulfill condition 3 of Sec. 1.2.1. For a macroscopic apparatus at high temperature
(β ≪ TM), the different length scales are ordered as

λth ≪ ∆th ≈ ∆eff ≪Weff ≪ ∆class . (1.31)

To fix ideas, for TM = 1 s, M = 1 g, and a temperature of 1K one has λth ≈ 10−21m and ∆th ≈ 10−11m.

1.3.3 Dynamics

We now proceed to determine the time-evolved density matrix (1.9) of the system and apparatus. At time
t≪ TS, TM, the kernel of this matrix is found to be

〈x|ρSM(t)|x′〉 =
∑

i,j

ΠiρS(0)Πj〈xi(t)|ρM(0)|x′j(t)〉 e−Dt(xi(t),x
′
j(t);si,sj)e−iφt (1.32)

with a non-negative decoherence exponent Dt given by

Dt(x, x
′; si, sj) =

1

2

∫ t

0

dτ1

∫ t

0

dτ2 ReKR(τ1 − τ2)
(
x′j(−τ1)− xi(−τ1)

)(
x′j(−τ2)− xi(−τ2)

)
≥ 0 (1.33)

and a real phase φt irrelevant for decoherence (the non-negativity of Dt follows trivially from the non-negativity
of the Fourier transform of ReKR(t)). The quantities xi(t) and x

′
j(t) in (1.32) and (1.33) are the shifted pointer

positions
xi(t) = x− gsit , x′j(t) = x′ − gsjt . (1.34)

Entanglement and decoherence contribute separately in this remarkably simple system-apparatus state; they
lead respectively to the shifted matrix element and the first exponential in (1.32).

It might come as a surprise that such an explicit formula can be derived for ρSM(t) in spite of the complicated
form of the total Hamiltonian (1.10) of the three-partite system SMR. Moreover, unlike in usual approaches
based on master equations, our results (1.32)-(1.33) are not perturbative in the apparatus-reservoir interaction27.
Their derivation takes advantage of the separation of time scales (1.25), which justifies the use of the following
approximations:

(i) the time-evolution operator e−itHSMR at time t≪ TM, TS can be replaced by U(t) e−it(HS+HM), with

U(t) = e−it(HR+H
SM

int+H
MR

int) = e−itHRe−igtS⊗P T exp

{
−i

∫ t

0

dτ(X + gτS)⊗B(τ)

}
(1.35)

(the last equality is nothing but a Dyson expansion including all orders; in the right-hand side, T stands
for time ordering and B(t) is the reservoir coupling agent in the interaction picture, see (1.23));

25In practice, one may prepare M in some state localized near x = 0 at time t = −t0 and then let it interact with R between
t = −t0 and t = 0. If the thermalization time τth is small compared with the tunneling escape time Ttun, one may choose t0 larger
than τth but much smaller than Ttun, so that M is still within the effective potential well when the measurement starts at t = 0.

26In fact, V0 ≫ β−1 is equivalent to ∆th ≪W . If ∆th ≪W then by (1.29) one has also ∆eff ≤
√
2∆th ≪W . Substituting V (x)

by V ′′(0)x2/2 into (1.28), one obtains for any x such that ∆eff ≪ x ≪W ,

2Veff (x) ≃ V ′′(0)x2 − 2γ0x
2 = V ′′

eff (0)x
2 ≫ β−1

(we have taken here V (0) = 0). This shows that V0,eff ≫ β−1.
27A simpler derivation of (1.32) and (1.33) can be found in the perturbative regime by using the Redfield master equation, see (1c)

in the publication list.
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(ii) the pointer-reservoir initial state can be replaced when β ≪ TM by its high-temperature approximation

ρMR(0) ≃ Z−1
MR

e−
β
2HM e−β(HR+H

MR

int)e−
β
2HM (1.36)

and its evolution under HM can be neglected, that is, e−iτHMρMR(0)e
iτHM ≃ ρMR(0) for τ ≪ TM. The

errors incurred are of the order of β2/T 2
M
and τβ/T 2

M
, as can be seen from the Baker-Campbell-Haussdorf

formula.

Let us outline the main steps of the derivation of (1.32) (see [224] for more detail). Using the approximations
(i) and (ii), we find after a standard calculation that (1.32) holds if one can prove that

〈x|ρM(0)|x′〉 e−Dt(x,x
′;si,sj)e−iφt = Z−1

MR

∫ ∞

−∞
dy 〈x|e− β

2HM |y〉〈y|e− β
2HM |x′〉ZR,y

〈
U [x′j , t]

†U [xi, t]
〉
R,y

, (1.37)

where U [xi, t] = T exp{−i
∫ t
0
dτ xi(−τ)B(τ)}. The expectation 〈·〉R,y = tr(·ρR,y) is taken with respect to the

thermal state ρR,y = Z−1
R,ye

−β(HR+yB) of the reservoir coupled to the pointer localized at position y, and ZR,y

denotes the corresponding partition function. The formula (1.37) is derived with the help of the bosonic Wick
theorem for the correlation functions 〈δB(t1) · · · δB(tn)〉R,y with δB(t) = B(t) − 〈B(t)〉R,y, as implied by the
QCLT for N ≫ 1 (see Sec. 1.3.2). Actually, it turns out that Wick theorem is equivalent to (see [224],
Appendix D)

〈[
T exp

{
−i

∫ t

0

dτ k(τ)B(τ)

}]†
T exp

{
−i

∫ t

0

dτ l(τ)B(τ)

}〉

R,y

= exp

{
i

∫ t

0

dτ
(
k(τ)− l(τ)

)
〈B(τ)〉R,y

}

× exp

{
−
∫ t

0

dτ1

∫ τ1

0

dτ2
(
k(τ1)− l(τ1)

)(
k(τ2)KR

∗(τ1 − τ2)− l(τ2)KR(τ1 − τ2)
)}

, (1.38)

where k(τ) and l(τ) are two arbitrary smooth real-valued functions. Note that the exponential in the second line

is independent of y. Using (1.38) for 〈·〉R,y = 〈·〉R, t = −iβ, k(τ) = 0, and l(τ) = y, one gets28 ZR,y = ZRe
βγ0y

2

.

By (1.38) again, one finds that the expectation 〈U [x′j , t]
†U [xi, t]〉R,y yields the decoherence factor e−Dt(x,x

′;si,sj)

given by (1.33). It can be shown that under the stability condition (1.29), the y-dependent integral in the
first line of (1.38) entails nothing but a correction of relative order (λth/∆eff)

2 to the decoherence exponent

Dt. Plugging these results into the right-hand side of (1.37) and using the approximation e−βHM/2eβγ0X
2/2 ≃

eβγ0X
2/2e−βHM/2 ≃ e−βHeff/2 with Heff = P 2/(2M) + Veff(X), this right-hand side is found to be equal to the

left-hand side.
Note that the expression (1.27) for the initial pointer state ρM(0) also follows from (1.37), in which one uses

the high-temperature approximation29

〈x|e−βHM/2|y〉 ≃ e−β(V (x)+V (y))/4e−4π2(x−y)2/λ2
th . (1.39)

To get the result, one replaces V (y) by V ′′(0)y2/2 and neglects terms of the order of (λth/∆th)
2.

1.3.4 Entanglement time

Let us first look at the reduced pointer state. In view of (1.32) and (1.33), it is given by ρM(t) = trS[ρSM(t)] =∑
i piρM|i(t), where pi = tr[ΠiρS(0)] is the probability of the measurement outcome i and

〈x|ρM|i(t)|x′〉 = 〈x− gsit|ρM(0)|x′ − gsit〉 exp
{
− (x− x′)2

2

∫ t

0

dτ1

∫ t

0

dτ2 ReKR(τ1 − τ2)

}
e−iφt . (1.40)

The pointer conditional state ρM|i(t) has a kernel shifted by gsit in position and modulated by an i-independent
decoherence factor and a phase factor. One infers from (1.30) that the density 〈x|ρM(t)|x〉 of pointer positions
exhibits a succession of narrow peaks of width ∆eff centered at x = gsit, associated to each eigenvalue si with
pi > 0, as represented in Fig. 1.4 in the case of a spin one-half. The peaks associated to distinct eigenvalues si
and sj begin to be resolved at the entanglement time

τent(si, sj) =
∆eff

g|si − sj |
. (1.41)

28The fact that the coefficient γ0 is given by (1.28) can be established by using the analyticity and KMS properties of KR(t).
29One may recognize in this expression the well known short-time behavior of the quantum propagator 〈x|e−itHM |x′〉 for t = −iβ/2

(see e.g. [212]).
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Figure 1.4: Wigner function (in arbitrary units) of the pointer reduced state (1.40) at times (a) t = 0 and
(b) t ≈ τent. Here S is a spin one-half and S = σz . We have set the pointer-reservoir coupling to zero, so that
Dt = 0.

Let δs be the minimum of |si − sj | over all pairs (si, sj) of distinct eigenvalues of S present in the initial state
ρS(0) (i.e., such that pipj > 0)30. We denote by τent = ∆eff/(gδs) the maximal entanglement time. At time
t ≥ τent, neighboring peaks of the pointer density can be resolved. Each eigenvalue si of the measured observable
S is then uniquely tied up with the pointer position gsit.

Entanglement between S and M is encoded in the off-diagonal (i 6= j) contributions in the right-hand side of
(1.32). In the absence of pointer-reservoir coupling (i.e., for KR(t) = 0) these off-diagonal contributions do
not decay with time for (x, x′) = (gsit, gsjt): in fact, it follows from (1.30) that 〈x = gsit|ρSM(t)|x′ = gsjt〉
is approximately equal to ΠiρS(0)Πj 〈0|ρM|0〉 at times t ≥ τent. At large times t ≥ tclass = ∆clas(gδs)

−1, the
system and pointer are in a superposition of states with macroscopically distinct pointer positions, that is, a
Schrödinger cat state similar to (1.13). No classical probabilistic interpretation of the measurement is then
possible. This illustrates again the central role played by the pointer-reservoir coupling in the measurement
process. The fact that the reduced pointer state ρM(t) =

∑
i piρM|i(t) is a statistical mixture even in the absence

of coupling to the reservoir does by no means solve this problem31. Similarly, the system reduced state

ρS(t) =
∑

i,j

ΠiρS(0)Πj

∫ ∞

−∞
dx 〈xi(t)|ρM(0)|xj(t)〉 e−Dt(xi(t),xj(t);si,sj)e−iφt (1.42)

is almost diagonal at time t ≈ λth/(gδs), a time much shorter than τent (see (1.31)), because of the form of the
initial pointer kernel (1.27). This is, however, not a relevant issue for the measurement since by disregarding the
pointer, one dismisses the possibly to get some information on S through the readout of the pointer observable.

1.3.5 Decoherence time

For a nonzero pointer-reservoir coupling, we will argue below that the off-diagonal terms in (1.32) disappear
completely after some decoherence time that we now proceed to determine. As 〈xi(t)|ρM(0)|x′j(t)〉 almost
vanishes when |xi(t)| ≥ ∆eff or |x′j(t)| ≥ ∆eff , one can appreciate the fate of these off-diagonal contributions by
setting xi(t) = x′j(t) = 0 in (1.32). The decoherence factor then reads

e−D
peak
t (si,sj) = exp

{
−g

2(si − sj)
2

2

∫ t

0

dτ1

∫ t

0

dτ2 τ1τ2 ReKR(τ1 − τ2)

}
(1.43)

and reveals irreversible decay as soon as t much exceeds the decoherence time τdec(si, sj). We may define that

time implicitly as Dpeak
τdec(si,sj)

(si, sj) = 1. It is not difficult to prove that Dpeak
t (si, sj) is a positive increasing

30Recall that S has a discrete spectrum. We also suppose here that pi = 0 if si belongs to a part of the spectrum containing
arbitrarily close eigenvalues (that is, near an accumulation point), so that δs > 0.

31For indeed, one could design a new apparatus interacting with SM to measure the coherences of ρSM(t); this would contradict
the measurement postulate.
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Figure 1.5: Solid curves: decoherence time τdec against τent/η in a log-log scale. Both times are given in
units of τR = β. The bath correlator is given by (1.46) with tR = ω−1

D = β/5 and m = 5, 3, 1 (from top to
bottom). Broken curves: approximate expressions (1.47) for τdec . tR (dashed lines) and τdec ≫ τR (dotted

lines). Inset: decoherence exponent Dpeak
t against τ = t/τR for m = 3.

convex function of time if si 6= sj , as is observed in the inset of Fig. 1.5. Because Dpeak
t (si, sj) ∝ (si − sj)

2,
the maximal decoherence time τdec(si, sj) for all pairs (si, sj) of distinct eigenvalues present in the initial state
is (not surprisingly) reached when sj = si + δs. We denote this largest decoherence time by τdec and write

Dpeak
t = Dpeak

t (si, si + δs). The decoherence and entanglement times are related by
(
τent
η

)2

=
1

β2

∫ τdec

0

dτ1

∫ τ1

0

dτ2 τ1τ2
ReKR(τ1 − τ2)

KR(0)
, (1.44)

where
η = ∆effKR(0)

1
2β < 1 (1.45)

is a dimensionless measure of the strength of the apparatus-reservoir coupling32. The result (1.44) is valid
provided that τdec is much smaller than both TS and TM, a condition that must be checked a posteriori.

Figure 1.5 displays τdec as a function of τent/η for a specific choice of bath correlator KR(t), given by the
KMS relation (1.24) and a temperature-independent imaginary part,

ÎmKR(ω) = −iJ(ω) , J(ω) = γ̂ ωm exp

(
− ω2

ω2
D

)
, ω ≥ 0 (1.46)

(here ωD is a Debye cut-off frequency). This choice corresponds to a bath of harmonic oscillators linearly
coupled to the pointer position X with a power spectrum function J(ω) [256]. The bath correlation time τR
is the thermal time, τR = β > ω−1

D . The three plain curves are obtained by solving numerically the implicit
equation (1.44).

Formula (1.44) explicitly yields the decoherence time in two opposite limits.

(i) Interaction-dominated regime: when t . tR, the dynamics is dominated by the system-pointer and
pointer-reservoir interactions. One may approximate KR(τ) by KR(0) = 〈B2〉R in (1.43) and (1.44).

(ii) Markov regime: this regime corresponds to the so-called singular coupling limit33 τdec ≫ τR. Decoher-

ence is then governed by the small-frequency behavior of (R̂eK)(ω).

We present here directly the results in these two limits. The technical justifications can be found in [224].
We first discuss the case of inverse temperatures β . tR. Then the decoherence factor reads

e−D
peak
t = exp

{
−
(

t

τdec

)γ}
, τdec =

(
c(γ)m

) 1
γ β

(
τent
βη

) 2
γ

(1.47)

32More precisely, η is the fluctuation of the coupling energy in the uncorrelated state ρM(0)⊗ ρR, in units of β−1. The inequality
η < 1 results from our assumption ∆2

thKR(0)β
2 < 1/2 ensuring the stability condition (1.29).

33Note that this Markovian regime is different from that arising in the van Hove (weak-coupling) limit [73]. The van Hove limit
enforces the separation of time scales τR, TS ≪ τdec justifying a Born-Markov and a rotating-wave approximations. The latter
approximation is inappropriate here due to our restriction (1.25). In contrast, the singular coupling limit τR ≪ τdec, TS is the limit
of delta correlated reservoirs [121, 103, 189]. This limit, which is the one considered here, also yields Markovian evolutions.
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for t, τdec ≪ TS, TM, with the exponent γ given by

γ =





4 if τdec . tR (interaction-dominated regime)

3 if τdec ≫ τR , m = 1 (Markov regime, Ohmic reservoir)

2 if τdec ≫ τR , m ≥ 3 (Markov regime, super-Ohmic reservoir)

(1.48)

and some constants c
(γ)
m independent of the strengths of the SM- and MR-couplings,

c(4)m = 8 , c
(3)
m=1 =

3βKR(0)∫∞
0

dτReKR(τ)
, c

(2)
m≥3 =

2β2KR(0)

|
∫∞
0

dτ τ ReKR(τ)|
. (1.49)

By the Cauchy Schwarz inequality one has |KR(t)| ≤ KR(0), hence c
(3)
m=1 ≥ 3β/τR and c

(2)
m≥3 ≥ (2β/τR)

2. For

a reservoir at low temperature34, i.e., such that β ≫ tR = ω−1
D , the decoherence factor and decoherence time

are still given by (1.47) with γ = 4 in the interaction-dominated regime τdec . tR. In the opposite limit
tR ≪ τdec ≪ β and for correlators with a temperature-independent imaginary part given by (1.46), one has

τent ≃





ηDτdec

(
ln
(τdec
tR

)
− 0.2114)

)1
2

if m = 1 (Ohmic)

ηDτdec√
m− 1

if m ≥ 3 (super-Ohmic),

(1.50)

where ηD = ∆effKR(0)
1/2tR is the pointer-reservoir coupling strength in units of 1/tR.

In the interaction-dominated regime, the decoherence time τdec presents a universal behavior, namely, it
depends on the reservoir through the coupling strength η only. The decoherence factor is a stretched exponential
with exponent γ = 4, instead of the usual Gaussian for systems coupled to their environment in this regime
(Sec. 1.2.5). This non-gaussian form can be readily explained by remembering that the reservoir acts on the
pointer M, not directly on S, and that it takes time to S to transform the initial state of M into a superposition.

In fact, the correct stretched exponential can be obtained, albeit with a wrong numerical factor c
(4)
m , by replacing

the pointer positions xi and xj in (1.17) by xi(t) and xj(t) as given by (1.34). It follows from the consistency
condition τdec . tR and the stability condition η < 1 that τent . τdec(tR/β). By the inequality tR ≤ β, one has
τent . τdec.

In the Markov regime and at inverse temperatures β . tR, qualitatively different results are obtained for
Ohmic and super-Ohmic reservoirs (non-universal regime). Ohmic reservoirs win in efficiency for decoherence
over super-Ohmic reservoirs, that is, they lead to much smaller decoherence times35. It is interesting to compare
our result with the known saturation of the decoherence factor to a positive value in open systems coupled to
super-Ohmic baths in the singular coupling limit [188]. In contrast, we see here that, as a consequence of the
indirect coupling of S via the pointer, the decoherence factor does not saturate but decays to zero, although
more slowly than for an Ohmic reservoir.

At low temperature and in the Markov regime, the ratio between the decoherence times for super-Ohmic
and Ohmic reservoirs is logarithmic in the large ratio τdec/tR. Hence an Ohmic reservoir is not dramatically
more efficient than a super-Ohmic one at very low temperature, inversely to the high temperature case.

By invoking (1.43) and (̂Reh)(ω) ≥ 0, it is easy to establish that Dpeak
t ≤ (t/τ

(γ=4)
dec )4 for all times t ≥ 0,

τ
(γ=4)
dec being the decoherence time in the interaction-dominated regime. As a result, the decoherence time τdec

is bounded from below by τ
(γ=4)
dec , whatever the value of the ratio τdec/tR. This is indeed what is seen in Fig. 1.5.

One observes a quite good agreement between the exact and asymptotic behaviors of the decoherence time
for τdec . tR and τdec & τR. The plain curves representing τdec split by increasing τent into distinct branches
corresponding to distinct m’s, as predicted by (1.48). After this splitting, which occurs in the transition region
tR . τdec . τR, the decoherence time τdec is larger for larger m’s.

By studying carefully the two above limiting regimes, one can prove the following statements36.

34Strictly speaking, extremely low temperatures have to be proscribed because of our hypothesis β ≪ TM. However, taking e.g.
TM = 1 s, β ≪ TM holds even for temperatures of the order of 10−8 degree Kelvin! Furthermore, the stability condition (1.45) has
a better chance to be met at low temperature since ∆eff is temperature decreasing.

35Actually, the ratio (τ
(m=1)
dec /τ

(m≥3)
dec )3 is equal to the product of βc

(3)
m=1/(τRc

(2)
m≥3) by τR/τ

(m≥3)
dec . Since the last factor must be

small compared with unity for consistency and the first one is . 1 by definition of τR, it follows that τ
(m=1)
dec ≪ τ

(m≥3)
dec .

36The first statement can be justified by estimating in these limits the minimum of the decoherence exponent Dt(x, x′; si, sj)
over all positions x and x′, with t, si, and sj fixed (let us recall that τdec is the time when this exponent is unity for the specific
positions (x, x′) = (gsit, gsjt)). The second statement is established by studying the behavior of the decoherence factor in (1.40)
in the asymptotic regimes (for more detail see [225]).

23



1) For i 6= j one has ΠiρSM(t)Πj ≃ 0 at time t≫ τdec, i.e., the off-diagonal contributions in the kernel (1.32)
are vanishingly small for all values of (x, x′).

2) The decoherence factor for the pointer kernel 〈x|ρM|i(t)|x′〉 (first exponential in (1.40)) remains close to
unity at time t ≈ τdec if |xi(t)| and |x′i(t)| are smaller than ∆eff .

We may conclude from the first statement that the dynamical process (1.3) is entirely governed in our model by
the two time scales τent and τdec. The second statement means that decoherence does away with the off-diagonal
(i 6= j) terms before the diagonal (i = j) ones change noticeably.

1.3.6 Interaction and measurement times

According to the statement 1) above, the system and pointer are almost in the classical mixed state ρSM(t)
given by (1.3) at time t & τdec. If moreover t & τent, the pointer is with probability pi in a state ρM|i(t) with
a well-defined position x = gsit. As emphasized in Sec. 1.2.1, in order to be able to read the outcomes on the
pointer without perturbing it significantly, these positions should be separated by macroscopic distances at the
end of the measurement (time t = tmeas). This macroscopic separation can be achieved by using the instability
induced by the pointer-reservoir coupling as an amplification mechanism. Actually, let the interaction between
S and M be switched off at time

tint ≈Weff(gδs)
−1 . (1.51)

Then all pointer states ρM|i(t) are outside the central well of the effective potential (save for possibly one
eigenvalue si = 0). Thanks to (1.31), one has tint ≫ τent. The “mesoscopic” pointer separation Weff at time
t = tint is subsequently amplified by the effective pointer dynamics, till it reaches a macroscopically resolvable
magnitude ∆class at time tmeas. Then a pointer reading, while still a physical process in principle perturbing M,
surely cannot blur the distinction of the peaks in the pointer density. Furthermore, if the measured observable
is a spin one-half and the effective pointer potential has the triple-well shape represented in Fig. 1.3, then the
pointer ends up at time tmeas in one of the two extremal wells separated by the distance ∆class. Assuming that
these wells have heights much larger than the thermal energy, M is in an equilibrium state and its state will not
subsequently change, thereby ensuring the registration of the result. The time tmeas depends on the shape of the
effective potential. Since we have assumed Weff ≪ ∆class and tint ≪ TM, see (1.25), it is clear that tint ≪ tmeas.

1.3.7 Conclusions

Our apparatus with a single-degree-of-freedom macroscopic pointer coupled to the system and reservoir via
the Hamiltonians (1.11) and (1.15) performs a measurement of the system observable S. The precise form
of the pointer-reservoir coupling is not important, save for simplifying calculations. Unlike in the description
of quantum measurements presented in old textbooks, it has not been necessary to postulate the existence
of a new kind of non-unitary dynamics: we have only used the Schrödinger equation and statistical physics
considerations. We have still not fully explained the reduction of the wave packet: we have not shown that
single runs of the measurement lead to definite outcomes and to conditional states taken from the ensemble
{ρS|i ⊗ ρeq

M|i, pi}. These issues will be discussed in the next section.

However, the main interest of our model is not that it explains (with the limitations mentioned above)
the von Neumann projection postulate. Many other models in the literature based on the “system-apparatus-
reservoir” approach do so, see e.g. [102, 277, 48, 4, 5, 210]. The interesting point is that, like in Refs. [5, 6],
we have been able to determine explicitly the relevant time scales of the measurement process. Indeed, as
stressed by the authors of Ref. [6], “a full understanding of quantum mechanics requires knowledge of the
time scales involved in measurements” (op. cit. from [6], chapter 1). Four fundamental times characterizing
the measurement have been introduced. The entanglement time τent is the time after which pointer positions
corresponding to distinct eigenvalues si of S begin to be resolved. It is given by τent = ∆eff(gδs)

−1, where g is
the system-pointer coupling constant, δs the separation between neighboring eigenvalues, and ∆eff ≈ ∆th the
uncertainty in the initial pointer position. The system and apparatus must interact during a time tint much
larger than τent. Accordingly, τent provides a good measure of the efficiency of the system-pointer interaction
(the smaller τent, the more efficient is the coupling). The second fundamental time of the measurement is the
decoherence time τdec, that is, the time after which the system-pointer density matrix is almost a statistical
mixture of states ρS|i ⊗ ρM|i(t) with ρS|i = ΠiρS(0)Πi and ρM|i(t) the pointer state revealing the eigenvalue si.
The third time is the system-apparatus interaction time tint mentioned above. It is much smaller than the time
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tmeas after which the pointer states ρM|i(t) relax to the equilibria ρeq
M|i with positions xi = tr(ρeq

M|iX) separated

by macroscopic distances. In our model, the four time scales τent, τdec, tint, and tmeas satisfy

τent ≪ tint ≪ tmeas , τent, τdec ≪ TS, TM , (1.52)

where TS and TM are the times associated to the dynamics of the isolated system and pointer. Under this
hypothesis, we have shown that τdec is given by the implicit equation (1.44) and have derived an explicit
relation (1.47) between τdec and τent in the interaction-dominated and Markov regimes. These times are ordered
as follows:

(i) Interaction-dominated regime: τent . τdec(tR/β) ≤ τdec . tR;

(ii) Markov regime (τdec ≫ τR): τent ≤ τdec for a super-Ohmic reservoir with a pointer-reservoir coupling

strength η . β/τR ≤ (c
(2)
m )1/2, where η is defined by (1.45); for an Ohmic reservoir this inequality holds

for strong enough system-pointer couplings only, more precisely, when τent . c
(3)
1 β/η2, where c

(γ)
m is given

by (1.49).

Therefore, the only regime with a decoherence faster than resolution of pointer peaks is the Markov regime with
m = 1 (Ohmic reservoir).

Before closing this section, it is worthwhile to remark that for a reasonably strong pointer-reservoir coupling
and a not too strong system-pointer coupling, the decoherence time is small enough to ensure that the whole
measurement is performed without producing a Schrödinger cat state as an intermediate step. More precisely, if
τdec ≤ tint then even the mesoscopic superpositions of pointer states with space separationWeff decay to mixtures
faster than entanglement can create them. As already pointed out above, this comes from the simultaneous
action of the system-pointer and pointer-reservoir interactions. According to (1.47) and (1.51), in the interaction-
dominated and Markov regimes the condition τdec ≤ tint is fulfilled provided that the following inequality holds

η ≥
√
c
(γ)
m

(
∆eff

Weff

) γ
2
(

β

τent

) γ−2
2

. (1.53)

1.4 Derivation of the measurement postulate from a statistical in-

terpretation

1.4.1 State reduction for sub-ensembles

We have argued so far that the evolution of the system-apparatus density matrix is given by (1.3) under
the influence of the system-apparatus and apparatus-reservoir couplings, thereby justifying from Schrödinger’s
equation the point 1) in Sec. 1.2.2. In order to establish from first principles the reduction of the wave packet, it
remains to clarify the second point 2). Recently, Allahverdyan, Balian and Nieuwenhuizen [6, 7] have derived the
state reduction for single runs of a measurement by relying on the usual statistical interpretation of quantum
states, taken as a basic postulate. The reduced state of the bipartite system SM, as any quantum state, is
interpreted as referring to a thought ensemble of identical systems, in which the real system SM is embedded (see
the discussion in Sec. 1.2.2). The system-apparatus density matrix ρSM(tmeas) at the end of the measurement is
thus postulated to describe a state ensemble, although one does not know a priori which one (as stressed in
Sec. 1.2.3, many different ensembles are associated to this density matrix). The main idea of the authors
of Refs. [6, 7] is that the system-apparatus dynamics selects the particular ensemble {ρSM|i, pi} among all
ensembles, with ρSM|i = ρS|i ⊗ ρeq

M|i the conditional system-apparatus state given outcome i, see (1.5).

More precisely, Allahverdyan et al. consider arbitrary sub-ensembles extracted from the density matrix
ρSM(tmeas). Let us recall that a sub-ensemble {ρi, pi|I}i∈I from a given state ensemble {ρi, pi}ni=1 is obtained
by choosing a subset of indices I ⊂ {1, . . . , n} and keeping only the states ρi with i ∈ I, to which one attaches
the probabilities pi|I = pi/

∑
j∈I pj . This operation is a conditioning of the original ensemble subsequent to an

updating of information telling us that the identical systems in the ensemble are in fact all in states ρi with
i ∈ I. This amounts to a filtering (post-selection) among the states produced in the state preparation. The
smaller possible sub-ensemble is composed of a single state ρi having probability pi|i = 1. Given a density
matrix ρ, any sub-ensemble of an ensemble forming a convex decomposition of ρ can be obtained as follows:
one first decomposes ρ as a sum of two non-negative matrices ρ̃(sub) ≥ 0 and ρ̃(comp) ≥ 0, ρ = ρ̃(sub) + ρ̃(comp),
and then finds a convex decomposition of ρ(sub) = ρ̃(sub)/ tr(ρ̃(sub)).
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The precise statement in Refs. [6, 7] is: for any sub-ensemble of an ensemble forming a convex decomposition
of ρSM(tmeas), the irreversible system-apparatus dynamics transforms the density matrix associated to this sub-
ensemble into

ρ
(sub)
SM

(t) =
n∑

i=1

qiρS|i ⊗ ρM|i(t) , t ≥ tmeas +∆t , (1.54)

after some time ∆t (which depends on the apparatus-reservoir coupling). Here, qi ≥ 0 are some probabilities
depending on the sub-ensemble. The formula (1.54) generalizes (1.3), which is recovered by choosing the sub-
ensemble equal to the full ensemble.

1.4.2 Emergence of single outcomes in individual measurements

With the aim to show (1.54) and to understand how single runs of a measurement lead to well-defined outcomes
i and post-measurement states ρSM|i, let us consider the following model inspired from the ideas of Ref. [6]
applied to our apparatus of Sec. 1.3. Since a single outcome may only arise from the information obtained
upon observing the value of the pointer variable X , the readout process by which one acquires this information
should be taken into account explicitly (Sec. 1.2.2). Note that this process is purely classical by condition 3 of
Sec. 1.2.1. We describe it by imagining an observer measuring the pointer position X at some times tmeas =
t0 < t1 < t2 < · · · < tm separated by a fixed time interval ∆t, assumed to be larger than the decoherence time
τdec. Each observation increases the observer knowledge about the pointer. It thus corresponds to a selection of
a given sub-ensemble of an ensemble associated to the system-pointer density matrix. Inasmuch as the pointer
behaves classically at time tk, the observation process is completely analogous to that used to find the position
of a classical particle distributed according to a probability density f(x). The observation does not disturb
significantly the system-pointer state, apart from the updating of information.

To simplify the discussion, we assume that the measured observable S has a non-degenerate spectrum and
that the apparatus has pure pointer states |µeq

M|i〉 (the generalization to mixed states ρeq
M|i is straightforward by

taking spectral decompositions). We denote by {|αi〉} the orthonormal eigenbasis of S. The system-apparatus
state at time t0 = tmeas just before the observation is

ρSM(t0) =

n∑

i=1

|ci|2|αi〉〈αi| ⊗ |µeq
M|i〉〈µ

eq
M|i| . (1.55)

We denote by ρSM|x0...xk
(tk) the system-apparatus state after k consecutive observations at times t0, t1, . . . , tk.

After the first observation, one has

ρSM|x0
(t0) =

( ∑

j∈J0

q
(0)
j

)−1 ∑

j∈J0

q
(0)
j |Ψ(0)

SM|j〉〈Ψ
(0)
SM|j| , (1.56)

where ρSM(t0) =
∑n0

j=1 q
(0)
j |Ψ(0)

SM|j〉〈Ψ
(0)
SM|j | is an arbitrary convex decomposition of ρSM(t0), which may differ

from the decomposition (1.55), and J0 is a subset of {1, . . . , n0}. The vectors |Ψ(0)
SM|j〉 and |αi〉|µeq

M|i〉 of the two

pure state decompositions of ρSM(t0) are related as follows (see Eq. (4.16) in chapter 4)

√
q
(0)
j |Ψ(0)

SM|j〉 =
n∑

i=1

|ci|u(0)ji |αi〉|µeq
M|i〉 , (1.57)

where (u
(0)
ji ) is a unitary matrix with size max{n, n0}. Due to the coupling with the reservoir, each of the

pure states |Ψ(0)
SM|j〉〈Ψ

(0)
SM|j | is transformed by the decoherence process (1.14). By linearity of the evolution, the

system-apparatus state reads at time t1 = t0 +∆t, ∆t ≫ τdec,

ρSM|x0
(t1) =

( n∑

i=1

|ci|2ξ(0)i

)−1 n∑

i=1

|ci|2ξ(0)i |αi〉〈αi| ⊗ |µeq
M|i〉〈µ

eq
M|i| (1.58)

with ξ
(0)
i =

∑
j∈J0

|u(0)ji |2. Repeating this operation m times, we arrive at the system-apparatus state

ρSM|x0...xm
(tm +∆t) =

n∑

i=1

|ci|2ζ(m)
i |αi〉〈αi| ⊗ |µeq

M|i〉〈µ
eq
M|i| , ζ

(m)
i =

∏m
k=0 ξ

(k)
i∑n

l=1 |cl|2
∏m
k=0 ξ

(k)
l

, (1.59)
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in which the coefficients ξ
(k)
i are defined as ξ

(0)
i but with k-dependent unitary matrices U (k) = (u

(k)
ji ) and subsets

Jk ⊂ {1, . . . , nk}. Note that the unitarity of U (k) implies 0 ≤ ξ
(k)
i ≤ 1. The collapse to the state

ρSM|x0...xm
(tm +∆t) = |αi0 〉〈αi0 | ⊗ |µeq

M|i0〉〈µ
eq
M|i0 | (1.60)

occurs for large m provided that the unitary matrices U (k) are such that ζ
(m)
i converges to δii0 .

The latter condition is not always fulfilled, as might be expected since we have not yet made any assumption
on the selection of the sub-ensembles. In order to get a unique outcome, this selection must be such that the
observer is certain at time tm that the pointer value is X = xi0 . By (1.55), at time t0 the pointer density is
fM(x, t0) =

∑
i |ci|2|〈x|µ

eq
M|i〉|2. This density is modified by the updating of information during each observation

and given by conditioning the classical distribution fM(x, t0) to the observation results. This conditioning should
produce at the end a localized distribution fM|x0...xm

(x, tm) = |〈x|µeq
M|i0 〉|

2, otherwise the observer has failed to

identify a specific pointer position. But thanks to (1.59),

fM|x0...xm
(x, tm) = 〈x| trS(ρSM|x0...xm

(tm))|x〉 =
n∑

i=1

|ci|2ζ(m)
i

∣∣〈x|µeq
M|i〉

∣∣2 . (1.61)

The aforementioned convergence of the coefficients ζ
(k)
i is thus fulfilled if the readout process has provided

enough information about the pointer position in order to identify in which of the different equilibria |µeq
M|i〉 is

the pointer.

1.4.3 Discussion

The emergence of the state (1.60) is due to the robustness of the pointer states |µeq
M|i〉 with respect to the coupling

with the reservoir, while linear superpositions of these states rapidly decohere to statistical mixtures. Thus
{|αi〉⊗|µeq

M|i〉, pi} is the only ensemble associated to the density matrix ρSM(tmeas) which is not strongly affected

by the dynamics on the time scale ∆t. Recalling that at time tmeas the pointer states are macroscopically
distinct, the decoherence time τdec giving the evolution of all other ensembles (which should involve linear
combinations of the |µeq

M|i〉) is extremely short, much shorter than any classical time resolution ∆t in the

readout process. Consequently, the irreversible dynamics of the system and apparatus does not only implement
the state transformation (1.3), it also prepares them in the ensemble {|αi〉 ⊗ |µeq

M|i〉, pi}.
It is remarkable that this ensemble coincides with the ensemble giving the larger entropy balance (1.8),

that is, the largest gain of information on S (equal to Sv.N.(ρS(0)) if S has a non-degenerate spectrum). All
others pure state ensembles {|ΨSM|j〉, qj} forming a decomposition of ρSM(tmeas) lead to smaller increases of
information, i.e.,

Sv.N.

(
ρS(0)

)
−
∑

j

qjSv.N.

(
trM(|ΨSM|j〉〈ΨSM|j|)

)
≤ Sv.N.(ρS(0)) . (1.62)

The minimum over all such decompositions of the sum in the left-hand side is, by definition, the entanglement
of formation EEoF(ρSM(tmeas)) quantifying the entanglement between S and M (see Sec. 2.3.3 below), which
vanishes since ρSM(tmeas) is separable. It thus appears that the measurement prepares the bipartite system SM
in the ensemble of separable states realizing the minimum in the definition of EEoF(ρSM(tmeas)).

The above argument is based on a statistical interpretation of the reduced system-apparatus state ρSM(t),
henceforth it does not explain the origin of the randomness arising in a quantum measurement. This randomness
should be (at least partly) linked with our incapacity to have full knowledge on the whole set of quantum
correlations and phases of the particles forming the apparatus. Only a few apparatus collective variables (such
as the pointer) can be controlled and reset to their initial value between each run of the measurement. Note,
however, that it would be incorrect to attribute the occurrence of a specific outcome as being controlled by the
initial microscopic state of the apparatus [259, 225].
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Chapter 2

Entanglement evolution for quantum

trajectories

Pour qu’une chose soit intéressante, il suffit de la regarder longtemps (G. Flaubert).

2.1 Motivations

In this chapter we discuss how the amount of entanglement in an initially entangled open bipartite system evolves
with time. A basic property of entanglement is that it cannot be created by means of local operations on each
parties. As a result, the entanglement between non-interacting subsystems cannot increase if each subsystem is
coupled to its own local reservoir, the reservoirs being independent between themselves. In this case, the most
robust states (pointer states) with respect to the interaction with the reservoirs are tensor products of pointer
states for each subsystems. In other words, the density operator of the composite system becomes diagonal in a
product basis at times much larger than the decoherence time. Thus decoherence transforms an entangled pure
state given by a superposition of product states into a statistical mixture of these states, which is by definition
separable, i.e., not entangled. Consequently, the entanglement in the composite system is expected to decay
with time.

In the last decade, a lot of works have been devoted to the quantitative study of the evolution of entanglement
in open bipartite systems AB. Different scenarios have been identified. In the independent reservoir case
discussed above, entanglement disappears after a finite time if AB evolves asymptotically to a steady state
belonging to the interior of the set of separable states, such as a Gibbs equilibrium at positive temperature [93,
234]. This also occurs for certain initial states if the steady state belongs to the boundary of the set of separable
states, for instance, if AB decays to a separable ground state [81, 268, 8]. In the latter situation, one can also
find entangled states with entanglement vanishing only asymptotically in the large time limit. Conversely, when
the two subsystems are coupled to a common bath, entanglement can be created due to an effective interaction
mediated by the bath [44]. Then sudden revivals of entanglement may take place after the state has become
separable [92, 166].

In his Ph.D. thesis, S. Vogelsberger has shown that the decay of entanglement is completely different if
continuous local measurements are performed on the two independent baths coupled to A and B: then, averaging
over the measurement outcomes, the entanglement always decays exponentially (see (2a) in the publication list).
He has determined the measurement scheme that better protects the bipartite system from entanglement losses,
showing that in some cases entanglement can be completely preserved. Like in the vast majority of papers dealing
with entanglement evolution in the absence of measurements1, his analysis is restricted to two-qubit systems.
The main reason is that for higher-dimensional systems it is quite hard to determine whether a state is entangled
or separable (and, a fortiori, to estimate the amount of entanglement). Similar less general results have been
discovered at the same time by E. Mascarenhas, D. Cavalcanti, V. Vedral, and M. França Santos [165].

The chapter is organized as follows. A general introduction to pure state random evolutions resulting from
continuous measurements on the environment (quantum trajectories) is given in Sec. 2.2. We briefly review
in Sec. 2.3 the notion of bipartite entanglement for mixed states and the aforementioned scenarios for its time
evolution. The results obtained with Vogelsberger are explained in Sec. 2.4. The last section 2.5 contains
concluding remarks.

1The number of papers on this problem is huge. We will not even try to cite the most relevant ones.
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Figure 2.1: Fluorescence signal from a trapped Ba+ ion at the wavelength corresponding to the 62P 1
2
-62S 1

2

level transition. This transition is induced by two lasers in resonance with the 62P 1
2
-62S 1

2
and 62P 1

2
-52D 3

2

transitions. The signal stops at random times when the ion jumps to the metastable level 52D 5
2
(incoherent

excitation) and is retrieved when it jumps back from this level to the 62S 1
2
level. Taken from [176].

2.2 Quantum trajectories

As stated in the introduction, the dynamics of open quantum systems is often studied with the help of master
equations for the reduced density matrix. Another powerful approach has been developed in the nineties. It bears
several names, introduced by the various physicists and mathematicians who participated to its (re)discovery:
Monte Carlo wave function [69], quantum trajectories [51], quantum state diffusion [101], quantum unravel-
ing [46], or quantum filtering [30, 25], to cite only a few2. It consists in describing the system state by a
random pure state |ψS(t)〉, the average of which gives the density operator ρS(t) = |ψS(t)〉〈ψS(t)| solution of
the master equation3. The wave function |ψS(t)〉 undergoes a stochastic time evolution caused by continuous
measurements on the bath coupled to the system S. This method is now popular in quantum optics, in partic-
ular because it provides an efficient way to compute the density matrix ρS(t) numerically4. However, quantum
trajectories are more than simple mathematical or numerical tools: they actually describe the real dynamics
of S when repeated measurements on the environment with which S interacts are performed. Thanks to im-
provements in detection techniques in the last decades, experiments at very low temperature have succeeded
to observe these trajectories. For instance, the electromagnetic microwave field inside the optical cavity in
Haroche’s group is coupled to highly excited Rydberg atoms, which cross one-by-one the cavity [113]. The
states of these atoms, which constitute the “environment” with which the field interacts, are measured at the
exit of the cavity. When the atoms and field are off-resonance, this leads to non-demolition measurements and
random jumps between states with different numbers of photons in the cavity can be observed [109]. Another
older beautiful experiment, in which the role of atom and field are inverted, is the observation shown in Fig. 2.1
of a random succession of dark and bright periods in the fluorescence signal of a single trapped ion. This
telegraphic signal is a direct manifestation of sudden quantum jumps of the ion to a metastable state [176].

2This approach has also been introduced in Ref. [99] with the aim to modify the Schrödinger equation in such a way that it
includes the collapse of the wave packet. As discussed in the previous chapter, we think that this is meaningless, but Ref. [99] was
perhaps the first work in the physics literature giving a detailed account of the quantum trajectory method. The discovery of this
method has, however, to be attributed to the mathematician V.P. Belavkin.

3In mathematical works, the pure state |ΨS(t)〉 is often replaced with more general random mixed states. This generalization
is, however, not so interesting from a numerical viewpoint.

4For a system with a n-dimensional Hilbert space, solving the master equation amounts to solve n × n coupled differential
equations, whereas finding the random wave function requires solving n stochastic differential equations. To estimate the average
density matrix, the computation must be repeated m times with different noise realizations, but m can be smaller than n for
high-dimensional spaces. For a review of the numerical methods in the quantum trajectory approach, see [46], chapter 7.
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2.2.1 Quantum jump model

The stochastic dynamics of the system wave function due to the monitoring by measurements on the reservoir
can be derived from the system-reservoir dynamics and the reduction of the wave packet. Let us consider a
simple model similar to the model of a single atom interacting with the vacuum of the electromagnetic field
discussed in the seminal paper of Dalibard, Castin, and Mölmer [69] (for a more general derivation, see the book
of H.-P. Breuer and F. Petruccione [46], chapter 6). A system S with Hamiltonian HS is coupled to a reservoir
R with Hamiltonian HR by the interaction

HSR

int =
∑

m

gm
(
Mm ⊗ b†m +M †

m ⊗ bm
)
, (2.1)

where gm are coupling constants, Mm are operators acting on S, and b†m, bm are the creation and annihilation
operators for an excitation m in the reservoir. We assume that R is initially in its ground state |0〉 (zero
temperature) and choose the zero of energy such that HR|0〉 = 0. At times tk = kδt (with k integer), a detector
measures if R is excited or not. We assume that the detection is instantaneous, i.e., the time duration of each
measurement is much smaller than δt. Furthermore, we suppose that δt is such that gmδt is very small but
g2mδt = γm is of the order of T−1, T being the relevant time scale for the dynamics of S. Mathematically, this
corresponds to letting δt→ 0 with γm fixed.

We denote by |1m〉 = b†m|0〉 and |1m1m′〉 = b†mb
†
m′ |0〉 the reservoir states with one excitation m and two

excitations m and m′, respectively. If the bipartite system SR is in a pure product state5 |ψS(t)〉|0〉 at time t,
then this state is at time t+ δt:

|ΨSR(t+ δt)〉 = e−iδt(HS+HR+H
SR

int)|ψS(t)〉|0〉 =
[
(1 − iδtHeff)|ψS(t)〉|0〉 − iδt

∑

m

gmMm|ψS(t)〉|1m〉

−δt
2

2

∑

m,m′

gmgm′MmMm′ |ψS(t)〉|1m1m′〉
](

1 +O(gmδt+ δt/TS + δt/TR)
)
, (2.2)

where TS and TR are the typical evolution times under the Hamiltonians HS and HR and we have set

Heff = HS −
i

2

∑

m

γmM
†
mMm . (2.3)

The measurement on the reservoir at time t+ δt causes the wave packet reduction given by the transformation
(1.5). The corresponding conditional states are

|ΨSR|0(t+ δt)〉 = 1S ⊗ |0〉〈0|ΨSR(t+ δt)〉
‖〈0|ΨSR(t+ δt)〉‖ ∝ (1− iδtHeff)|ψS(t)〉|0〉 (2.4)

if no excitation is detected and

|ΨSR|m(t+ δt)〉 = 1S ⊗ |1m〉〈1m|ΨSR(t+ δt)〉
‖〈1m|ΨSR(t+ δt)〉‖ ∝ Mm|ψS(t〉|1m〉 (2.5)

if an excitation m is detected. In the latter case, we assume that the excitation is removed from the reservoir
(e.g. the photon disappears in the photo-detector). Equivalently, one may think that the system interacts in each
time interval [tk, tk + δt] with a different reservoir initially in the state |0〉 (repeated interaction model). This
situation is realized for instance in Haroche’s experiments, where the cavity field (system) interacts successively
with different atoms (reservoirs) crossing the cavity. Consequently, the final system-reservoir state after a
detection of an excitation m at time t + δt is Mm|ψS(t〉|0〉, up to normalization. The probability of this
detection is very small and equal, according to the Born rules, to

δpm(t) = ‖〈1m|ΨSR(t+ δt)〉‖2 = γm‖Mm|ψS(t)〉‖2δt . (2.6)

The probability to detect more than one excitation is negligible in the limit gmδt ≪ 1. Each measurement
disentangles the system and reservoir, so that SR is in a product state at all times tk. In the limit δt→ 0, one
can replace the discrete times tk by a continuous time t and write δt as a differential dt. The system S is then
in a pure state |ψS(t)〉 at all times.

The random dynamics of S can be summarized as follows.

5As is common in the physics literature, we omit the symbol ⊗ in tensor products of vectors in Hilbert spaces.
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(i) A quantum jump

|ψS(t)〉 −→ |ψ(m)
S

(t+ dt)〉 = Mm|ψS(t)〉
‖Mm|ψS(t)〉‖

(2.7)

occurs with probability dpm(t) between times t and t+ dt.

(ii) If no jump occurs between t and t + dt (i.e., no excitation is detected in R), the system wave function
evolves as

|ψS(t+ dt)〉 = e−iHeffdt|ψS(t)〉
‖e−iHeffdt|ψS(t)〉‖

. (2.8)

The probability to have no jump in the finite time interval [t0, t] is
6

pnj(t0, t) =
∥∥e−iHeff (t−t0)|ψS(t0)〉

∥∥2
. (2.9)

The above heuristic derivation of the quantum jump model can be made rigorous [18] (see also [16] and [77] for
related derivations of evolutions with quantum noises).

2.2.2 Lindblad master equation for the average state

The density matrix of S is obtained by averaging the rank-one projector on |ψS(t)〉 over the random outcomes
of the measurements on R,

ρS(t) = |ψS(t)〉〈ψS(t)| =
∫

dp[ψS] |ψS(t)〉〈ψS(t)| , (2.10)

where the overline denotes the mean over all quantum trajectories with distribution dp[ψS]. Since a measure-
ment without readout performed on R does not change the reduced state of S, ρS(t) describes the state evolution
of the system coupled to R in the absence of measurements7. A simple calculation (see e.g. [69]) shows that
ρS(t) satisfies the Lindblad Markovian master equation [159]

dρS
dt

= −i[HS, ρS(t)] +
∑

m

γm

(
MmρS(t)M

†
m − 1

2

{
M †
mMm, ρS(t)

})
, (2.11)

where {·, ·} denotes the anti-commutator. Let us emphasize here that the derivation of the quantum jump
dynamics in the previous subsection also justifies the master equation (2.11) for a zero-temperature reservoir
coupled to S via the Hamiltonian (2.1). This derivation involves a re-initialization of the reservoir state at times
tk, which is a “brute force” manner to obtain a Markovian dynamics (equivalently, one may think of a chain of
reservoirs interacting one after the other with S, as considered in [16, 17]). Physically, the state re-initialization
is due to the relaxation of R to its equilibrium and takes a time larger than the reservoir correlation time τR
defined in Sec. 1.3.1. Hence one must have τR ≪ δt ≪ TS with g2mδt = γm fixed. This limit is the singular
coupling limit discussed in Sec. 1.3.5.

It is worth noting that (2.10) defines a particular convex decomposition of the density matrix ρS(t). Since
there are infinitely many such decompositions, it should not come as a surprise that infinitely many different
quantum jump dynamics unravel the same master equation [46]. Each of these unravelings corresponds to a
specific measurement scheme on R and can be viewed as a sequence of state preparations associated to ρS(tk)
at times tk (Sec. 1.2.2). These state preparations depend upon the type of information on the system dynamics
collected by the measurements. For instance, if one rotates the measurement basis, the jump operatorsMm are
transformed as

Mm −→ Mµ =
∑

m

uµm

(
γm
γµ

) 1
2

Mm , (2.12)

where (uµm) is a unitary matrix and γµ are the jump rates associated to Mµ. One may check explicitly that
this transformation does not change the master equation. Another transformation with this property is

Mm −→ Mm,±αm
=Mm ± αm , γm → γm,±αm

=
γm
2
. (2.13)

6This is shown by noting that pnj(t0, t) − pnj(t0, t + dt) =
∑

m dpm(t)pnj(t0, t). Thanks to (2.3) and (2.6), this yields

∂ ln pnj(t0, t)

∂t
= −

∑

m

γm‖Mm|ψS(t)〉‖2 =
∂

∂t
ln ‖e−iHeff (t−t0)|ψS(t0)〉‖2 .

7This general statement can be established by noting that if the measured observable of R has eigenprojectors Πm, then,
according to (1.3), the post-measurement state ρp.m.

SR
=

∑

m 1⊗ΠmρSR 1⊗ Πm has the same partial trace over R than ρSR.
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Figure 2.2: In homodyne or heterodyne detections, the signal (e.g. the photons emitted by an atom) is mixed
in a 50% beam splitter (BS) with a classical laser field with amplitude α (local oscillator). Two photo-detectors
count the number of photons in the two output beams.

If the system is an atom emitting photons and Mm implements jumps provoked by the detection of the emitted
photons by a photon-counting device, the new jump operators Mm,±αm

describe homodyne or heterodyne
detection (see Fig. 2.2) used in many experiments in quantum optics [51, 199].

2.2.3 Quantum state diffusion

The homodyne quantum jump dynamics with jump operators Mm,±αm
converges for large positive time-

independent laser amplitudes αm ≫ 1 to a diffusive dynamics given by Wiener processes. More precisely,
after a coarse graining on a time scale ∆t on which many jumps occur but |ψS(t)〉 does not change noticeably,
the wave function |ψS(t)〉 converges to the solution of the stochastic Schrödinger equation [261, 46, 222]

|dψS〉 =
(
−iHeffdt+

∑

m

γm

(
Re 〈Mm〉tMm − 1

2

(
Re 〈Mm〉t

)2)
dt+

∑

m

√
γm

(
Mm − Re 〈Mm〉t

)
dwm

)
|ψS(t)〉 ,

(2.14)
where dwm are the Itô differentials for independent real Wiener processes satisfying the Itô rules dwmdwn =
δmndt. We have set 〈·〉t = 〈ψS(t)| · |ψS(t)〉. The quantum state diffusion dynamics defined by (2.14) is another
unraveling of the master equation (2.10).

In the case of heterodyne detection, the laser amplitudes have oscillating phases and the jump operators
Mm,±α(tj) = Mm ± αme

iΩmtj depend on the time tj of the jth jump [199, 46]. The associated rates are as for
homodyne detection. In the limit α2

m ≫ Ωm/γm ≫ 1 of large laser intensities and rapidly oscillating amplitudes,
with αm > 0, the quantum jump dynamics converges to the solution of [261, 46]

|dψS〉 =

(
−iHeff dt+

1

2

∑

m

γm

(
〈Mm〉∗t Mm − 1

2

∣∣〈Mm〉t
∣∣2
)
dt

+
∑

m

√
γm

((
Mm − 1

2
〈Mm〉t

)
dξm − 1

2
〈Mm〉∗tdξ∗m

))
|ψS(t)〉 , (2.15)

where dξm are the Itô differential for independent complex Wiener processes satisfying the Itô rules dξmdξn = 0
and dξmdξ∗n = δmndt. The stochastic Schrödinger equation (2.15) describes the coarse-grained evolution of
|ψS(t)〉 on a time scale ∆t on which |ψS(t)〉 does not change significantly and such that many jumps and many
laser amplitude oscillations occur during a lapse of time ∆t. These conditions are satisfied when α2

mγm∆t ≫
Ωm∆t≫ 1 and γm∆t≪ 1 (see [46] for more detail). Although (2.15) is not exactly the quantum state diffusion
equation introduced originally by Gisin and Percival [101], the solutions of the two equations differ by an
irrelevant randomly fluctuating phase factor [46]. More general equations involving correlated complex noises
satisfying the Itô rules dξmdξn = umndt and dξmdξ∗n = δmndt have been considered in Ref. [262]. They give
back the model of Gisin and Percival when umn = 0.

Linear stochastic evolutions can be obtained from the state diffusion and quantum jump dynamics by relaxing
the condition that |ψS(t)〉 must be normalized at all times. The corresponding linear equations involve Wiener
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processes for diffusion [25, 99, 222] and Poisson processes for quantum jumps [221, 222]. The average state
(2.10) is the same as for the nonlinear dynamics, thus it is normalized at all times.

Let us also mention that the quantum trajectory approach can be extended to non-Markovian dynamics [47,
80, 267] and that models accounting for imperfect measurements on R can be derived.

2.3 Entanglement decay in bipartite systems

We give in this section a brief introduction to the notion of entangled mixed states, which plays an important
role in the remaining of this chapter. A more detailed exposition can be found in Sec. 4.4 and chapter 10 below.
We then digress on the entanglement evolution when the bipartite system is coupled to its environment.

2.3.1 Bipartite entanglement

Let us recall that a pure state |Ψ〉 of a bipartite system AB with Hilbert space HAB = HA ⊗ HB is entangled
if it cannot be written as a tensor product of two pure states |ψ〉 ∈ HA and |φ〉 ∈ HB. This property is not
related to a specific observable. Rather, it reflects the fact that any local observables A ⊗ 1 and 1 ⊗ B acting
respectively on subsystems A and B are uncorrelated, that is, 〈A ⊗ B〉Ψ = 〈A ⊗ 1〉Ψ〈1 ⊗ B〉Ψ. The notion of
entanglement is non trivial when dealing with statistical mixtures because the quantum correlations between
A⊗ 1 and 1⊗B must be separated from statistical correlations in the state ensemble, which do not correspond
to any entanglement. Consequently, a mixed state ρAB may be separable even if it is not a product of two
density operators ρA and ρB on HA and HB.

To see if ρAB is separable, one must consider all possible state preparations associated to ρAB and look if there
exists one such preparation formed by pure separable states only. Actually, we want to consider as separable
any state that can be prepared locally, allowing for classical communication between the two parties. More
precisely, the state preparation can be achieved by two observers (called Alice and Bob) allowed to exchange
classical information and separated by a large distance to eliminate interactions between A and B. Alice prepares
identical subsystems A with a fraction pi of them in state |ψi〉 ∈ HA and, when her state is |ψi〉, tells Bob to
prepare the corresponding subsystem B in state |φi〉 ∈ HB. The two observers thereby prepare identical systems
AB in product states |ψi〉|φi〉 with probability pi. In mathematical terms, ρAB is separable if it admits a pure
state decomposition ρAB =

∑
i ηi|ψi〉〈ψi| ⊗ |φi〉〈φi| with ‖ψi‖ = ‖φi‖ = 1, ηi ≥ 0, and

∑
i ηi = 1. If such a

decomposition does not exist, the state is entangled.
The Peres-Horodecki condition gives a simple sufficient criterion for entanglement, which turns out to be

necessary and sufficient if the dimensions nA of HA and nB of HB satisfy nAnB ≤ 6. We recall that the partial
transpose ρTB

AB
of ρAB in a given product basis {|i〉|k〉} of HAB is defined as

〈i|〈k|ρTB

AB
|j〉|l〉 = 〈i|〈l|ρAB|j〉|k〉 . (2.16)

The Peres criterion states that if ρTB

AB
has negative eigenvalues (i.e., if ρTB

AB
is not a physical state) then ρAB is

entangled. When nAnB > 6, there exists entangled states of AB which do not fulfill this criterion. In general,
finding out whether a given state is entangled or separable is not an easy task: a simple-to-handle necessary
and sufficient condition for bipartite mixed state entanglement is still lacking [130].

In the following, we denote by E(HAB) the set of all quantum states of AB, that is, the convex cone formed
by all non-negative operators on HAB with trace one (we assume here that HAB has finite dimension nAnB). By
definition, the separable states of AB form a convex subset SAB of E(HAB). We say that a state ρAB lies on the
boundary ∂SAB of SAB when ρAB is separable and an arbitrarily small perturbation can make it entangled. This
is the case e.g. for pure product states8.

2.3.2 Two-qubit states with maximally mixed marginals

To gain some insight on how the convex set of separable states SAB looks like, let us focus on two qubits A and
B (i.e., HA ≃ HB ≃ C2). An arbitrary trace-one self-adjoint operator on HAB ≃ C4 can be written as

ρ =
1

4

(
1A ⊗ 1B + u · σ ⊗ 1B + 1A ⊗ v · σ +

3∑

a,b=1

cab σa ⊗ σb

)
, (2.17)

8More precisely, ρ ∈ ∂SAB if and only if ρ ∈ SAB and ∀ ε > 0, ∃ ρε ∈ E(HAB) such that tr |ρ− ρε| ≤ ε and ρε /∈ SAB. To show
that a pure product state ρ = |ψ〉〈ψ| ⊗ |φ〉〈φ| belongs to ∂SAB, let us set |Ψε〉 = (1+ ε2)−1/2(|ψ〉|φ〉+ ε|ψ⊥〉|φ⊥〉), where |ψ⊥〉 and
|φ⊥〉 are orthogonal states to |ψ〉 and |φ〉. Then ρε = |Ψε〉〈Ψε| is entangled and tr |ρ− ρε| ≤ 2ε.
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Figure 2.3: Tetrahedron giving the location of the vectors c of R3 representing two-qubit states with maximally
mixed marginals up to local unitary conjugations. Separable states are located inside the octahedron with
vertices I, J,K, L,M , and N . Among separable states, those belonging to the segments [I,K], [J, L], and
[M,N ] (red dashed lines) are classical states with zero quantum discord (see chapter 11), as shown in Ref. [67].

where σ = (σ1, σ2, σ3) is the vector formed by the three Pauli matrices acting on either HA or HB. In order
that ρ be a density operator (i.e., that ρ ≥ 0), the expectation values u = tr[σ ⊗ 1 ρ] and v = tr[1 ⊗ σ ρ] of
the spins of A and B and the 3× 3 spin-spin correlation matrix C = (cab) = (tr[σa ⊗ σb ρ]) must fulfill certain
conditions (see e.g. Proposition 2.3.4 in [252]). Given two rotations RA and RB of R3, the transformation

u → RAu , v → RBv , C → RACR
T
B (2.18)

of the spin vectors and correlation matrix amounts to a local unitary conjugation9 ρ → UA ⊗ UBρU
†
A ⊗ U †

B

which does not change the separability property of ρ. By a singular value decomposition of C, one may thus
assume that the correlation matrix is diagonal, C = diag(c1, c2, c3).

We now specialize our discussion to the family of two-qubit states ρ with maximally mixed marginals
trB(ρ) = trA(ρ) = 1/2, which are given by (2.17) with u = v = 0 [129]. For diagonal C, one has ρ ≥ 0 if and
only if

p0 =
1

4
(1− c1 − c2 − c3) ≥ 0 , pa =

1

4
(1 + c1 + c2 + c3 − 2ca) ≥ 0 , a = 1, 2, 3 . (2.19)

Equivalently, c = (c1, c2, c3) belongs to the tetrahedron T with vertices F± = (±1,∓1, 1), G± = (±1,±1,−1)
associated to the pure states

|Φ±〉 = 1√
2

(
|↑↑〉 ± |↓↓〉

)
, |Ψ±〉 = 1√

2

(
|↑↓〉 ± |↓↑〉

)
, (2.20)

see Fig. 2.3. The states (2.20) are the four Bell states, which are maximally entangled (see below)10. They are
the eigenvectors of ρ with eigenvalues p2,1 and p3,0. Thanks to the Peres-Horodecki criterion, ρ is separable if
and only if both vectors c and c̃ = (c1,−c2, c3), corresponding respectively to ρ and ρTB , belong to T . The
convex set of separable Bell diagonal states is thus the octahedron represented in Fig. 2.3.

To illustrate the definition of entangled states given above, let us consider a preparation of two Bell states
|Ψ±〉 with equal probability p± = 1/2. Even though |Ψ±〉 are maximally entangled, the associated density
matrix ρ = (|Ψ+〉〈Ψ+| + |Ψ−〉〈Ψ−|)/2 is separable, since it could also have been obtained by preparing two
equiprobable separable states |↓↓〉 and |↑↑〉.

2.3.3 Entanglement measures

A well known measure quantifying the amount of entanglement in bipartite systems AB is the entanglement
of formation EEoF defined as follows [34]. For a pure state, EEoF(|Ψ〉) = S(ρA) is equal to the von Neumann

9UA and UB are the images of RA and RB under the SU(2)-representation of the rotation group.
10These states have been used e.g. in Ref. [15] to demonstrate experimentally the violation of the Bell inequalities for photon

polarization states.
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Figure 2.4: Schematic view of the trajectories t 7→ ρ(t) in the set of quantum states (cyan region) for a
bipartite system undergoing an irreversible evolution. An entanglement sudden death or revival occurs when
the trajectory crosses the boundary of the set of separable states SAB (yellow region).

entropy of the reduced state11 ρA = trB(|Ψ〉〈Ψ|). For a mixed state, EEoF(ρ) is defined as the minimum of the
average entanglement over all ensembles {|Ψi〉, ηi} forming a pure state decomposition of ρ, ρ =

∑
i ηi|Ψi〉〈Ψi|,

EEoF(ρ) = min
{|Ψi〉,ηi}

{∑

i

ηiEEoF(|Ψi〉)
}
. (2.21)

Note that ρ is separable if and only if EEoF(ρ) = 0. The maximal value of EEoF is lnn with n = min{nA, nB}.
It is achieved for instance for the two-qubit Bell states (2.20). When nA = nB = 2, Wootters has shown that
EEoF(ρ) = h(C(ρ)), where h : [0, 1] → [0, lnn] is a convex increasing function (which is explicitly known, see
Sec. 10.4.3) and C(ρ) is the concurrence given by [265]

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} , (2.22)

λ1 ≥ λ2 ≥ λ3 ≥ λ4 being the square roots of the eigenvalues of ρ σ2 ⊗ σ2 JρJ σ2 ⊗ σ2. Here, J stands for the
anti-unitary operator of complex conjugation in the canonical basis {|k〉|l〉}k,l=↑,↓ of C2 ⊗ C2. For pure states,
the concurrence reads

C(Ψ) = |c(Ψ)| , c(Ψ) = 〈Ψ|σ2 ⊗ σ2J |Ψ〉 = 2(c↑↓c↓↑ − c↑↑c↓↓)
∗ (2.23)

with ckl = 〈k|〈l|Ψ〉 for any k, l = ↑, ↓. The properties of the entanglement of formation and concurrence will be
discussed in more detail in chapter 10.

2.3.4 Different scenarios for entanglement evolution

Let us discuss the time evolution of entanglement when two initially entangled subsystems A and B are coupled
to independent baths. We assume that A and B do not interact directly, so that the Hamiltonian of AB has the
form

HAB = HA ⊗ 1 + 1⊗HB . (2.24)

We first suppose that AB converges at large times to a unique stationary separable state ρ∞. By continuity of
the evolution, we conclude that (see Fig. 2.4):

(1) if ρ∞ belongs to the interior of the set of separable states SAB, then so does ρ(t) at large enough times. Thus
the initial entanglement between A and B disappears completely after a finite time tESD (entanglement
sudden death) [79, 81, 234];

(2) if ρ∞ belongs to the boundary of SAB, then either entanglement disappears after a finite time as in case (1),
or ρ(t) remains entangled at all times (that is, separability is reached asymptotically). The entanglement
behavior depends on the initial state ρ(0) and on the coupling with the bath [268, 8].

Case (1) is realized for instance if AB relaxes to an equilibrium state ρeq at positive temperature, and case (2)
occurs at zero temperature when AB decays to a non-degenerate ground state of the Hamiltonian (2.24)12. For

11The same result is obtained for the entropy of the reduced state ρB = trA(|Ψ〉〈Ψ|) of B, see Sec. 7.1.
12Indeed, the Gibbs state ρeq = Z−1e−βHAB = Z−1e−βHA ⊗ e−βHB is in the interior of SAB, whereas the ground state of (2.24)

is a pure product state and thus belongs to ∂SAB, see Sec. 2.3.1.
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instance, let us consider the Jaynes-Cummings model for a pair of two-level atoms A and B coupled resonantly
to independent modes of the electromagnetic field. Entanglement evolution in this model has been considered
at zero temperature in the first paper of Yu and Eberly [268]. After a dipole, weak coupling, and rotating wave
approximations [65, 185], one finds that the dynamics of the atoms is governed by the Lindblad equation (2.11)
with jump operators

MA

± = σ± ⊗ 1B , MB

± = 1A ⊗ σ± (2.25)

and Hamiltonian (2.24) given by HA = HB = ω σ3 (here ω is the atomic Bohr frequency, assumed to be the same

for both atoms, σ+ = (σ1+iσ2)/2 = |↑〉〈↓|, and σ− = σ†
+). If the jump rates satisfy 0 < γA+ = γB+ ≤ γA− = γB−, an

explicit calculation shows that ρ(t) converges to the Gibbs state ρeq at inverse temperature β = ω−1 ln(γA−/γ
A
+).

Then disappearance of entanglement at finite time is the rule. Conversely, if γA+ = γB+ = 0, the two atoms decay
to the ground state |↓〉|↓〉. For the initial state |Ψ(0)〉 = c↑↑|↑〉|↑〉+ c↓↓|↓〉|↓〉, entanglement disappears at finite
time tESD = − ln(1 − |c↓↓/c↑↑|)/γA− for inverted populations |c↑↑| > |c↓↓|, while separability is asymptotic for
|c↑↑| ≤ |c↓↓| [8, 186].

Although the above steady state argument is trivial, the fact that in case (2) certain initial states exhibit
sudden death of entanglement and other do not has astonished the quantum optics community. The original
papers [79, 81, 268] have been followed by a huge amount of works studying entanglement for two qubits with
various reservoir couplings in the Markovian and non Markovian regimes.

We now discuss what happens when there are infinitely many stationary states [234]. We consider a simple
example of two qubits subject to pure phase dephasing in the interaction picture. The corresponding dynamics
is described by the Lindblad equation (2.11) with HS = 0 and the two jump operators

MA = σ3 ⊗ 1B , MB = 1A ⊗ σ3 , (2.26)

the associated rates being γA and γB. If the initial state ρ(0) is a Bell diagonal state given by (2.17) with u =
v = 0 and C = diag(c1, c2, c3), then it remains of this form at all times t, with c1(t) = e−2γtc1, c2(t) = e−2γtc2,
and c3(t) = c3 (we have set γ = γA + γB). In the standard basis {|k〉|l〉}k,l=↑,↓, the two-qubit density matrix
reads

ρ(t) =
1

4




1 + c3 0 0 (c1 − c2)e
−2γt

0 1− c3 (c1 + c2)e
−2γt 0

0 (c1 + c2)e
−2γt 1− c3 0

(c1 − c2)e
−2γt 0 0 1 + c3


 . (2.27)

This matrix becomes diagonal at large times t ≫ γ−1 (decoherence). Since c3 is constant in time, there is no
relaxation to an equilibrium and the asymptotic state ρ∞ depends on the initial state. One has ρ∞ ∈ ∂SAB if
and only if c3 = ±1. Therefore, entanglement disappears after a finite time for all initial Bell-diagonal states
with c3 ∈]− 1, 1[, whereas for c3 = ±1 it disappears asymptotically13.

We end this brief survey with a few words about non-interacting subsystems coupled to a common bath.
Entanglement between these subsystems may increase with time due to the effective interaction mediated by the
bath, and the stationary state may be entangled [44]. The same occurs in the reverse situation of two interacting
subsystems coupled to independent baths [278]. By continuity of the trajectory, ρ(t) is then entangled at all
times larger than a given time t0. The state ρ(t) can, however, make an excursion to the separable region before
that time, so that entanglement vanishes at a finite time tESD < t0 and then re-appears at later times tESR ≤ t0
(entanglement sudden revivals) [92, 166, 186].

13By the Peres-Horodecki criterion and our definition of the boundary ∂SAB (Sec. 2.3.1), a two-qubit state ρ is in the interior of

SAB if ρTB > 0. Since ρ
TB
∞ = ρ∞ is given by (2.27) with c1 = c2 = 0, this condition is satisfied when c3 ∈] − 1, 1[. To show that

ρ∞ ∈ ∂SAB if c3 = 1, one may consider the state ρε given by choosing c3 = 0, c1 = −c2 = ε, and t = 0 in (2.27). For 0 < ε ≤ 1, one
checks that ρε ≥ 0, ρε is entangled, and tr |ρ∞ − ρε| = ε (a similar argument holds for c3 = −1). For c3 = ±1 one has c1 = ∓c2,
see Fig. 2.3. If c1 6= 0, the states (2.27) are entangled at all times t ≥ 0. In particular, entanglement vanishes asymptotically if the
initial state is a Bell state (2.20).
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2.4 Entanglement decay when information is extracted from the

baths

2.4.1 Main result

We now discuss the time-evolution of entanglement between two non-interacting subsystems A and B coupled
to independent baths in the presence of monitoring by continuous measurements on the baths. For fixed
realizations of the measurement outcomes, the bipartite system AB remains in a pure state |Ψ(t)〉 ∈ HAB, the
evolution of which defines a quantum trajectory t 7→ |Ψ(t)〉 (Sec. 2.2). In view of (2.10), the state ensemble
{|Ψ(t)〉, dp[Ψ]} defines a pure state decomposition of the density matrix ρ(t) of AB, therefore

EEoF(Ψ(t)) ≥ EEoF(ρ(t)) , (2.28)

i.e., the entanglement of formation of ρ(t) is smaller or equal to the average entanglement of formation of the
state ensemble selected by the measurements on the baths. The latter depends on the way information on AB is
extracted from the reservoirs, that is, on the type of measurements used. As argued in Ref. [178], the quantity
EEoF(Ψ(t)), albeit it does not fulfill the quantum information theory axioms for an entanglement measure, can
be promoted to the rank of relevant measure of entanglement when such information is available. This is the
case for instance in Haroche’s experiments.

A natural question is whether EEoF(Ψ(t)) may vanish at finite times like EEoF(ρ(t)). Two related problems
are

(a) find the measurement scheme which better protects AB against entanglement losses (in other words, find
the unraveling of a given master equation leading to the maximal value of EEoF(Ψ(t)));

(b) find the measurement scheme (if it exists) which selects the state ensemble with the minimal average
entanglement of formation EEoF(Ψ(t)), that is, such that (2.28) holds with equality.

We assume here that the measurements performed on the two baths are local. The jump operators are then of
the form

MA

m ⊗ 1 , 1⊗MB

m . (2.29)

In that case, for the quantum jump dynamics, if the initial state |Ψ(0)〉 is entangled then EEoF(Ψ(t)) > 0 at all
times. The reason is that the trajectory t 7→ |Ψnj(t)〉 which does not experience any jump remains entangled at
all times. Actually, according to (2.3), (2.24), and (2.29), the non-unitary evolution operator e−itHeff is a tensor
product of two local operators acting on each subsystem. If |Ψnj(t)〉 ∝ e−itHeff |Ψ(0)〉 would be separable at a
given time t then, by reversing the dynamics (i.e., by applying eitHeff to |Ψnj(t)〉) one would deduce that |Ψ(0)〉
is separable. Hence EEoF(Ψnj(t)) > 0 if |Ψ(0)〉 is entangled. But the probability to have no jump between times

0 and t, given by (2.9), is nonzero for all times t and thus EEoF(Ψ(t)) > 0. Note that this argument does not
apply if the measurements on the baths are non-local.

If A and B are qubits, our main result shows that the mean entanglement of quantum trajectories can be
evaluated exactly if one uses the concurrence instead of the entanglement of formation.

Theorem 2.4.1. Let A and B be two non-interacting qubits coupled to independent baths. If the dynamics of
AB is given either by the quantum jump model of Sec. 2.2.1 with local jump operators (2.29) or by a quantum
state diffusion described by Eqs. (2.14) or (2.15) with the same jump operators, then the average concurrence
over all quantum trajectories decays exponentially with a rate κ ≥ 0 independent of the initial state |Ψ(0)〉,

C(Ψ(t)) = C0e
−κt , (2.30)

where C0 is the initial concurrence.

The decay rate κ depends on the measurement scheme only. Thanks to the Jensen inequality and the
convexity of the function h relating EEoF and C (Sec. 2.3.3), the average entanglement of formation is bounded
from below by

h(C0e
−κt) ≤ EEoF(Ψ(t)) . (2.31)

As a corollary, a negative answer to the problem (b) above can be given in the case where the density matrix
ρ(t) = |Ψ(t)〉〈Ψ(t)| exhibits a loss of entanglement at a finite time tESD: then for all local measurement schemes,
EEoF(Ψ(t)) > EEoF(ρ(t)) = 0 at times t ≥ tESD. Therefore, a measurement scheme such that (2.28) holds with
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Figure 2.5: Time evolution of the concurrence of a pair of two-level atoms in resonance with the same mode of the
electromagnetic field initially in the vacuum: (1a) C(ρ(t)) (blue dashed line); (1b) C(Ψ(t)) for a single trajectory
(black dotted line); (1c) averageC(Ψ(t)) over all trajectories (red line superimposed on the blue line). The initial
state is |Ψ(0)〉 = (2|↑↓〉+ |↓↑〉)/

√
5. Inset: (2a,b,c) same for the initial state |Ψ(0)〉 = (7i|↑↑〉+ 2i|↓↓〉)/

√
53.

equality must necessarily involve measurements of non-local (joint) observables of the two baths. A sort of
positive answer to problem (b) has been given in Refs. [52, 249], where a measurement protocol satisfying
C(Ψ(t)) = C(ρ(t)) at all times has been found for a specific model. In agreement with the claim above,
this protocol involves non-local jump operators, although the associated Lindblad equation has purely local
dissipative generators14. In Fig. 2.5, we show the concurrences for a model involving a single non-local jump
operator M = σA

− ⊗ 1 + 1 ⊗ σB
− and with an Hamiltonian HAB = 0. The jump operator M corresponds to the

detection of a photon emitted spontaneously by either atom A or atom B. Here the two atoms are coupled to a
common bath. The concurrence C(ρ(t)) of the density matrix displays sudden death and revival of entanglement
(Sec. 2.3.4). An explicit calculation [251] shows that for any initial state containing at most one excitation (i.e.,
such that c↑↑ = 0), the average concurrence C(Ψ(t)) coincides with C(ρ(t)) at all times. In contrast, in the

opposite case, C(Ψ(t)) increases at small times whereas C(ρ(t)) decreases, both concurrences converging to the
same asymptotic value C∞ = |c↑↓ − c↓↑|2/2 at large times t.

2.4.2 Disentanglement rate

In this subsection we prove Theorem 2.4.1 and determine the decay rate κ. We first focus on the quantum
jump dynamics. The result for state diffusion will be deduced by using the fact that the stochastic Schrödinger
equations (2.14) and (2.15) arise as limits of quantum jump evolutions (Sec. 2.2.3). To simplify notation, we
write C(t) instead of C(Ψ(t)). Let us set

KAB = KA ⊗ 1 + 1⊗KB , Ki =
1

2

∑

m

γimM
i†
mM

i
m , (2.32)

where γim is the rate associated to the jump operatorM i
m, with i = A,B. We will take advantage of the identities

〈
OA ⊗ 1 σ2 ⊗ σ2 J

〉
Ψ(t)

=
〈
σ2 ⊗ σ2 JO

†
A
⊗ 1

〉
Ψ(t)

=
c(t)

2
trA(OA)

〈O†
A
⊗ 1 σ2 ⊗ σ2 JOA ⊗ 1〉Ψ(t) = c(t) det(O†

A
) ,

(2.33)

where c(t) = 〈σ2 ⊗ σ2 J〉Ψ(t) is given by (2.23) and OA is an arbitrary local operator acting on qubit A. The
same identities hold for operators 1⊗OB acting on qubit B.

14Such non-local operators may be obtained from local jump operators by the transformation (2.12), which does not change the
Lindblad equation.
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If no jump occurs between t and t+ dt, one gets by expanding the exponential in (2.8) and using (2.23)

C(t+ dt) = pnj(t, t+ dt)−1
∣∣∣c(t) + idt

〈
H†

eff σ2 ⊗ σ2 J + σ2 ⊗ σ2 JHeff

〉
Ψ(t)

+O(dt2)
∣∣∣ , (2.34)

where pnj(t, t+ dt) is the no-jump probability in [t, t+dt] and Heff =
∑
i(Hi − iKi). With the help of the first

identity in (2.33), one finds

C(t+ dt) pnj(t, t+ dt) = C(t)
(
1− tr(KAB)

dt

2
+O(dt2)

)
. (2.35)

If a jump of type (m, i) occurs in the time interval [t, t+ dt], by virtue of (2.6), (2.7), and the second identity
in (2.33), the concurrence is

C
(m,i)
jump (t+ dt) =

γim dt

dpim(t)
C(t)

∣∣det(M i
m)

∣∣ . (2.36)

Collecting (2.35) and (2.36) and using the Markov property of the jump process, one gets C(t+ dt) = C(t)(1−
κQJ dt+O(dt2)) with

κQJ =
1

2
tr(KAB)−

∑

m,i

γim|det(M i
m)| . (2.37)

We now let dt go to zero to obtain dC(t)/dt = −κQJC(t). The solution of this differential equation has the
exponential decay claimed in the theorem. One may check that the decay rate κQJ is non-negative from the
equality

κQJ =
∑

m,i

γim
2

(∣∣〈↑|M i
m|↑〉 − e2iθ

i
m〈↓|M i†

m |↓〉
∣∣2 +

∣∣〈↑|(M i
m + e2iθ

i
mM i†

m)|↓〉
∣∣2
)
, (2.38)

where 2θim is the argument of det(M i
m).

As mentioned above, the exponential decay of C(t) for quantum trajectories given by the stochastic equation
(2.14) (respectively (2.15)) follows from the fact that this equation can be obtained from the quantum jump
dynamics for homodyne (heterodyne) detection in the high laser intensity limit. Thus Theorem 2.4.1 is proven.
Furthermore, the corresponding decay rate κho (respectively κhet) can be derived by making the substitution
(2.13) in formula (2.37) and taking αm → ∞. After some steps of calculation that we do not retrace here
(see [251] for more detail), one gets

κho =
1

2
tr(KAB)−

∑

m,i

γim

(
Re

{
det(M i

m)
}
+

1

2

(
Im

{
trC2(M i

m)
})2)

(2.39)

κhet =
1

2
tr(KAB)−

1

4

∑

m,i

γim
∣∣trC2(M i

m)
∣∣2 . (2.40)

2.4.3 Optimal measurement schemes for entanglement preservation

We can now tackle the problem of finding the best measurements on the baths to protect entanglement (prob-
lem (a) of Sec. 2.4.1). The first results in this direction go back to a paper by Nah and Carmichael [178], who
studied a two-level atom A interacting with a cavity field B, the atom and field being coupled to independent
baths.

(i) Complete preservation of entanglement.

Let us first study the situation where perfect protection of entanglement can be achieved with quantum
jumps, i.e., κQJ = 0. In such a case, if the qubits are maximally entangled at time t = 0 (that is, C0 = 1) then

|Ψ(t)〉 remains maximally entangled at all times t ≥ 0 for all quantum trajectories (that is, C(t) = C(t) = 1)15.
This means that one may keep the qubits maximally entangled by extracting locally information from the
baths. One easily shows from (2.38) that κQJ = 0 if and only if M i

m = λimU
i
m with λim > 0 and U im a

unitary matrix, for any m and i. Then the mean concurrence does not decay, as it can be understood from the
following argument [53]. A jump (2.7) transforms |Ψ(t)〉 into U im|Ψ(t)〉 and thus does not change the amount
of entanglement because U im are local unitaries. The same holds for the evolution between jumps under the
effective Hamiltonian Heff = HAB− iKAB. For indeed, the damping part KAB is a c-number and HAB is a sum of

15We recall that the concurrence C(t) belongs to [0, 1].
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Figure 2.6: Left panel: concurrences of 2 qubits coupled to independent baths as a function of γt for a
pure dephasing with jump operators (2.26): (1a) density matrix concurrence C(ρ(t)) for an initial Bell state
|Ψ(0)〉 = |Ψ+〉 (blue dashed line); (1a’) same for the initial state |Ψ(0)〉 = (|Ψ+〉 − i|Φ+〉)/

√
2 (blue dotted-

dashed lines); (1b,1c) C(Ψ(t)) = C(Ψ(t)) for a single trajectory (red line). Right panel: same at positive
temperature for the jump operators (2.25) with rates γi+ = γi−/2 = γ and initial state |Ψ(0)〉 = 1√

2
(|↑↑〉− i|↓↓〉):

(2a) C(ρ(t)) (blue dashed line); (2b) C(Ψ(t)) for a single trajectory (black dotted line); (2c) C(Ψ(t)) averaged
over 1500 trajectories and from (2.30) (red lines) ; (2d) C(Ψ(t)) for the best measurement scheme with jump
operators (2.42).

two local Hamiltonians, see (2.24) and (2.32). A particular case for which κQJ = 0 is when the jump operators
M i
m ∝ uim ·σi are proportional to local spin operators. The corresponding evolution under the master equation

(2.11) is a pure phase dephasing. Taking for instance the jump operators given by (2.26), the entanglement
in the density matrix ρ(t) disappears after a finite time for all initial entangled pure states16 |Ψ(0)〉 such that
ckl = 〈kl|Ψ(0)〉 6= 0 for all k, l =↑, ↓, whereas it never vanishes e.g. if c↑↓ = c↓↑ = 0 or if c↑↑ = c↓↓ = 0. This
is illustrated by the decay of the concurrence C(ρ(t)) displayed in the left panel of Fig. 2.6. In contrast, the
concurrence C(Ψ(t)) of all quantum trajectories do not decay.

(ii) Two-level atoms coupled to the electromagnetic field with a Jaynes-Cummings interaction.

Another physically relevant example is a pair of two-level atoms resonantly coupled to independent modes of
the electromagnetic field. If the jumps are caused by a detection of a photon emitted by one of the atoms, which
can be done in principle by surrounding each atom by photo-detectors, the jump operators are as in (2.25).

Thanks to (2.30) and (2.37), the average concurrence is17 C(t) = C0e
−(γA

++γB

++γA

−+γB

−)t/2. It is compared in the
right panel of Fig. 2.6 with the concurrence of the density matrix, obtained by solving the master equation (2.11).
At positive temperatures, the latter concurrence vanishes after a finite time for all initial states, as a consequence
of the entanglement sudden death (Sec. 2.3.4). We would like to determine the optimal measurement scheme
to protect the entanglement between the two atoms. With this goal, we replace the photon-counting jump
operatorsM i

± = σi± by M i
µ using the transformation (2.12) with a N × 2 unitary matrix (uiµm)m=±

µ=1,...,N for each
i = A,B. Note that we do not mix jump operators for different i’s, as this would lead to non-local measurements.
From (2.37), the new entanglement decay rate is found to be

κQJ =
1

2

∑

µ,i

(√
γi−|uiµ−| −

√
γi+|uiµ+|

)2

. (2.41)

By optimizing over all unitaries and making use of the Cauchy-Schwarz inequality and
∑

µ |uiµ±|2 = 1, the

smallest disentanglement rate is reached e.g. for N = 2 and ui1± = ±ui2± = 1/
√
2, i.e.,

√
γi1M

i
1 = 2−

1
2

(√
γi+σ

i
+ +

√
γi−σ

i
−

)
,

√
γi2M

i
2 = 2−

1
2

(√
γi+σ

i
+ −

√
γi−σ

i
−

)
(2.42)

16This follows from similar arguments as in Sec. 2.3.4. In fact, if ckl 6= 0 then the asymptotic state ρ∞ =
∑

k,l |ckl|2|kl〉〈kl| is in
the interior of SAB.

17It is instructive to derive this result directly, without relying on Theorem 2.4.1. One notes that a jump with jump operator
σA− or σB−, which corresponds to the detection of a photon emitted by atom A or B, disentangles the atoms completely. Actually,
if e.g. a detector surrounding A makes a click, then one is certain that A is in its ground state |↓〉, so that AB is in a product state
(see [251]).
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with i = A,B. It is given by

κoptQJ =
1

2

∑

i=A,B

(√
γi− −

√
γi+

)2

. (2.43)

Note that κoptQJ = κQJ at zero temperature (γi+ = 0) and κoptQJ = 0 (perfect protection) at infinite temperature

(γi+ = γi−). The decay of C(Ψ(t)) for the optimal quantum jump dynamics is shown in the right panel of
Fig. 2.6. Based on our result, the authors of Ref. [53] have proposed to engineer an artificial infinite temperature
reservoir for a two-level atom via an adiabatic elimination of a third level populated with a laser pump, and to
use quantum jumps or state diffusion to preserve entanglement.

(iii) Optimal homodyne detection

We now turn to homodyne detection. The corresponding disentanglement rate κho is given by (2.39).

Unlike κQJ, this rate changes when the operators M i
m acquire a phase factor, M i

m → e−iθimM i
m. This arises

for homodyne detection with complex laser amplitudes αim = |αim|eiθim , |αim| ≫ 1. Minimizing over the laser
phases θim yields

κoptho =
1

2
tr(KAB)−

∑

m,i

γim

(∣∣∣det(M i
m)− 1

4

(
trC2(M i

m)
)2∣∣∣+ 1

4

∣∣∣trC2(M i
m)

∣∣∣
2)
. (2.44)

It is easy to convince oneself that
κoptho ≤ κQJ , κoptho ≤ κhet . (2.45)

The first (respectively second) inequality is strict excepted if the two eigenvalues ofM i
m have the same modulus

(are equal) for all m and i. Thus optimal homodyne detection protects entanglement better than - or, if the
aforementioned conditions are fulfilled, as well as - photon counting and heterodyne detection. For the jump
operators given by (2.42), homodyne detection does not do better than quantum jumps, κoptQJ = κoptho . Let us

stress that the optimal measurements (in particular, the laser phases θim minimizing the rate κho) only depend
on the Lindblad operators M i

m in the master equation and are the same for all initial states of the qubits.

2.5 Conclusions

We have found explicit formulas for the mean concurrence of quantum trajectories and have shown that the
monitoring of the two qubits obtained thanks to continuous measurements on the baths may be used to protect
entanglement. These results shed new light on the phenomenon of entanglement sudden death. If the measure-
ments are performed locally on the two independent baths, the mean concurrence C(Ψ(t)) is either constant
in time or vanishes exponentially with a rate depending on the measurement scheme only. A constant value
implies a perfect protection of maximally entangled states for all trajectories. In the case of pure dephasing
and for Jaynes-Cumming couplings at infinite temperature, we have found measurement schemes independent
of the initial state leading to such a perfect entanglement protection. Despite obvious analogies, this way to
keep entanglement differs from the strategies based on the quantum Zeno effect18. A corollary of our result is
that, if the density matrix ρ(t) suffers from a disappearance of entanglement at finite times, a measurement
scheme which could prepare the two qubits at all times in a state ensemble with a minimal mean entanglement
of formation EEoF(Ψ(t)) = EEoF(ρ(t)) must necessarily involve measurements of non-local observables of the
two baths. In contrast, we have found that if the two qubits are coupled to a common bath, C(Ψ(t)) may
coincide with the concurrence C(ρ(t)) of the density matrix for certain initial states.

Let us point out that generalizing our result to higher-dimensional systems is not straightforward. One could
use the generalized concurrence defined by Eq.(10.4) in chapter 10, but unlike what happens for two qubits,
C(t+ dt) does not appear to be a function of C(t) and the behavior of C(t) is more complicated.

18Such a strategy has been proposed in Ref. [166]. In the quantum jump and quantum state diffusion models considered here, the
time interval between consecutive measurements is small but not exactly zero, whereas in [166] a perfect entanglement protection
is reached in the idealized limit γ dt → 0, i.e., when the measurements completely prevent the decay of the superradiant state.
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Chapter 3

Decoherence in Bose-Josephson

junctions

Nous irons droit à l’essentiel, mais pour comprendre l’essentiel il est nécessaire de parler des détails

(journaliste de France Inter).

3.1 Motivations

In this chapter, we investigate a physical model which is more directly related to experiments than in the
other chapters. We are interested by ultracold gases of interacting bosonic atoms in two modes, realized
by coupling two trapped Bose-Einstein condensates (BECs) which may exchange particles. Since the first
experimental observations in 1995 of Bose-Einstein condensation with Rubidium atoms in the group of E. Cornell
and C. Wiemann and with Sodium atoms in the group of W. Ketterle, many laboratories have produced
BECs from metastable vapors of various Alkali atoms at very low temperature (of the order of 10-100nK)
and low densities (of the order of 1013-1014 cm−3). The trapping of the atoms is realized either by applying an
inhomogeneous magnetic field or by means of optical potentials created by counter-propagating off-resonant laser
fields forming standing waves. A so-called external Bose-Josephson junction is obtained when the condensed
atoms are trapped in a double-well potential. The two spatial wave functions localized within each wells
constitute the two modes of the junction. Tunneling between the wells leads to an inter-mode coupling. In
internal Bose-Josephson junctions, the atoms are on the contrary trapped in a single well. The two modes
correspond to two distinct hyperfine internal states, which are coupled by a resonant microwave or radio-
frequency field. The two systems have the same dynamics. They have been realized experimentally with
optically trapped 87Rb atoms [87, 106] in the group of M. Oberthaler in Heidelberg and with magnetically
trapped 87Rb atoms on a chip [39, 202] in the group of P. Treutlein in Basel.

An interesting feature of ultracold trapped atomic gases is the experimental tunability of the physical
parameters governing their dynamics. The shape of the optical potential is controlled by the laser fields creating
it, enabling in particular to design quasi one-dimensional or two-dimensional confinements (anisotropic traps)
and disordered potentials (speckle). Artificial gauge fields can be created by applying additional laser fields [70].
The strength and even the sign of the inter-atomic interactions can be controlled by using Feshbach resonances in
the presence of a uniform magnetic field [89, 91]. For these reasons, BECs have attracted a lot of interest in recent
years, in view of their applications to quantum information technologies and their ability to simulate the ground
state properties and dynamics of many-body solid state systems. In particular, the superfluid Mott-insulator
phase transition has been observed experimentally in a BEC trapped in an optical lattice potential [104].

One of our motivations to study Bose-Josephson junctions (BJJs) is that they generate dynamically macro-
scopic superpositions of coherent states. The first proposal to generate such superpositions with light consisted
of sending photons through a medium presenting a strong Kerr non-linearity [272]. In such media, the dynamical
phases of Fock states are nonlinear in the photon number, thus the phase of an initial coherent state is split.
An alternative way is to use a cavity field coupled to atoms crossing the cavity [113]. In the experiments of
the Haroche group, superpositions of coherent states of the cavity field have been produced, and their progres-
sive transformation into statistical mixtures as time evolves has been observed [76] (see also the circuit QED
experiments in Yale [250]). Superpositions of coherent states for the motional degree of freedom of a single
Be+ trapped ion have been also produced in the group of D. Wineland [172]. In gases of ultracold bosonic
atoms, interactions between atoms lead to non-linearities similar to the Kerr non-linearity. Starting from a spin
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coherent state (that is, a product state in which all atoms are in the same superposition of the two modes), the
unitary dynamics builds up superpositions of spin coherent states after a sudden quench to zero of the inter-
mode coupling. The main question is to know whether such superpositions of coherent states can be formed in
a BJJ even in the presence of experimental noises and interaction of the trapped atoms with their environment.
The impact of decoherence on the superpositions has been investigated in Ref. [131] by considering the coupling
of the atoms with the electromagnetic vacuum. However, these decoherence effects seem to be negligible in the
Heidelberg and Basel experiments. In what follows, we study the impact on the superpositions of (i) a phase
noise produced by magnetic fluctuations in internal BJJs and by relative fluctuations of the bottoms of the two
wells in external BJJs (ii) atom losses in the BEC provoked by recombination and collision processes. These two
effects are presumably the main sources of decoherence in the aforementioned experiments. Their impact on
spin squeezed states, which are produced by the unitary dynamics of the BJJ at earlier times than the macro-
scopic superpositions, has been analyzed in detail in Refs. [218, 270, 271]. Unlike macroscopic superpositions,
spin squeezed states have been already observed experimentally [87, 106, 202].

Multipartite-entangled states such as squeezed states and macroscopic superpositions of coherent states are
particularly interesting for high-precision interferometry. Indeed, they can be used to estimate phase shifts
with a resolution below the shot noise limit, that is, better than what can be done with independent atoms.
The highest possible phase sensitivity is smaller than the shot noise value (∆φ)SN ∼ 1/

√
N by a factor 1/

√
N ,

N being the number of atoms. It is achieved when the input state of the interferometer is a macroscopic
superposition of two coherent states with opposite phases on the Bloch sphere [197]. In order to quantify the
amount of quantum correlations useful for interferometry, we study the time evolution of the quantum Fisher
information. This quantity is related to the Cramér-Rao lower bound on the precision with which an unknown
parameter - the phase shift in interferometry - can be determined via measurements on the output state and
statistical estimators. Important applications of interferometry with entangled states is the enhancement of the
precision of atomic clocks and magnetic field sensors.

The chapter is organized as follows. In Sec. 3.2 we review the dissipation-free dynamics of BJJs after a
sudden quench to zero of the inter-mode coupling. In Sec. 3.3 we study decoherence and phase diffusion due
to a phase noise and to atom losses. The time evolution of the quantum Fisher information in the presence of
atom losses is discussed in Sec. 3.4. Sec. 3.5 addresses the problem of the impact of a single atom loss event
on a macroscopic superposition, leading to qualitative explanations of the results of Sec. 3.4. The last section
presents some conclusive remarks.

3.2 Unitary dynamics of Bose-Josephson junctions

3.2.1 Bose-Hubbard Hamiltonian

We will describe the condensed atoms in external or internal BJJs by the two-mode Bose-Hubbard Hamilto-
nian [168]

H0 =
∑

i=1,2

(
Eini +

Ui
2
ni(ni − 1)

)
+ U12n1n2 +K(a†1a2 + a†2a1) , (3.1)

where ai, a
†
i , and ni = a†iai are the bosonic annihilation, creation, and number operators in mode i = 1, 2.

For an external BJJ, the Hamiltonian (3.1) is obtained formally by replacing the field operator ψ̂(x) in
the second-quantized many-body Hamiltonian of the N atoms by ψ1(x)a1 + ψ2(x)a2, where ψi(x) is the (real)
wave function of an atom localized in the ith well in the lowest energy level Ei =

∫
dx(∇ψi)2(x)/(2mat) +∫

dxVi(x)ψi(x)
2 (here Vi(x) is the single-well potential and mat the atomic mass). The contact interactions

between the atoms lead to the quadratic terms in ni, with interaction energies Ui = (4πℓi/mat)
∫
dxψi(x)

4,
with ℓi the scattering length in well i. Hereafter, we assume repulsive interactions, i.e., ℓi > 0. Quadratic terms
involving overlap integrals of ψ1(x) and ψ2(x) are neglected, so that in particular U12 = 0 (no interactions
between atoms localized in distinct wells). The last contribution in (3.1) originates from the overlap integrals
in the kinetic and external potential parts of the many-body Hamiltonian. It describes the tunneling between
the two wells, with tunnel energy K. The rigorous derivation of the Bose-Hubbard Hamiltonian (3.1) from the
many-body problem is an interesting open issue (see Part III below). In particular, it would be important to
identify precisely the weak interaction and large inter-well distance limits in which the two-mode approximation
is justified (see [168] for a physical discussion in this respect).

For an internal BJJ, the energy Ei in (3.1) is the energy of the hyperfine level i. The interaction energy
Ui for atoms in the same mode i is given by the same formula as above albeit with ψi(x) the solution of
the Gross-Pitaevskii equation in the single-well potential. The cross-interaction energy U12 cannot anymore
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be neglected. The tunneling term originates from a resonant microwave or radio-frequency field coupling the
two hyperfine levels, so that K is an experimentally controllable parameter. Even though the validity of the
two-mode approximation is questionable in the experiments of Refs. [106, 202], we will assume here that the
Bose-Hubbard Hamiltonian (3.1) captures qualitatively the important physics.

It is convenient to rewrite this Hamiltonian in terms of the angular momentum operators1

Jx =
1

2

(
a†1a2 + a†2a1

)
, Jy = − i

2

(
a†1a2 − a†2a1

)
, Jz =

1

2

(
a†1a1 − a†2a2

)
(3.2)

(Schwinger representation). If the BJJ has a well-defined fixed total atom number N = n1 + n2, the Bose-
Hubbard Hamiltonian takes the form

H0 = χJ2
z − λJz + 2KJx , (3.3)

where terms depending only on N have been dropped out and

χ =
U1 + U2 − 2U12

2
, λ = E2 − E1 + (N − 1)

U2 − U1

2
. (3.4)

It is worth noting that the Hamiltonian (3.3) also appears in the physics of superconductor-insulator-super-
conductor tunnel junctions (Josephson junctions).

3.2.2 Spin coherent states

When tunneling dominates inter-atomic interactions, the atoms in the BJJ are independent and delocalized in
the two modes, more precisely, they are in a Hartree state with single atom wave function (ψ1(x) +ψ2(x))/

√
2.

This state is an example of SU(2)-coherent state. Let |n1, n2〉 be the Fock states, that is, joint eigenstates of
the number operators in modes 1 and 2 with eigenvalues n1 and n2. The SU(2)-coherent states are defined
as [274]

|N ; θ, φ〉 =
N∑

n1=0

(
N
n1

) 1
2 (tan(θ/2))n1

[1 + tan2(θ/2)]
N
2

e−in1φ|n1, n2 = N − n1〉 . (3.5)

It is easy to show that |N ; θ, φ〉 ∝ (e−iφ sin(θ/2)a†1 + cos(θ/2)a†2)
N |0〉 (here, |0〉 is the vacuum state). Hence

|N ; θ, φ〉 is a product state in which all atoms are in the same superposition of the two modes.
An arbitrary (pure or mixed) state ρ can be represented by its Husimi distribution on the Bloch sphere of

radius N/2 (the classical phase space in our problem),

QN (θ, φ) =
1

π
〈N ; θ, φ|ρ|N ; θ, φ〉 . (3.6)

This distribution provides a useful information on the phase content of ρ. The coherent state (3.5) has a Husimi
distribution with a single peak at (θ, φ) of width ≈ 1/

√
N , as illustrated in the panel (a) of Fig. 3.1. In analogy

with quantum optics, we represent this state on the Bloch sphere as a disc of diameter
√
N/2 centered at

N(sin θ cosφ, sin θ sinφ,− cos θ)/2 (see Fig. 3.2). The coordinates of the center of the disc are the expectation
values of the angular momentum operators Jx, Jy, and Jz , whereas its diameter gives the quantum fluctuations
of Jn = J · n in directions n tangential to the sphere. The Fock state |n1 = N,n2 = 0〉 is a coherent state with
θ = π, located at the north pole of the Bloch sphere. The unitary operator e−iφJn performs a rotation by an
angle φ around the axis specified by the unit vector n.

3.2.3 Dynamics after a sudden quench to zero of the tunnel amplitude

Let us consider a BJJ with N0 atoms initially in the ground state of the Hamiltonian (3.3) for E1 = E2 and in
the limit of small interactions with respect to tunneling, i.e., H0 = 2KJx This state is the coherent state

|ψ(0)〉 = |N0;φ = 0〉 ≡ |N0; θ =
π

2
, φ = 0〉 . (3.7)

We are interested in the dynamics of the BJJ driven by interactions after a sudden quench to zero of the
inter-mode coupling K. Going to the rotating frame, we may suppose that λ = 0. It is immediate from (3.5)

that the atomic state |ψ(0)(t)〉 = e−itχJ2
z |ψ(0)〉 displays a periodic evolution with period T = 2π/χ if N0 is

even and T/2 if N0 is odd. It can be shown that the evolution between t = 0 and t = T first builds up spin

1It is easy to check that Jx, Jy, and Jz satisfy the commutation relations of angular momenta.
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Figure 3.1: Husimi distributions in a dissipation-free BJJ at some specific times: (a) t = 0 (coherent state);
(b) t = T/40 (spin squeezed state) , (c) t = T/6 (3-component superposition of coherent states), (d) t = T/4
(2-component superposition). Here U1 = U2 = 2π

T , U12 = E1 = E2 = 0, and N0 = 10.

squeezed states (states with a reduced fluctuation of Jn in one direction n and an enhanced fluctuation in the

perpendicular direction)2, the highest squeezing being produced at time t ≈ TN
−2/3
0 [146]. Later on, when the

Husimi distribution covers the whole equator of the Bloch sphere, interferences and quantum superpositions
should be expected to come into play. Indeed, at the times

tq =
π

χq
=

T

2q
, q = 2, 3, . . . , (3.8)

one finds that the atoms are in superpositions of coherent states3 [230, 272]

|ψ(0)(tq)〉 =
q−1∑

k=0

ck,q
∣∣N0;φk,q

〉
(3.9)

with coefficients ck,q of equal moduli q−1/2 and phases θ = π/2 and φk,q = φ0,q + 2πk/q. In particular, the
BJJ is at time t = t2 in the superposition (|N0;φ0,2〉 − |N0;φ0,2 + π〉)/

√
2 of two coherent states located on the

equator of the Bloch sphere at diametrically opposite points. Panels (c) and (d) of Fig. 3.1 show the Husimi
distributions of the states (3.9) for q = 2 and q = 3.

As stressed above, the observation of Schrödinger cat states such as (3.9) with large atom numbers N0 is
an exciting challenge. Due to the tunability of the interactions and trapping potential and since the sources
of decoherence in BECs are relatively well understood, cold atoms and more specifically BJJs seem to be good
candidates for observing such states4. Note that spin squeezing has been already obtained experimentally in
BJJs [87].

3.2.4 Structure of the atomic state in the Fock basis

The density matrix

ρ(0)(t) = |ψ(0)(t)〉〈ψ(0)(t)| = e−itχJ2
z |ψ(0)〉〈ψ(0)|eitχJ2

z (3.10)

2This can be understood intuitively as follows. The initial state is represented on the Bloch sphere by a disc centered at

(N/2, 0, 0) with radius
√
N/4 (see above). One may think of the unitary e−itχJ2

z as a rotation around the z-axis with an angle
tχJz . As the upper (lower) half of the disc rotates in the anticlockwise (clockwise) direction, an elongated ellipse is formed, as
illustrated in panel (b) of Fig. 3.1. This ellipse corresponds to a spin squeezed state.

3Equation (3.9) can be derived by using (3.5) and the Fourier expansions

e−iπn2
1/q =

{
u
∑q−1

k=0 e
iπk2/qe−2iπn1k/q if q is even

u′
∑q−1

k=0 e
iπk(k+1)/qe−iπn1(2k+1)/q if q is odd

with |u|2 = |u′|2 = 1/q by the Parseval identity. The phase φ0,q is equal to −N0π/q if q is even and (−N0 + 1)π/q if q is odd.
4Due to unavoidable atom losses, N0 should, however, be smaller than the hundreds of atoms used so far in the Heidelberg and

Basel experiments [202, 106].
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Figure 3.2: Rotations on the Bloch sphere in the interferometric scheme (see Sec. 3.4.1): the input coherent
state at the north pole (green disk) is rotated around the y-axis by an angle π/2 (blue disk) and afterward
around the z-axis by the unkown phase φ (black disk). The precision ∆φ on the estimation of φ is larger than
the size

√
N/2 of the disk, representing the angular momentum fluctuations, divided by the radius N/2 of the

sphere. The last rotation around the y-axis is not represented.

has a simple form in the Fock basis. In all what follows, we set n2 = N0 − n1 and n′
2 = N0 − n′

1. The moduli
of the matrix elements of ρ(0)(t) are time-independent and behave in the limit N0 ≫ 1 like

∣∣〈n1, n2|ρ(0)(t)|n′
1, n

′
2〉
∣∣ = 1

2N0

(
N0

n1

) 1
2
(
N0

n′
1

) 1
2

∼
√

2

πN0
exp

{
− (n1 −N0/2)

2 +
(
n′
1 −N0/2)

2

N0

}
. (3.11)

At the time tq of formation of the superposition (3.9), it is convenient to decompose the density matrix as a
sum of a “diagonal part” [ρ(0)(tq)]d, corresponding to the statistical mixture of the coherent states, and an
“off-diagonal part” [ρ(0)(tq)]od describing the coherences between these states, i.e.,

[ρ(0)(tq)]d =

q−1∑

k=0

ρ
(0)
kk,q , [ρ(0)(tq)]od =

q−1∑

k 6=k′
ρ
(0)
kk′,q , ρ

(0)
kk′,q = ck,qc

∗
k′,q|N0;φk,q〉〈N0;φk′,q| . (3.12)

These diagonal and off-diagonal parts exhibit remarkable structures in the Fock basis, which enable to read
them easily from the total density matrix5:

〈n1, n2|[ρ(0)(tq)]d|n′
1, n

′
2〉 = 0 if n′

1 6= n1 modulo q

〈n1, n2|[ρ(0)(tq)]od|n′
1, n

′
2〉 = 0 if n′

1 = n1 modulo q.
(3.13)

The off-diagonal part does almost not contribute to the Husimi distribution. The Husimi plots in panels (c)
and (d) of Fig. 3.1 thus essentially show the diagonal parts only. On the other hand, the quantum correlations
are contained in the off-diagonal part.

3.3 Dissipative dynamics of Bose-Josephson junctions

In this section, we consider the same evolution with initial state (3.7) under the Hamiltonian (3.3) with K =
λ = 0 as in the preceding section, but we add noise or atom losses on top of the unitary dynamics. We study
the effects of decoherence and phase relaxation on the atomic state, in particular the superpositions at time tq.

5The first line follows from (3.5) and the identity
∑q−1

k=0 e
2ik(n′−n)π/q = q if n = n′ modulo q and 0 otherwise. The second line

is obtained by using [ρ(0)(tq)]od = e−iπJ2
z/q|N0;φ = 0〉〈N0;φ = 0|eiπJ2

z/q − [ρ(0)(tq)]d.
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3.3.1 Decoherence and phase relaxation due to a phase noise

Random time fluctuations of the energies Ei.

In the external BJJ of Ref. [87], random changes of the shape of the two lowest potential wells are caused by
fluctuations in the direction of the laser beam producing a sinusoidal optical potential on top of the harmonic trap
(the other wells are not occupied by atoms at the temperature of the experiment). This induces time fluctuations
of the lowest energiesE1 and E2 of these two wells. Similarly, in the internal BJJs of Refs. [106, 202], the presence
of a randomly fluctuating inhomogeneous magnetic field leads to fluctuations of the hyperfine energy levels Ei.
We account for this noise by considering the Hamiltonian

H(t) = χJz
2 − λ(t)Jz , (3.14)

where λ(t) is a classical stochastic process. We assume here a stationary process with a correlation function

k(t− t′) = λ(t)λ(t′)− λ(0)
2

(3.15)

independent of the number of atoms N0 (this is justified if one can neglect the fluctuations of the interaction
energies Ui, see (3.4)). The overline in (3.15) refers to the average over the noise realizations. We set λ = λ(0) =
λ(t). Since [H(t), Jz] = 0 at all times, Jz is conserved as in the noiseless case. As a consequence, the model can be
solved exactly, without having to rely on a Markov approximation. For a given realization λ(t), the Schrödinger-
evolved state is obtained from the state |ψ(0)(t)〉 in the absence of noise through a rotation around the z-axis

by a random angle φ(t) = −
∫ t
0
dτλ(τ), i.e., |ψ(t)〉 = e−iφ(t)Jz |ψ(0)(t)〉. We denote by f(φ, t) = δ(φ(t) − φ)

the distribution of the phase φ(t). Performing the average over λ(t) of the pure state |ψ(t)〉 yields the density
matrix6 ρ(t) = |ψ(t)〉〈ψ(t)|.

We obtain

ρ(t) =

∫ ∞

−∞
dφ f(φ, t) e−iφJzρ(0)(t)eiφJz , (3.16)

where ρ(0)(t) is the lossless density matrix (3.10). By projecting (3.16) over the Fock basis we get

〈n1, n2|ρ(t)|n′
1, n

′
2〉 = f̂(n′

1 − n1, t)〈n1, n2|ρ(0)(t)|n′
1, n

′
2〉 , (3.17)

where f̂(m, t) = eimφ(t) is the Fourier transform of f(φ, t) (characteristic function) and as before n2 = N0 −n1,
n′
2 = N0 − n′

1.

To be specific, let us consider a Gaussian noise. Then f̂(m, t) = e−a
2(t)m2/2e−iλtm with a N -independent

variance a2(t) given by

a2(t) =

∫ t

0

dτ

∫ t

0

dτ ′k(τ − τ ′) =





k(0) t2 if t ≤ tc (small time regime)

2t

∫ ∞

0

dτ k(τ) if t≫ τc (Markov regime).
(3.18)

The noise correlation times τc and tc are defined in analogy with τR and tR in Sec. 1.3.5. We thus find

〈n1, n2|ρ(t)|n′
1, n

′
2〉 = exp

{
−1

2
a2(t)(n1 − n′

1)
2
}
eiλt(n1−n′

1)〈n1, n2|ρ(0)(t)|n′
1, n

′
2〉 . (3.19)

The effect of the noise is to suppress the off-diagonal elements of ρ(t) in the Fock basis (decoherence). At long
times t ≫ (

∫∞
0

dτk(τ))−1, ρ(t) converges to a statistical mixture of Fock states with the same probabilities as
for the initial state (see (3.11)),

ρ(∞) =

N0∑

n1=0

1

2N0

(
N0

n1

)
|n1, N0 − n1〉〈n1, N0 − n1| =

∫ 2π

0

dφ

2π
|N0;φ〉〈N0;φ| . (3.20)

The last equality means that the phase φ is uniformly distributed on [0, 2π] at large times t or large noise
intensities

∫∞
0 dτk(τ). The spreading of the phase along the equator (phase relaxation) can be seen on the

Husimi distributions shown in Fig. 3.3. In the absence of noise, the distribution is peaked at φ = 0 and π, which
correspond to the two coherent states of the superposition. The peaks are smeared for a2 ≃ 1 and the distribution
reaches a flat profile for a2 ≫ 1. Equation (3.19) predicts a decay of the visibility ν(t) = 2 tr(Jxρ(t))/N0 like
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Figure 3.3: Phase relaxation along the equator of the Bloch sphere. Top panels: superposition with q = 4
(time t4 = T/8) and a4 = 0, 0.64, 2.05 (from left to right). Middle panels: superposition with q = 2 (time
t2 = T/4) for the same noise intensities

∫∞
0 dτ k(τ) in the Markov regime (see (3.18)), i.e., a2 = 0, 0.9, 2.9. The

circle sizes illustrate qualitatively the phase distribution f(φ, t2,4). For intermediate noise (middle column),
the superposition is closer to the steady state (last column) for q = 4 than for q = 2. Bottom panels: Husimi
distribution (3.6) of [ρ(t2)]d as a function of φ for θ = π/2, for the same values of a2 and λ = 0, N0 = 10.

e−a
2(t)/2 with respect to the noiseless case. A Gaussian decay is observed experimentally [107], indicating that

the correlation time τc is much larger than the time of formation of squeezed states (non Markovian regime).

Effect of the phase noise on macroscopic superpositions.

Let us now study the impact of decoherence and phase relaxation on the superposition (3.9) at time t = tq
as a function of aq = a(tq). In view of (3.19), both the diagonal and off-diagonal parts of the noiseless density

matrix are multiplied in the Fock basis by the decoherence factor e−Dq(n1,n
′
1) = e−a

2
q(n1−n′

1)
2/2. Using also the

structure (3.13) of this matrix, we infer that

1) [ρ(tq)]d → ρ(∞) when aqq ≫ 1 (phase relaxation);

2) [ρ(tq)]od → 0 when aq ≫ 1 (decoherence).

As corroborated by Fig. 3.4, in the strong noise limit the diagonal part of ρ(t) relaxes to the steady state (3.20)
and the off-diagonal part is washed away. Remarkably, the decoherence factor e−Dq does not depend on the
atom number N0. This number gives the separation on the Bloch sphere between the coherent states of the
two-component superposition. Also note the different noise scales relevant for decoherence, aq, and for phase
relaxation, aqq. Hence, when increasing the noise intensity, [ρ(tq)]d approaches ρ(∞) before [ρ(tq)]od vanishes.
The higher the number of components q in the superposition, the more pronounced is this effect. In fact,
superpositions with higher q are less affected by decoherence since they are formed at shorter times and a(t)
increases with time. Conversely, phase relaxation has a stronger effect on superpositions with higher q in the
Markov regime7, as illustrated in Fig. 3.3. As a consequence, by increasing the noise intensity the superposition
(3.9) is not transformed into a statistical mixture of coherent states but relaxes directly to the mixture of Fock
states (3.20).

The surprising fact that decoherence is not enhanced by increasing the distance on the Bloch sphere between
the coherent states in the superposition is specific to the noise considered. Indeed, the noise in the Hamiltonian
(3.14) is applied perpendicularly to the equator of the Bloch sphere where the coherent states lay. As a result, it
is insensitive to the separation between these states. The superpositions would be much more affected by a Jx or
Jy noise parallel to the equatorial plane, since such noises would “see” the separation between the components.
We also stress that, even though decoherence is not due here to a coupling with a reservoir, exactly the same
dynamics would have been obtained for the reduced density matrix of a BJJ interacting with a bath via a
Hamiltonian of the form (1.15) with X replaced by Jz.

6This is the analog of tracing out the bath degrees of freedom for systems coupled to quantum baths (chapter 1).
7Indeed, in view of (3.13) and (3.19), the n1 6= n′

1 matrix elements of [ρ(tq)]d are damped in the Markov regime by a factor
equal to or smaller than exp(−a2qq2/2) ≃ exp[−(πq/χ)

∫∞
0 dτk(τ)]. In contrast, in the small-time regime all the q-component

superpositions relax to ρ(∞) at the same noise intensity k(0), since aqq is independent of q.
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Figure 3.4: Top panels: relaxation of the diagonal part of the density matrix 〈n,N0−n|[ρ(t2)]d|m,N0−m〉 in
the Fock basis to the diagonal matrix (3.20) as the noise is increased from a2 = 0 (left) to a2 = 0.9 (middle) and
a2 = 2.9 (right). The time t = t2 is the formation time of the superposition with q = 2 and one has N0 = 10.
Bottom panels: off-diagonal part of the density matrix, whose decay to zero indicates decoherence among the
coherent states of the superposition, for the same noise strengths a2 and time t = t2.

3.3.2 Dynamics in the presence of atom losses

Master equation and quantum jumps.

Scattering events lead to atom losses in the trap and constitute the main source of decoherence in the
Heidelberg and Basel experiments. In fact, the phase noise considered in the previous subsection can be
decreased by using a spin-echo technique [106]. Three kinds of loss processes may play a role: one-body losses,
due to inelastic collisions between trapped atoms and the background gas; two-body losses, resulting from
scattering of two atoms in the magnetic trap, which changes their spin and gives them enough kinetic energy
to be ejected from the trap; and three-body losses, where a three-body collision event produces a molecule and
ejects a third atom out of the trap.

Let mν,1 and mν,2 be the number of atoms lost in mode 1 and 2 during the νth loss process, with |mν | =
mν,1 +mν,2 = r for a r-body loss. We introduce the jump operators

Mmν
= a

mν,1

1 a
mν,2

2 (3.21)

and loss rates Γmν
. For external BJJs one has Γmν

= 0 for mν,1mν,2 > 0 (no inter-mode losses). We account for
the three aforementioned loss processes by considering the Markovian Lindblad master equation [10, 137, 138]

dρ

dt
= −i

[
H0, ρ(t)

]
+

∑

m∈{1,2,3}2,|m|≤3

Γm

(
Mm ρM

†
m − 1

2

{
M †
mMm, ρ

})
, (3.22)

where ρ(t) is the atomic density matrix8.
Equation (3.22) does not couple sectors with different numbers of atoms N . If the matrix elements of ρ(t)

between states with different N vanish initially, this will be the case at all times t ≥ 0. Then

ρ(t) =

N0∑

N=0

ρ̃N (t) , ρ̃N(t) = wN (t)ρN (t) , (3.23)

where ρ̃N (t) (respectively ρN (t)) is the unnormalized (normalized) density matrix with a well-defined9 number
of atoms N and wN (t) ≥ 0 is the probability of finding N atoms at time t (thus

∑
N wN (t) = 1). The conditional

8The loss rates Γm actually depend on the macroscopic wave function of the condensate [137, 138] and thus on the number of
atoms N in the BJJ. As far as the number of lost atoms at the revival time T remains small with respect to the initial atom number
N0, one may nevertheless assume that Γm are time-independent in the time interval [0, T ].

9This means that 〈n1, n2|ρN (t)|n′
1, n

′
2〉 = 0 for n1 + n2 6= N or n′

1 + n′
2 6= N .
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state ρN (t) describes the state of the BJJ when one post-selects among many single-run measurements those
yielding a total number of atoms at time t equal to N . In this sense, ρN (t) contains a more precise physical
information10 than ρ(t).

When inter-mode losses are absent (like for external BJJs), the master equation (3.22) can be solved in
the Fock basis by exact diagonalization; however, for two- and three-body losses the solution has a quite
complicated form and the computation of expectation values or other quantities depending on ρ(t) must be done
numerically11. Alternatively, quantum trajectories provide a natural and efficient tool to study the conditional
states ρN (t). We use here the quantum jump approach (Sec. 2.2.1). Let J be the number of loss events
(jumps) in the time interval [0, t]. We write m = (m1, . . . ,mJ) ∈ {1, 2, 3}2J the random sequence of loss types
mν = (mν,1,mν,2) and s = (s1, . . . , sJ) the random sequence of loss times 0 ≤ s1 ≤ · · · ≤ sJ ≤ t. The total

number of atoms ejected from the condensate between times 0 and t is equal to |m| = ∑J
ν=1(mν,1 +mν,2). The

random wave function at time t reads

|ψJ (t)〉 =
|ψ̃J (t)〉
‖ψ̃J(t)‖

|ψ̃J (t)〉 = e−i(t−sJ )HeffMmJ
e−i(sJ−sJ−1)HeffMmJ−1 · · · e−i(s2−s1)HeffMm1e

−is1Heff |ψ(0)〉 , (3.24)

where Heff = H0 − i
∑
m ΓmM

†
mMm/2 is defined by (2.3). Using (2.6) and (2.9), one finds that the probability

to have J loss events between times 0 and t, with the νth event of type mν occurring in the time interval
[sν , sν + dsν ], ν = 1, . . . , J , reads

dp(t)
m
(s; J) = Γm1 · · ·ΓmJ

∥∥ψ̃J(t)
∥∥2ds1 · · ·dsJ . (3.25)

As pointed out in Sec. 2.2.2, the density matrix solution of the master equation (3.22) is obtained by averaging
the projector on |ψJ (t)〉 over all quantum trajectories (that is, over the number of jumps J and the jump times
sν and types mν). We thus recover the block structure (3.23) of ρ(t) with

ρ̃N (t) =

N∑

J=1

∑

m

δN0,N+|m| Γm1 · · ·ΓmJ

∫

0≤s1≤···≤sJ≤t
ds1 · · · dsJ |ψ̃J (t)〉〈ψ̃J (t)| . (3.26)

Conditional state in the subspace with N0 atoms.

We start by determining the unormalized conditional state with the initial number of atoms N0,

ρ̃
(no loss)
N0

(t) = |ψ̃0(t)〉〈ψ̃0(t)| , |ψ̃0(t)〉 = e−itHeff |N0;φ = 0〉 . (3.27)

This corresponds to the contribution of quantum trajectories with no jump in the time interval [0, t]. In the
Fock basis diagonalizing both the Hamiltonian (3.1) (recall that we set the tunneling amplitude K to zero) and
the damping terms −iΓmM

†
mMm/2 , the conditional state takes the form

〈n1, n2|ρ̃(no loss)
N0

(t)|n′
1, n

′
2〉 = e−t[dN0(n1)+dN0(n

′
1)]〈n1, n2|ρ(0)N0

(t)|n′
1, n

′
2〉 , (3.28)

where ρ
(0)
N0

(t) is the state (3.10) in the absence of losses, dN0(n1) =
∑
m Γm〈n1, n2|M †

mMm|n1, n2〉/2, and

n2 = N0 − n1, n
′
2 = N0 − n′

1. We restrict here our attention to symmetric three-body losses12, i.e., Γ3,0 = Γ0,3

and Γ1,2 = Γ2,1. Let us set

a =
1

2

(
Γ2,0 + Γ0,2 − Γ1,1

)
+ (N0 − 2)κ , κ =

3

2
Γ3,0 −

1

2
Γ2,1 . (3.29)

If a > 0, the damping factor in (3.28) (exponential factor in the right-hand side) is Gaussian: in fact, then

dN0(n1) = a(n1 − n1)
2 (3.30)

up to an irrelevant n1-independent constant that can be absorbed in the normalization of the state, with

n1 =
1

4a

(
∆Γ1 −∆Γ2 +N0(2Γ0,2 − Γ1,1) + 2N0(N0 − 2)κ

)
, ∆Γr = Γ0,r − Γr,0 . (3.31)

10To have access to this information, one must be able to extract samples with a well-defined atom number initially (since we
assumed an initial state with N0 atoms) and after the evolution time t. Even though the precise measurement of N is still an
experimental challenge, the precision has increased by orders of magnitude during the last years.

11See the Appendix A of [228] for more detail.
12See [228] for the study of the asymmetric three-body loss case, for which dN0

(n1) is cubic in n1.
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In order to estimate the typical loss rates at which the state (3.28) is affected by the Gaussian damping, we
focus on two particular cases.

(i) Symmetric loss rates, ∆Γr = 0, r = 1, 2, 3. In this case n1 = N0/2 and the damping factor in (3.28) is a
Gaussian centered at (n1, n

′
1) = (N0/2, N0/2). This center coincides with the peak of the matrix elements

in the absence of losses, which have a width
√
N0, see (3.11). Thus the effect of the Gaussian damping

begins to set in for times t such that at ≈ 1/N0. In particular, the macroscopic superposition at time tq
is noticeably affected by damping for a & χq/N0.

(ii) Completely asymmetric two-body losses and no three-body losses, Γ0,2 = Γ1,1 = κ = 0. Then n1 =
∆Γ1/(2Γ2,0) + 1/2. The onset of the damping on the q-component superposition is at the loss rate

Γ2,0 ≈ χq/N
3/2
0 , which is smaller by a factor of

√
N0 compared with case (i), except for strongly asymmetric

one-body loss rates satisfying ∆Γ1 ≈ Γ2,0N0 (in which case this onset occurs when Γ2,0 ≈ χq/N0 as in
(i)). Therefore, when ∆Γ1 is not of the order of Γ2,0N0, the Gaussian damping affects more strongly the
superpositions than in the symmetric case.

Conditional state in the subspace with N < N0 atoms.

We now proceed to study the contribution to the total density matrix ρ(t) of quantum trajectories having
J ≥ 1 jumps in the time interval [0, t]. It is easy to see that each jump (2.7) with jump operator (3.21) transforms
a coherent state |N0; θ, φ〉 into a coherent state |N0 − |m|; θ, φ〉. This coherent state is rotated on the Bloch
sphere by the evolution between jumps driven by the effective Hamiltonian Heff . This is due to the non-linearity
of Heff in ni and to the different numbers of atoms in the BJJ in the time intervals [0, s1], [s1, s2], . . . , [sJ , t],
leading to different interaction energies. More precisely, for three-body loss rates satisfying Γm ≪ (N0t)

−1,
|m| = 3, the wave function (3.24) is proportional to

|ψJ(t)〉 ∝ e−itHeff
∣∣N0 − |m|; θm(s), φm(s)

〉
, (3.32)

where θm(s) and φm(s) are random angles depending on the loss types mν and loss times sν . These angles are
given by

θm(s) = 2 arctan
(
exp

{
−

J∑

ν=1

sν
2

(
δ1mν,1 + δ2mν,2

)})
, φm(s) =

J∑

ν=1

sν(χ1mν,1 + χ2mν,2) , (3.33)

where we have introduced the interaction energies

χ1 = U1 − U12 , χ2 = −(U2 − U12) , (3.34)

and the loss rate differences

δ1 = 2Γ2,0 − Γ1,1 + (3Γ3,0 − Γ1,2)N0 , δ2 = −
(
2Γ0,2 − Γ1,1 + (3Γ0,3 − Γ2,1)N0

)
. (3.35)

To give an insight on the derivation of these formulas, let us consider the special case of a trajectory t 7→ |ψ1(t)〉
having a single loss event of type m = (2, 0) at time s ∈ [0, t], for a BJJ subject to two-body losses only13. We
first determine how an initial Fock state |n1, n2〉 is transformed when two atoms are lost in mode 1 at time s.
Using (3.24), this state becomes

√
n1(n1 − 1)e−iΦt,s(n1,n2)|n1 − 2, n2〉 at time t, where Φt,s(n1, n2) is a complex

dynamical phase. Setting n2 = N0 − n1 and denoting by Heff(n1, n2) the quadratic eigenvalues of Heff , this
phase reads

Φt,s(n1, n2) = (t− s)Heff(n1 − 2, n2) + sHeff(n1, n2)

= tHeff(n1 − 2, n2) + n1φ1(s) + in1 ln
(
tan

(θ1(s)
2

))
+ ct,s , (3.36)

where ct,s is independent of n1 and θ1(s), φ1(s) are given by (3.33) with J = 1, mν,1 = 2, mν,2 = 0, and Γm = 0
for |m| 6= 2. The second term in the last line of (3.36) corresponds to the dynamical phase associated to the
change in the atomic interaction energy because of the reduction of particles at time s, and the third term
describes a corresponding change in the damping. Replacing |n1, n2〉 in the Fock-state expansion (3.5) of the
initial coherent state by the above transformed state, we obtain the formula (3.32).

13See [228] for a more general derivation of (3.32)-(3.35) including also one- and three-body losses and an arbitrary number of
loss events.

51



Equation (3.32) means that, apart from damping effects due to the non self-adjoint part in the effective
Hamiltonian Heff , atom losses can be accounted for by external noises rotating the state around the Bloch
sphere. More precisely, the conditional state ρN (t) is the same state as if there were no atom loss, one had
initially N atoms, and the BJJ was subject to phase noises in the angles φ and θ described by the random
Hamiltonian (3.14) but with a complex stochastic process λ(t) satisfying

∫ t
0
dτλ(τ) = −φm(s)−i ln(tan(θm(s))/2

and with an additional damping term. This analogy between atom losses and phase noise has been discovered
independently by Sinatra, Dornstetter, and Castin [219]. For a single loss event (J = 1), the noise fluctuations
have magnitude

δθm1 ≃ 1

2
δsm1

∣∣∣∣
∑

i=1,2

δim1,i

∣∣∣∣ , δφm1 = δsm1

∣∣∣∣
∑

i=1,2

χim1,i

∣∣∣∣ (3.37)

(we assume here δθm1 ≪ 1), where δsm1 is the fluctuation of the loss time s.
The conditional density matrix ρN (t) withN < N0 atoms can be determined by summing over all trajectories

having J loss events such that |m| = N0−N , see (3.26). This requires the evaluation of the norm ‖ψ̃j(t)‖. The
calculation does not present difficulties, but it is maybe the longest one I have made in the last years, because
of the large number of jump operators and rates in the problem. The result is that ρN (t) is given in the Fock
basis by

〈n1, n2|ρN (t)|n′
1, n

′
2〉 = EN (t;n1, n

′
1)〈n1, n2|ρ̃(no loss)

N (t)|n′
1, n

′
2〉 , (3.38)

where ρ̃
(no loss)
N (t) is the density matrix conditioned to no loss event for an initial coherent state with N atoms,

see (3.28), and EN (t;n1, n
′
1) is an envelope depending on time and on the matrix entries n1 and n′

1. For
N = N0 − r and if only r-body losses occur, this envelope is

E(1-jump)
N (t;n, n′) ∝

∑

m,|m|=r
ΓmCN,m(t;n, n

′) (3.39)

with

CN,m1(t;n, n
′) =

1− e−t[Gm1+(δ1m1,1+δ2m1,2)(n+n
′−N)/2+i(χ1m1,1+χ2m1,2)(n−n′)]

Gm1 + (δ1m1,1 + δ2m1,2)(n+ n′ −N)/2 + i(χ1m1,1 + χ2m1,2)(n− n′)
, (3.40)

where Gm1 is a function of N0, r, m1, and Γm1 that we shall not give explicitly here (see [228] for more detail).
If, in addition to the above condition on three-body losses, one assumes that14 the two-body loss rates satisfy
Γm ≪ t−1, |m| = 2, and that the total number N0 − N of atoms lost between times 0 and t is much smaller
than N0, the envelope in (3.38) takes a simple form in terms of the single jump envelopes,

EN (t;n, n′) =
∑

J1,J2,J3≥0,J1+2J2+3J3=N0−N

1

J1!J2!J3!

3∏

r=1

[
E(1−jump)
N0−r (t;n, n′)

]Jr

. (3.41)

3.4 Time evolution of the quantum Fisher information

We introduce in this section the notion of quantum Fisher information and its interpretation in terms of the
best achievable phase sensitivity in interferometry. We then use this Fisher information to quantify the amount
of quantum correlations in the atomic states of a BJJ in the presence of atom losses as a function of time. A
more detailed presentation on the Fisher information and phase estimation will be given in chapter 9 below.

3.4.1 Interferometric sequence

The goal of interferometry is to estimate an unknown phase shift φ with the highest possible precision. We
assume here that the reader is familiar with optical Mach Zehnder interferometers (otherwise a quick look to
Sec. 9.2.1 and Fig. 9.1 might be helpful!). In atom interferometry, an input state is first transformed into
a superposition of two modes, analogous to the two arms of an optical interferometer. These modes acquire
distinct phases φ1 and φ2 during the subsequent quantum evolution. They are finally recombined to read out
interference fringes, from which the phase difference φ = φ1 − φ2 is inferred. The interferometric sequence can

14These are not strong restrictions since for large N0 the mean number 〈N〉t of atoms at time t when the BJJ is subject to two-

or three-body losses is a function of N
|m|−1
0 Γmt with |m| = 2 or 3, respectively (this follows e.g. from the phenomenological rate

equations, which yield 〈N〉t ≃ N0(ΓmN0t+1)−1 and N0(2ΓmN2
0 t+1)−1/2 for symmetric two- and three-body losses, respectively).

Hence our conditions are still fulfilled if a large fraction (e.g. 50%) of the initial atoms are lost between times 0 and t.
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be described by means of rotations generated by the momentum operators (3.2). Let us consider the case where
the two modes correspond to two internal states of the atoms in a trapped BEC (internal BJJ). The N atoms
are initially in the lower energy state (mode i = 1) and the input state is the Fock state |n1 = N,n2 = 0〉.
The application of a π/2 pulse with frequency in resonance with the two internal levels plays the role of a
beam splitter in optical interferometers. It brings the input state onto the coherent state |N ; θ = π/2, φ = 0〉.
Then the state is rotated around the z-axis by the free evolution. This rotation implements the different phases
accumulated in the two arms of an optical interferometer [273]. The consecutive rotations on the Bloch sphere
are represented in Fig. 3.2. Finally, the state is rotated again around the y-axis by an angle of −π/2 radians to
recombine the two paths. Since the composition of rotations ei

π
2 Jye−iφJze−iπ2 Jy is equivalent to a rotation by

an angle −φ around (Ox), the output state of the interferometer reads

ρout(φ) = e−iφJnρine
iφJn , (3.42)

where ρin is the input state and the unit vector n = −ex defines the interferometer direction. The rotations
are realized fast enough so that the non-linearity induced by the interactions and atom losses can be neglected
during the whole interferometric sequence [106].

3.4.2 Phase estimation and quantum Fisher information

The phase shift φ is determined by means of a statistical estimator depending on the results of measurements
on the output state ρout(φ). As argued in Sec. 9.2 below, the best precision that can be achieved (that is,
optimizing over all possible estimators and measurements) is given by

(∆φ)best =
1√

N FQ(ρin, Jn)
, (3.43)

where N is the number of measurements and FQ(ρ, Jn) is the quantum Fisher information defined by Eq. (8.42)
in chapter 8. The latter quantity thus measures the amount of quantum correlations in ρ useful for interfer-
ometry. If FQ(ρin, Jn) > 〈N〉, a better phase sensitivity than the shot noise value (∆φ)SN = 1/

√
N 〈N〉, which

corresponds to using as input 〈N〉 independent atoms (coherent state), is obtained. The highest value of the
Fisher information for N0 atoms is FQ(ρin, Jn) = N2

0 . It can be shown that FQ(ρin, Jn) ≥ 〈N〉 implies that the
atoms are entangled [134] and that high values of FQ(ρin, Jn) imply multipartite entanglement between a large
number of atoms [135, 236].

Since Jn does not couple subspaces with different N ’s, it follows from (8.42) and from the block structure
(3.23) of ρ that

FQ(ρ, Jn) =
N0∑

N=0

wNFQ(ρN , Jn) , (3.44)

where FQ(ρN , Jn) is the Fisher information of the conditional state ρN with N atoms and wN is the corre-
sponding probability.

In order to obtain a measure of quantum correlations independent of the direction n of the interferometer,
we optimize the Fisher information over all unit vectors n and define [133],

FQ(ρ) = max
‖n‖=1

FQ(ρ, Jn) = 4Cmax . (3.45)

From the expression (8.42) of FQ(ρ, Jn), one easily sees that Cmax is the largest eigenvalue of the 3 × 3 real
symmetric covariance matrix

Cab =
1

2

∑

k,l,pk+pl>0

(pk − pl)
2

pk + pl
Re

{
〈k|Ja|l〉〈l|Jb|k〉

}
, a, b = 1, 2, 3 , (3.46)

where |k〉 and pk stand for the eigenvectors and eigenvalues of ρ. For simplicity, we write in the following
Ftot(t) ≡ FQ(ρ(t)) for the optimized Fisher information of the total atomic density matrix ρ(t) of the BJJ at
time t. When studying the quantum correlations of the conditional states, we optimize over n independently
in each N -atom subspace and define15 FN(t) ≡ FQ(ρN (t)).

15Note that Ftot(t) is not equal to
∑

N wN (t)FN (t), because the optimal directions may be different in each subspace.
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Figure 3.5: Left panel: Fisher information Ftot(t) during the quenched dynamics of a BJJ with N0 = 100
atoms as a function of time (in units of the revival time T ) in the absence of losses. The dashed line represents
the amount of squeezing Fξ(t) = N0/ξ(t)

2 [197]. Right panel: same in the presence of atom losses (time in ms)
for U2 = U12, U1 −U12 = 18.056Hz, and (i) asymmetric two-body losses Γ0,2 = 0.0127Hz and Γ2,0 = 0 without
one- and three-body losses; (ii) one-, two-, and three-body losses in the second mode with rates Γ0,1 = 0.4Hz,
Γ0,2 = 0.0127Hz, Γ0,3 = 1.08 × 10−6Hz, and no losses in the first mode; (iii) symmetric one- and three-body
losses and asymmetric two-body losses, Γ1,0 = Γ0,1 = 0.2Hz, Γ0,2 = 0.0127Hz, Γ2,0 = 0, and Γ3,0 = Γ0,3 =
0.54× 10−6Hz. The case (iii) roughly corresponds to the experimental conditions in Refs. [106, 202].

3.4.3 Time evolution of the Fisher information in Bose-Josephson junctions

Let us study the time evolution of the optimized quantum Fisher information (3.45) in the BJJ after a sudden
quench to zero of the inter-mode coupling K. In the absence of losses, the two-component superposition has
the highest possible Fisher information FQ[ρ(0)(t2)] = N2

0 , which is for N0 ≫ 1 approximately twice larger than

that of the superpositions with q components, 3 ≤ q . N
1/2
0 [197]. The time evolution of Ftot(t) = FN0(t) for

an atomic sample with N0 = 100 atoms is represented in the left panel of Fig. 3.5. At t = 0, the BJJ is in the
coherent state (3.7) and FN0(0) has the shot noise value N0. The Fisher information first increases, reaches a
plateau with value N0(N0+1)/2 at time t ≈ T/

√
N0, and then displays a maximum N2

0 at the time of formation
t = t2 = T/4 of the two-component superposition. It evolves afterward symmetrically back to the initial value
N0 at time T/2, when the atomic state |ψ(0)(t)〉 coincides with the coherent state |N0;φ = π〉 (see Ref. (3c) in
the publication list).

We now compare this evolution with that obtained for the same sample in the presence of atom losses for
experimentally relevant loss rates extracted from Refs. [218, 202, 271]. The Fisher information is obtained in
this case from an exact diagonalization of the master equation (3.22) and a numerical diagonalization of the
density matrix ρ(t) [228]. It is displayed in the right panel of Fig. 3.5. When the BJJ is subject to two-body
losses in the mode i = 2 only (upper curve), we observe that the Fisher information exhibits a well pronounced
peak at time t2 as in the lossless case, showing that the quantum correlations of the superpositions are well
preserved. This occurs provided that the atomic interaction energies Ui are chosen such that U2 = U12 (i.e.,
χ2 = 0), in such a way as to suppress the φ-noise given by (3.33) in the mode losing atoms. A much lower Fisher
information would be obtained if one takes symmetric energies U1 = U2, keeping the same value for the revival
time T = 4π/(U1 + U2 − 2U12) (see below). In the Heidelberg and Basel experiments, two-body losses indeed
occur mainly in the upper hyperfine level. When one- and three-body losses, which are also present in these
experiments, are added, the coherences of the superpositions are still preserved provided that all losses occur
in the second mode and one takes as before U2 = U12, as it can be inferred from the still relatively high values
of the Fisher information in the middle curve of Fig. 3.5. However, when symmetric one- or three-body losses
are added, the quantum correlations are destroyed much more rapidly and the peak in the Fisher information
at time t2 disappears. In the aforementioned experiments, one-body losses are symmetric since they are due to
collisions with atoms from the background gas, which are equally likely for the two internal states. We conclude
from Fig. 3.5 that for U2 = U12, these symmetric one-body losses are more detrimental to the macroscopic
superpositions than the two-body losses in the second mode.
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Figure 3.6: Moduli |〈n,N1 − n|ρN1(t2)|n′, N1 − n′〉| of the density matrix in the Fock basis at time t2 = T/4 in
the subspace with N1 = N0−2 atoms for increasing two-body loss rates (from left to right). The upper, middle,
and bottom panels correspond to symmetric losses and energies (Γ2,0 = Γ0,2 and U1 = U2), asymmetric losses
and symmetric energies (Γ0,2 = 0 and U1 = U2), and asymmetric losses and energies (Γ2,0 = 0 and U2 = U12),
respectively. The revival time T = 2π/χ is the same in all cases. Panels in the same column have the same
total loss rate Γ2,0 + Γ0,2. White dashed lines are marking the values of (n, n′) for which the matrix elements
of the diagonal part [ρ(0)(t2)]d of the two-component superposition do not vanish. Only two-body losses in the
same mode are considered, i.e., Γm = 0 for |m| = 1, 3 and m = (1, 1). The initial number of atoms is N0 = 10.

3.5 Impact of a single loss event on macroscopic superpositions

The quantum Fisher information in Fig. 3.5 gives the amount of quantum correlations in the density matrix
ρ(t) averaged over all loss events. In this section, we investigate separately the quantum correlations in the
conditional states ρN (t) with given atom numbers N (Sec. 3.3.2). In particular, we would like to answer the
following question: how does a single loss event, occurring at an unknown random time between t = 0 and the
formation time tq of a macroscopic superposition, affects the coherences in the superposition? In the case of
photons, it is believed that macroscopic superpositions of coherent states loose their coherence completely after
a single photon loss [113]. This means that the conditional state given that one photon has been lost is close
to a separable mixture of coherent states. In what follows, we study this problem for a BJJ. With this aim, we
determine the Fisher information FN0−r(tq) in the conditional density matrix ρN0−r(tq), where r = 1, 2, 3 for
one-, two-, and three-body losses. We find quite different values depending on the degree of asymmetry between
the loss rates and interaction energies in the two modes of the BJJ. This provides a qualitative explanation of
the different behaviors of the total Fisher information in the presence of losses in Fig. 3.5.

3.5.1 Numerical results

Let us first describe the results obtained by my collaborator K. Pawlowski via an exact diagonalization of the
master equation (3.22) and a subsequent numerical evaluation of the optimized Fisher information (3.45). For
concreteness, we restrict ourselves to two-body losses, assuming no one-body, three-body, and inter-mode losses
(i.e., all loss rates vanish save for Γ2,0 and Γ0,2). The density matrix ρN1(t2) with N1 = N0 − 2 atoms is shown
in Fig. 3.6 in the Fock basis. If the interaction energies in the two modes are equal, U1 = U2, we observe that
ρN1(t2) is almost diagonal in this basis for weak symmetric loss rates Γ2,0 = Γ0,2 . χ/N0 (upper left panel).
In contrast, for completely asymmetric rates with Γ0,2 = 0, ρN1(t2) has non-vanishing off-diagonal elements for
odd values of n′

1 − n1 (middle left panel). Moreover, if there is no loss in the first mode and one tunes the
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(a) symmetric loss rates (Γ2,0 = Γ0,2 = γ1)
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(b) asymmetric loss rates (Γ2,0 = γ1, Γ0,2 = 0)
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Figure 3.7: Fisher information optimized in the subspace with (N0 − 2) atoms at time t2 as a function of the
two-body loss rate (in units of T−1) for (a) symmetric losses Γ2,0 = Γ0,2 = γ1 with U1 = U2 (red solid line) and
U2 = U12 (green dashed line); (b) completely asymmetric losses with Γ0,2 = 0 and Γ2,0 = γ1, for U1 = U2 (red
solid line), U1 = U12 (green dot dashed line), and U2 = U12 (blue dashed line). The energies Ui are chosen in
such a way that the revival time T = 2π/χ does not change. Insets: plots of the Husimi distributions for some
specific choices of loss rates (indicated by circles and arrows). Other parameters as in Fig. 3.6.

energies such that U2 = U12, keeping the effective interaction energy χ = (U1 +U2 − 2U12)/2 fixed, the density
matrix has the same structure as that of a two-component superposition with N1 atoms (lower left panel). This
is confirmed by looking at the Fisher information FN1(t2) displayed in Fig. 3.7. If one of the two modes does not
lose atoms and Ui = U12 in the other mode, FN1(t2) is approximately equal for small loss rates Γm ≪ χ/N0 to
the Fisher information N2

1 of a two-component superposition (upper curve in the right panel). At stronger loss
rates Γm ≈ χ, FN1(t2) decreases to much lower values. Conversely, for symmetric losses and energies, FN1(t2)
starts below the shot-noise limit at weak losses and increases with Γm to reach a maximum when Γm ≃ χ/π
(left panel).

3.5.2 Analytical results for small loss rates

The above numerical observations can be explained by relying on the quantum jump approach. The general
results of Sec. 3.3.2 take a simpler form for small loss rates satisfying

Γm ≪ N
1−|m|
0 t−1

q , |m| = 1, 2, 3 . (3.47)

Then the θ-noise can be neglected since δθm is much smaller than the quantum fluctuations in the coherent
states forming the components of the superposition (3.9) (the latter are of the order of 1/

√
N0). In contrast, due

to large fluctuations δsm ≈ tq of the loss time, which has an almost flat distribution on [0, tq], the fluctuations
of φm(s) are quite large. For instance, for symmetric interaction energies U1 = U2 (i.e., χ1 = −χ2 = χ), (3.37)
yields a fluctuation δφm1 ≈ |m1,1 −m1,2|π/q of the order of the phase separation φk+1,q −φk,q = 2π/q between
the coherent states, save for two-body inter-mode losses (m1,1 = m1,2 = 1) for which the phase noise vanishes.

The effect of this phase noise on the conditional density matrix ρN1(tq) with N1 = N0 − r atoms at time tq

is obtained in the Fock basis by multiplying the matrix elements of the superposition ρ
(0)
N1

(tq) in the absence of

losses by a damping factor Dq(n1, n
′
1) and an envelope Eq,r(n1, n

′
1) given by16

Dq(n, n′) = exp
{
− π

χq

(
dN1(n) + dN1(n

′)
)}

, Eq,r(n, n′) =
qχ

π

∑

|m|=r
ΓmCN1,m(tq;n, n

′) , (3.48)

see (3.28), (3.38), and (3.39). In the small loss limit (3.47), the coefficient Gm in (3.40) can be neglected and
CN1,m(tq;n, n

′) can be approximated for symmetric energies U1 = U2 by

Cm1(tq;n, n
′) =

1− exp
{
−iπq (m1,1 −m1,2)(n− n′)

}

iχ(m1,1 −m1,2)(n− n′)
. (3.49)

16Recall that we assume here the occurrence of a single r-body loss process in [0, tq ]. The factor qχ/π in front of the last sum is
put for convenience and disappears in the state normalization.
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We now argue that the behavior of the Fisher information FN1(tq) shown in Fig. 3.7 comes from the combination
of two effects: a channel effect for U1 = U2 and q = 2, 3, and the suppression of phase noise in the ith mode
when Ui = U12. Before discussing these two effects, we show that the phase noise always induces a complete
phase relaxation when U1 = U2.

(i) Complete phase relaxation for U1 = U2.

Let us first study the impact of the phase noise on ρN1(tq) for symmetric interaction energies U1 = U2 and
small loss rates satisfying (3.47). We recall that phase noise flattens the Husimi distribution of the superposition
in the φ direction (phase relaxation); for strong phase noises the diagonal part of the density matrix relaxes
to a statistical mixture of Fock states with completely undefined phases (Sec. 3.3.1). We find that the loss of
r = 2 atoms in the same mode leads to complete phase relaxation. Actually, from (3.13), (3.28), and (3.38),
the matrix elements of [ρN1(tq)]d in the Fock basis vanish for n′

1 6= n1 modulo q. We may thus restrict our
attention to n′

1 = n1 + pq for integer p’s. If p 6= 0, the envelope (3.48) reads

Eq,r(n1, n1 + pq) ≃





−i∆Γ1
1−(−1)p

πp for r = 1

Γ1,1 for r = 2

−i(∆Γ3 + 3∆Γ3,int)
1−(−1)p

3πp for r = 3

(3.50)

with ∆Γ3,int = Γ1,2 − Γ2,1. Therefore, for weak two-body losses and Γ1,1 = 0, the diagonal part of ρN1(tq)
is equal to a statistical mixture of Fock states, that is, 〈n1, N1 − n1| [ρN1(tq)]d|n′

1, N1 − n′
1〉 = 0 for n1 6= n′

1.
This is confirmed in the upper and middle left panels of Fig. 3.6, where one observes vanishing matrix elements
along the dashed lines n′

1 = n1 ± 2, n′
1 = n1 ± 4. This also explains the φ-independent profile of the Husimi

distributions in Fig. 3.7 for χ1 = −χ2 and small Γ2,0. For one- and three-body losses, complete phase relaxation
occurs for symmetric losses (∆Γ1 = ∆Γ3 = ∆Γ3,int = 0) only17. Let us also stress that no phase relaxation
occurs in the inter-mode channel m = (1, 1).

(ii) Loss of quantum correlations when U1 = U2 and q = 2 or 3: channels effects.

Phase relaxation does not tell us anything about quantum correlations, which are contained in the off-
diagonal part of the density matrix. We now determine this part, which corresponds to the matrix elements of
ρN1(tq) in the Fock basis such that n′

1 6= n1 modulo q (see (3.13)). We still assume symmetric energies U1 = U2

and small losses satisfying (3.47). In view of (3.49), the main effect of phase noise is to multiply the matrix
elements in the absence of noise by a factor of (n1 − n′

1)
−1 (decoherence). This factor decays to zero as one

moves away from the diagonal but does not modify substantially the elements close to the diagonal. Indeed,
non vanishing off-diagonal matrix elements for n′

1 = n1 ± 1 and n′
1 = n1 ± 3 are visible in the left middle panel

of Fig. 3.6. This also explains the relatively high value of the Fisher information FN0−2(t2) for Γ2,0 ≪ χ/N0,
Γ0,2 = 0, and χ1 = −χ2 in Fig. 3.7(b). For such loss rates and energies we are in the noise regime of weak
decoherence pointed out in Sec. 3.3.1: phase noise is more efficient in washing out the phase content of each
component of the superposition than in destroying the coherences between them.

However, we observe in Figs. 3.6 and 3.7 that the situation is quite different for symmetric two-body losses
(Γ2,0 = Γ0,2 and Γ1,1 = 0): then [ρN1(t2)]od vanishes completely and the Fisher information at weak losses is
smaller than N0. This comes from a cancellation when adding the contributions of the m = (2, 0) and m = (0, 2)
loss channels, which occurs only at time t2 and in the absence of inter-mode losses18. In fact, for such loss rates
Er,r(n, n′) ≃ 2Γr,0δn,n′ for r = 2, 3, thus [ρN1(t2)]od = 0 and the whole density matrix ρN1(t2) is diagonal in the
Fock basis. As a consequence of this channel effect, the two-component (three-component) superposition suffers
in the absence of inter-mode losses from a complete decoherence in the N1-atom subspace, for arbitrary small
symmetric two-body (three-body) loss rates19. Such a channel effect does not occur for completely asymmetric
losses involving only one channel.

We emphasize that complete decoherence does also not occur for symmetric one-body and inter-mode three-
body losses20. As a result, the channel effect is suppressed when one-body losses are also present and one can

17This can be understood intuitively as follows. For weak losses the random phase φ1,0(s) = sχ (φ0,1(s) = −sχ) produced by the
loss of one atom in the mode i = 1 (i = 2) is uniformly distributed in [0, π/q] ([−π/q, 0]). Since the components of the superposition
have a phase separation of 2π/q, one needs equal loss probabilities in the two modes to wash out its phase content completely. A
similar argument applies to three-body losses.

18A similar cancellation occurs at time t3 when the two modes are subject to three-body losses with symmetric rates Γ3,0 = Γ0,3

and Γ1,2 = Γ2,1 = 0.
19Note that this is not in contradiction with the fact that the total state ρ(t2) converges to ρ(0)(t2) when Γm → 0, since the

probability wN1
(t2) converges to zero in this limit and thus ρN1

(t2) does not contribute to the total state.
20For instance, one has Eq,1(n, n′) = 2Γ1,0 sinc[π(n− n′)/q] for ∆Γ1 = 0.
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have more than one loss event between t = 0 and t = tq. A surprising consequence is that by adding one-body
losses to the two-body (three-body) losses, decoherence on the conditional state with N0 − 2 (N0 − 3) atoms at
time t2 (t3) is reduced.

(iii) Protecting macroscopic superpositions by tuning the interaction energies.

Let us now proceed to the case of asymmetric interaction energies U1 6= U2. In order to keep the formation
time tq = π/(χq) of the superposition constant, we vary U1 and U2 while fixing 2χ = χ1 −χ2. We still consider
weak losses satisfying (3.47). Then the phase relaxation described above is incomplete, as well as decoherence
at times t2 or t3 for symmetric losses. An interesting situation is U2 = U12 < U1, i.e., χ2 = 0 and χ1 = 2χ.
Then φ0,r(s) = 0 by (3.33), thus the second mode is protected against phase noise, whereas the first mode is
subject to a strong noise with fluctuations δφr,0 ≈ 2πr/q. Taking for simplicity vanishing inter-mode rates, one
gets from (3.40) and (3.48)

Eq,r(n, n′) = Γ0,r + qΓr,0
1− exp{−i 2πrq (n− n′)}

2iπr(n− n′)
. (3.51)

For symmetric rates Γ0,r = Γr,0, the off-diagonal matrix elements of ρN1(t2) in the Fock basis coincide with
those of a two-component superposition up to a factor of the order of one half21. Loosely speaking, ρN1(t2) is a
“half macroscopic superposition”. Such a state has a relatively large Fisher information, as shown in Fig. 3.7(a).
An even larger Fisher information is obtained for completely asymmetric losses, namely, if atoms are lost in
the protected mode i = 2 only (Γr,0 = 0). Then Eq,r(n, n′) = Γ0,r for all (n, n′) and the conditional state
ρN1(tq) coincides with a superposition of q coherent states with N1 atoms, slightly modified by the damping
factor Dq(n1, n

′
1). This is in agreement with Fig 3.7(b), where one observes the convergence at weak losses

and asymmetric energies of FN0−2(t2) to the highest possible value (N0 − 2)2. Two well-pronounced peaks at
φ = ±π/2 are visible in the corresponding Husimi distributions.

In summary, by tuning the atomic interaction energies Ui such that χ1 = 0 or χ2 = 0 one can protect one
mode against phase noise, to the expense of enlarging noise in the other mode, thereby limiting decoherence
effects on the conditional state with N1 atoms. One can similarly switch the phase noise off in the two-body
inter-mode loss channel m = (1, 1) by tuning the energies such that χ2 = −χ1 (symmetric energies U1 = U2)
and in the three-body inter-mode loss channels m = (2, 1) or (1, 2) by taking χ2 = −2χ1 or χ1 = −2χ2

(U1 = U2 ∓ 2χ/3). We emphasize that it is impossible to suppress the noise in two different loss channels at
the same time. Therefore, the optimal energy tuning for protecting the macroscopic superpositions is to switch
phase noise off in the channel losing more atoms.

Let us remark that, although the result above applies in principle to both internal and external BJJs, for
the latter U12 = 0 and thus one must tune the interaction energy Ui to zero to switch phase noise off in the
well i. But the two- and three-body loss rates Γm depend on Ui and this tuning actually decreases these rates
(recall that two- and three-body losses are due to the scattering of atoms in the trap). Therefore, excepted for
one-body losses caused by scattering with the background gas, the protection of the superposition is a trivial
effect in external BJJs.

We now claim that when a large number N0 − N of atoms leave the BJJ (i.e., many loss events occur
between t = 0 and t = tq), this number being much smaller than N0, one may still protect the superpositions
from decoherence by tuning the energies Ui. However, in order to protect the superpositions efficiently in this
way, the loss rates must be strongly asymmetric. This can be understood from the product form (3.41) of the
envelope in (3.38): if the single jump envelopes (3.51) are constant in (n, n′) then so is EN (tq;n, n

′), and thus
the conditional state ρN (tq) is close to a macroscopic superposition with N atoms, apart from small damping
effects. In order that the single jump envelope be constant, one must tune the interaction energies such that
Ui = U12 in the mode i losing the atoms. As soon as the number of lost atoms becomes large, this tuning is
inefficient since the probability that all losses occur in the same mode decreases exponentially with the number
of loss events.

Thus, the suppression of the effective phase noise in the mode losing atoms by the energy tuning for strongly
asymmetric loss rates provides a good explanation of the time evolution of the quantum Fisher information seen
in Fig. 3.5.

21More precisely, for all n 6= n′, Eq,r(n, n) = 2Γr,0 and E2,r(n, n′)/E2,r(n, n) = 1/2 for r = 2 and 1/2+(1− (−1)n−n′
)/(2iπr(n−

n′)) for r = 1, 3.
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3.5.3 Intermediate and strong loss rates

To complete the interpretation of Fig. 3.7, we briefly discuss three effects of atom losses occurring at intermediate
and strong loss rates.

(iv) Increasing the loss rates reduces phase noise.

Surprisingly, in the regime of intermediate loss rates the φ-noise decreases if one increases Γm. This results
from the decrease of the loss time fluctuations δsm at increasing Γm, leading to a decrease of the phase fluctu-
ations δφm in (3.37). In fact, while for small rates the loss time is uniformly distributed on the interval [0, tq],
for larger rates the loss has more chance to occur at small times and δsm gets smaller. It can be shown [228]

that this decreasing of the phase noise sets in for Γm ≈ χqN
1−|m|
0 . Therefore, by increasing the loss rates one

may protect the conditional state with N1 atoms against decoherence22.

(v) Effect of the θ-noise.

The fact that the peaks of the Husimi distributions in Fig. 3.7(b) at intermediate and strong losses are
centered at values of θ smaller than π/2 is due to the θ-noise. For larger initial atom numbers N0, the θ-noise
is always small, its fluctuations being of the order of 1/N0 when N0 ≫ 1 (see [228]).

(vi) Damping effects.

Increasing further the rates Γm, the damping due to the effective Hamiltonian begins to play the major role.
The combination of this damping with the reduced phase noise effect described above leads again to different
behaviors of FN1(tq) as a function of the loss rates for symmetric and asymmetric losses. Let us recall from

Sec. 3.3.2 that the onset of damping is for Γm ≈ χqN
1−|m|
0 in the symmetric case and Γm ≈ χqN

1/2−|m|
0 in the

asymmetric case. Since phase noise reduction begins when Γm ≈ χqN
1−|m|
0 , there exists for symmetric losses a

small range of rates Γm for which phase noise is reduced by increasing Γm while the damping is still relatively
small. This explains the increase of FN1(t2) with Γ2,0 seen in Fig. 3.7(a). At the point where FN1(t2) reaches a
maximum, two peaks are clearly visible in the Husimi distribution, as opposed to the flat distribution observed
at weak losses for χ1 = −χ2. This nicely illustrates phase noise reduction. In contrast, in the asymmetric
loss case, damping effects counter-balance phase noise reduction and FN1(t2) decreases with Γ2,0 (even though
some peaks show up in the Husimi plots). For Γ2,0 = Γ0,2 ≫ χ and even initial atom numbers N0, it can be
argued [228] that ρN0−2(tq) converges to a Fock state with (N0 − 2)/2 atoms in each mode, which has a high
Fisher information (N0 − 2)N0/2. For asymmetric losses, instead, ρN0−2(tq) converges to a superposition of
Fock states with n1 = 0 or 1 atom in the first mode, and FN0−2(t2) ≈ N0, as seen in Fig. 3.7(b)23. Let us stress
that these effects on the conditional state with N1 atoms at strong losses are absent in the total density matrix
ρ(t), because of the small probability to have a single loss event between t = 0 and t = tq.

3.6 Conclusions

We have shown that the impact of decoherence on superpositions of coherent states in Bose-Josephson junctions
subject to one-, two- and three-body atom loss processes is well described by a strong effective phase noise and
a channel effect. The last effect gives rise to enhanced decoherence on the two-component (three-component)
superposition after summing over the two loss channels when the interaction energies and the two-body (three-
body) loss rates are the same in the two modes and there are no inter-mode losses. Conversely, if all losses occur
mostly in one mode, it is possible to protect the superpositions from decoherence by adjusting the interaction
energies Ui of each mode, keeping their sum fixed. For instance, in the absence of inter-mode losses, the effective
phase noise can be suppressed in the mode loosing more atoms by choosing an energy Ui in this mode equal to
the inter-mode interaction U12. For the internal BJJs with Rubidium atoms of the Heidelberg experiment [106],
this can be done by applying a uniform magnetic field and reducing the scattering length ℓ1 in the mode
i = 1 loosing less atoms thanks to Feshbach resonances. Then, because the scattering lengths ℓ2 and ℓ12 are
almost equal, one has U2 ≃ U12, whereas |U1 − U12| can be large. For experimentally relevant loss rates and

22This counter-intuitive effect does not manifest itself in the Fisher information Ftot(t) of the total state ρ(t) because when
increasing Γ2,0, the subspaces contributing to Ftot(t) in (3.44) have less atoms and hence are less quantum correlated, and the
increase of FN0−2(t) is counter-balanced by the decrease of the probability wN0−2(t). As a consequence, Ftot(t) is getting smaller.

23Similarly, the comparison of the two first rows in Fig. 3.6 shows that an increase of Γ2,0 makes non-vanishing off-diagonal
matrix elements to appear when Γ2,0 = Γ0,2, as a consequence of phase noise reduction, while for Γ0,2 = 0 the same operation
moves the peak in the density matrix towards n1 = n′

1 = 0, as a consequence of damping.
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initial atom numbers, we have found that the amount of coherence left at the time of formation of the two-
component superposition can be made in this way substantially higher, provided that the losses are strongly
asymmetric (see Fig. 3.5). This condition is met experimentally for two-body losses but not for one-body losses,
which are symmetric in the two modes. As a consequence, in the range of parameters corresponding to the
experimental situation studied above, we predict that one-body losses lead to much stronger decoherence effects
on macroscopic superpositions than the asymmetric two-body processes.

In the Basel experiment [202], the atoms are trapped by using an inhomogeneous magnetic field and thus a
tuning of the scattering lengths with Feshbach resonances is impossible. One must then imagine other ways to
reduce phase noise in the upper hyperfine level i = 2 suffering from two-body losses. In this experiment, the two
BECs of atoms in hyperfine states i = 1, 2 can be split by trapping them in different level-dependent potentials.
This splitting provokes a decrease of the inter-mode interaction energy U12. An interesting open problem is
to find the best experimentally realizable strategy to protect in this case the macroscopic superpositions from
decoherence due to losses of atoms.
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Part II

Quantum correlations and

Distinguishability of quantum states
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Introduction

The fundamental role played by the theory of information in physics has been demonstrated in the last century
along with the development of statistical physics [22]. More recently, it has been recognized that information is
also at the heart of quantum physics, leading to the emergence of a new field called quantum information. In few
words, quantum information theory is concerned with the use of quantum systems to accomplish information-
processing tasks which are either not feasible classically or are done classically much less efficiently [180].
These tasks can be related to a computational problem or to communication, for instance, sending encrypted
information in a secure way. Computational tasks are performed on a quantum computer made of qubits. Such
qubits are two-level quantum systems in arbitrary superpositions of |0〉 and |1〉 instead of being either in state 0
or 1 as with classical bits. A quantum algorithm is a unitary quantum evolution on a set of qubits followed by
a measurement, the outcomes of which should provide the solution of the problem. For example, the celebrated
Shor algorithm factorizes an integer with N digits into prime numbers in a time O(N2 lnN ln(lnN)) [217],
instead of the exponential time required by all known classical algorithms. Quantum computers with a few
qubits have been implemented in physics laboratories. There is still a lot of debate about whether we will be
able in the future to manipulate coherently many qubits and address them locally during a sufficiently long
computational time, and which quantum systems are the most promising [180, 41].

The fact that quantum algorithms and communication protocols can outperform their classical analogs
is usually attributed to quantum correlations. Such correlations in composite quantum systems are at the
origin of the violation of the Bell inequalities, which has been confirmed experimentally [194]. These quantum
correlations are quite different in nature from classical correlations in stochastic processes. For a long time
they have been identified with entanglement. However, there is now increasing evidence that other types of
quantum correlations in mixed states, which may be present even in unentangled states and are captured notably
by the quantum discord [184, 120], might be of relevance in certain quantum algorithms and communication
protocols [72, 152, 190, 163, 54, 108, 68].

In this second part, we review the basic properties of the entanglement measures and quantum discord
and present a geometrical description of these notions based on the Bures distance on the set of quantum
states. In this approach, the quantum discord turns out to be related to the problem of discriminating non-
orthogonal quantum states. Two central questions guide the foregoing discussions and can be formulated as
follows. How well can one distinguish unknown quantum states pertaining to a given ensemble by performing
a measurement on a system? If this system consists of several particles, does the amount of information one
gets from measurements on a single particle tell us something about the way the particles are correlated?
Quantum measurements and entropies obviously come into the game in these two questions. They constitute
the subjects of chapters 5 and 7. Some answers to the first question are given in chapters 6 and 9, devoted
respectively to state discrimination and to related topics called hypothesis testing and parameter estimation.
The Bures distance and Uhlmann fidelity are introduced in chapter 8. A detailed account of their properties
is given there. The remaining chapters (chapters 10, 11, and 12) address the problem of quantifying quantum
correlations and provide answers to the second question. It is neither our purpose to discuss thoroughly the
(huge amount of) quantum correlation measures found in the literature nor to study how these correlations
could explain the quantum efficiencies. Well-documented surveys on quantum entanglement already exist, see
e.g. [130, 110], as well as on the quantum discord and related measures [170]. The precise role of entanglement
as a resource in quantum computing and quantum communication is still not completely understood, in spite
of recent progresses (such as the proof that, in order to offer an exponential speedup over classical algorithms, a
quantum algorithm using pure states must produce entanglement which is not restricted to blocks of qubits of
fixed size as the system size increases [145]). The role played by the discord as a quantum resource is, in turn,
still poorly understood and constitutes a challenging issue (see [170]).

We concentrate in our exposition on the mathematical and fundamental aspects of the theory. In particular,
we will not investigate here the physical implementations and the system-dependent irreversible dynamical
processes destroying (or sometimes producing) quantum correlations, which have been treated in the first
part. We present the detailed proofs of some selected fundamental results, instead of relating all important
achievements obtained so far. Most of these results have been published in physics journals, and are sometimes
explained in the original papers without full mathematical rigor in their derivation. Others have been published
in mathematical journals with full proofs, which are nevertheless given here for completeness. We try to
emphasize how the results are connected between themselves and to stress the similarities in the arguments
used to derive them. This sometimes leads to new proofs.

Quantum information is a rapidly growing field of research and the amount of articles and surveys devoted
to it is already considerable. Researchers who got interested by this subject recently (including the author) may
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fear to have difficulties to form a clear opinion about the most pertinent open questions. Significant contributions
have been made by physicists, mathematicians, and computer scientists, who constitute a broad community
with different viewpoints. I hope that this review-like part of this thesis may be useful to mathematicians, by
providing examples of interesting problems and explaining the mathematical tools used to tackle them. It may
also be of help to physicists wishing to get acquainted with such tools, which could be useful to derive new
results. This work is intended to be complementary to other surveys containing collections of results without
explicit derivations and to more introductory monographs like [180], which do not include the most recent
advances.

Some comments on the structure of the following chapters might be helpful. The contents of chapter 6,
chapter 8, and chapters 10-11 are largely independent. On the other hand, chapter 6 is partly related to
Sec. 5.5, and chapter 9 makes use of the results of chapter 6 and Sec. 8.5. The material of Secs. 7.1 and 7.2 is
relevant for chapters 10 and 11. Chapter 12 needs more or less the knowledge of all previous chapters. The main
definitions and theorems presented in chapters 4 and 5 are used in the whole part. Two appendices contain
textbook issues about operator convex functions and some less standard trace inequalities.

Before closing this introduction, let us warn the reader that we will be exclusively concerned by quantum
systems with finite-dimensional Hilbert spaces. This is motivated for two reasons. Firstly, this is the case of
most systems in quantum information theory. Secondly, in this way one avoids the technical complications of
infinite-dimensional spaces and concentrates oneself on the main ideas and concepts. Some of these concepts
have been originally worked out in the general setting of C∗-algebras, but we shall present here simpler proofs
applying to the finite-dimensional case only.
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Chapter 4

Quantum states

Wenn zwei getrennte Körper, die einzeln maximal bekannt sind, in eine Situation kommen, in der sie aufeinande

einwirken, und sich wieder trennen, dann kommt regelmäßig das zustande, was ich eben Verschränkung unseres

Wissens um die beiden Körper nannte.1 (E. Schrödinger, 1935) [211]

In this chapter we review the basic definitions of pure and mixed states, entangled states, and the pure state
decompositions and purifications of mixed states. Before that, we introduce in Sec. 4.1 some notation and define
a few mathematical objects from the theory of operator algebras, which will be used repeatedly in this article.
In Sec. 4.2 we discuss an extremely useful result from linear algebra, namely, the Schmidt decomposition.

In all what follows, capital letters A, B, etc., refer to quantum systems, HA, HB, etc., denote their Hilbert
spaces, and nA = dimHA, nB = dimHB, etc., the dimensions of these spaces. These dimensions are always
assumed to be finite. A bipartite system AB formed by putting together the systems A and B has Hilbert space
given by the tensor product HAB = HA ⊗ HB. For instance, if A and B are two qubits with Hilbert spaces
HA ≃ HB ≃ C2, the space of these two qubits is HAB = C2 ⊗ C2 ≃ C4. Similarly, HA1...Ak

= HA1 ⊗ · · · ⊗ HAk

is the Hilbert space of the multipartite system formed by putting together the systems A1, . . . ,Ak. The tensor
product vectors |ψA〉 ⊗ |φB〉 ∈ HAB will be denoted either by |ψA ⊗ φB〉 or, more often2, by |ψA〉|φB〉.

4.1 Quantum states and observables

A state of a quantum system with Hilbert space H is given by a density matrix ρ, that is, a non-negative
operator on H with unit trace tr ρ = 1. We write E(H) the convex cone formed by all states on H. States will
always be denoted by the letters ρ, σ, or τ , with subscripts referring to the corresponding system if necessary.
The extreme points of the cone E(H) are the pure states ρψ = |ψ〉〈ψ|, with |ψ〉 ∈ H, ‖ψ‖ = 1 (here |ψ〉〈ψ|
designates the rank-one orthogonal projector onto C|ψ〉). The pure states can be identified with elements of the
projective space PH, that is, the set of equivalence classes of normalized vectors in H modulo a phase factor.
The vectors eiθ|ψ〉 ∈ H with 0 ≤ θ < 2π are called the representatives of ρψ ∈ PH. We will abusively write
|ψ〉 instead of ρψ, except when this may be a source of confusion. If ρ is a state of a bipartite system AB
with Hilbert space HAB = HA ⊗ HB, the reduced states of A and B are defined by partial tracing ρ over the
other subsystem. They are denoted by ρA = trB(ρ) ∈ E(HA) and ρB = trA(ρ) ∈ E(HB). These reduced states
correspond to the marginals of a joint probability in classical probability theory.

The C∗-algebra of bounded linear operators from H to H′ is denoted by B(H,H′), and we write B(H) =
B(H,H). In our finite-dimensional setting, B(H,H′) is the algebra of all n′ × n finite complex matrices, with
dimH = n and dimH′ = n′. The Hilbert-Schmidt scalar product on B(H,H′) is defined by

〈X , Y 〉 = tr(X∗Y ) , (4.1)

where X∗ denotes the adjoint operator of X . The associated norm is ‖X‖2 = [tr(X∗X)]
1
2 . The set of states

E(H) can be endowed with the distances3

dp(ρ, σ) = ‖ρ− σ‖p =
[
tr(|ρ− σ|p)

] 1
p (4.2)

1“When two separated bodies, which are maximally known individually, come into a situation in which they interact with each
other and are then again separated, a state that I just called entanglement of our knowledge on both bodies regularly arises.”

2As common in the physics literature we do not write the tensor product symbol ⊗ explicitly.
3We shall see in chapter 8 that there are other more natural distances on E(H) from a quantum information point of view.
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with p ≥ 1. Here |X | denotes the non-negative operator |X | =
√
X∗X. When p → ∞, ‖X‖p converges to the

operator norm ‖X‖∞ = ‖X‖ of X , that is, the maximal eigenvalue of |X |. The Hölder inequality reads

‖X‖p = max
Y,‖Y ‖q=1

| tr(XY )| (4.3)

with p > 1 and q = p/(p−1). This still holds for p = 1 and q = ∞, as can be shown by using the Cauchy-Schwarz

inequality for the scalar product (4.1). In that case the maximum is achieved if and only if Y U |X | 12 = eiθ|X | 12
with θ ∈ [0, 2π) and U a unitary such that X = U |X | (polar decomposition).

A self-adjoint operator O ∈ B(H) is called an observable. The real vector space of all observables on H is
denoted by B(H)s.a.. If AB is a bipartite system, one says that O ∈ B(HAB)s.a is a local observable if either
O = A ⊗ 1 or O = 1 ⊗ B, with A ∈ B(HA)s.a. and B ∈ B(HB)s.a.. Here and in the following, 1 stands for the
identity operator on HA, HB, or another space.

A linear map4 M : B(H) → B(H′) is positive if it transforms a non-negative operator into a non-negative
operator. It is completely positive (CP) if the map

M⊗ 1 : X ∈ B(H⊗ Cm) 7→
m∑

k,l=1

M(Xkl)⊗ |k〉〈l| ∈ B(H′ ⊗ Cm) (4.4)

is positive for any integer m ≥ 1.
Given two orthonormal bases {|i〉}nA

i=1 of HA and {|j〉}nB

j=1 of HB, one can identify any operator O : HB → HA

with a vector |Ψ̃O〉 ∈ HA ⊗HB thanks to the bijection

O 7→ |Ψ̃O〉 =
∑

i,j

〈i|O|j〉|i〉|j〉 . (4.5)

This bijection is an isomorphism between the Hilbert spaces B(HB,HA) (endowed with the scalar product
(4.1)) and HAB. Similarly, one can represent the linear map M : B(HB) → B(HA) by an operator OM acting
on HBB = HB ⊗ HB with values in HAA = HA ⊗ HA. The matrix elements of this operator in the product
bases {|k〉|l〉}nB

k,l=1 of HBB and {|i〉|j〉}nA

i,j=1 of HAA are given by (OM)ij,kl = 〈i|M(|k〉〈l|)|j〉. This representation
is an ∗-isomorphism between the C∗-algebras B(B(HB),B(HA)) and B(HBB,HAA). The so-called reshuffling
operation [31] associates to OM the operator OR

M ∈ B(HAB) with matrix elements (OR
M)ik,jl = (OM)ij,kl,

which satisfies
〈A⊗B , OR

M〉 = 〈Ψ̃A|OMJ |Ψ̃B〉 = 〈A,M(B)〉 (4.6)

for any A ∈ B(HA) and B ∈ B(HB). Here J denotes the anti-unitary operator on HBB defined by 〈k|〈l|J |Ψ〉 =
〈k|〈l|Ψ〉 (complex conjugation in the canonical basis) and B =

∑
k,l 〈k|B|l〉|k〉〈l| is the operator associated to

J |Ψ̃B〉 via the isomorphism (4.5). With these definitions, M : B(HB) → B(HA) is CP if and only if OR
M ≥ 0,

that is, OR
M has non-negative eigenvalues5.

The left and right multiplications LX and RX by X ∈ B(H) are the operators from B(H) into itself defined
by6

LX(Y ) = XY , RX(Y ) = Y X , ∀ Y ∈ B(H) . (4.7)

They are represented on B(H ⊗ H) by local operators X ⊗ 1 and 1 ⊗ XT , respectively, where T stands for
the transposition in the basis {|i〉}. Given two states ρ and σ ∈ E(H) with ρ > 0, the Araki relative modular
operator ∆σ|ρ is defined by [13]

∆σ|ρ(Y ) = σY ρ−1 = Lσ ◦ Rρ−1(Y ) , ∀ Y ∈ B(H) . (4.8)

It is a self-adjoint non-negative operator on the Hilbert space B(H) (for the scalar product (4.1)).

4Operators acting on the vector space of observables B(H)s.a. or on the whole algebra B(H) are always denoted by calligraphic
letters.

5Actually, OR
M ≥ 0 is equivalent to OR

M = A∗A for some A ∈ B(HAB), that is, to (OR
M)ik,jl = 〈i|M(|k〉〈l|)|j〉 =

∑

p,q Apq,ikApq,jl for all i, j = 1, . . . , nA and k, l = 1, . . . , nB. Setting Apq =
∑

i,k Apq,ik|i〉〈k|, it follows that OR
M ≥ 0 if and

only if M(X) =
∑

pq ApqXA∗
pq for all X ∈ B(HB), which is equivalent to M being CP by the Kraus representation theorem

(Theorem 5.2.3 below).
6In the C∗-algebra setting, the map X 7→ LX is the Gelfand-Neumark-Segal representation of the C∗-algebra [42].
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4.2 The Schmidt decomposition

The following standard result is very useful in quantum information theory.

Theorem 4.2.1. (Schmidt decomposition) Any pure state |Ψ〉 ∈ HA ⊗ HB of a bipartite system admits a
decomposition

|Ψ〉 =
n∑

i=1

√
µi|αi〉|βi〉 (4.9)

where n = min{nA, nB}, µi ≥ 0, and {|αi〉}ni=1 (respectively {|βi〉}ni=1) is an orthonormal family of HA (re-
spectively of HB). The µi and |αi〉 (respectively |βi〉) are the eigenvalues and eigenvectors of the reduced state
ρA = trB(|Ψ〉〈Ψ|) (respectively ρB = trA(|Ψ〉〈Ψ|)). Thus, if the eigenvalues µi are non-degenerate then the
decomposition (4.9) is unique.

The non-negative numbers µi are called the Schmidt coefficients of |Ψ〉. They satisfy
∑

i µi = ‖Ψ‖2 = 1.

Proof. Let {|i〉}nA

i=1 and {|j〉}nB

j=1 be some fixed orthonormal bases of HA and HB. By using the isomorphism
|Ψ〉 7→ OΨ =

∑
i,j〈i⊗ j|Ψ〉|i〉〈j| between HAB and the space of nA × nB matrices (see Sec. 4.1), we observe that

the decomposition (4.9) corresponds to the singular value decomposition of OΨ, that is, OΨ = UA

∑
i

√
µi|i〉〈i|U∗

B

with µi the eigenvalues of O∗
ΨOΨ and UA and UB unitaries on HA and HB. Then UA|i〉 = |αi〉 and UB|i〉 = |β∗

i 〉
are eigenvectors of OΨO

∗
Ψ and O∗

ΨOΨ, respectively. Denoting by J is the complex conjugation in the basis {|j〉}
(see above), one has |βi〉 = J |β∗

i 〉. ✷

The Schmidt decomposition can be generalized to mixed states by considering ρ as a vector in the Hilbert
space B(HA)⊗ B(HB). Any ρ ∈ E(HAB) can be written as

ρ =
n2∑

m=1

√
µmXm ⊗ Ym , (4.10)

where {Xm}n
2
A

m=1 and {Ym}n
2
B

m=1 are orthonormal bases of B(HA) and B(HB) for the scalar product (4.1) and µm
are the eigenvalues of the n2

A
× n2

A
matrix R ≥ 0 defined by

Rij,i′j′ =
〈
ρ |i〉〈i′| ⊗ 1 , |j〉〈j′| ⊗ 1 ρ

〉
(4.11)

(the Rij,i′j′ are the matrix elements in the orthonormal basis {|i〉〈j|}n
2
A

i,j=1 of B(HA) of the operator playing the

role of the reduced state in Theorem 4.2.1). Note that
∑
m µm = tr(ρ2) ≤ 1, with equality if and only if ρ is a

pure state.

Remark 4.2.2. Alternatively, the µm are the squares of the singular values of ρR ∈ B(HBB,HAA), where R is
the reshuffling operation (Sec. 4.1), and Xm and Ym are given in terms of the eigenvectors |χm〉 and |ψm〉 of
ρR(ρR)∗ and (ρR)∗ρR by Xm =

∑
i,j〈i⊗ j|χm〉|i〉〈j| and Ym =

∑
k,l 〈k ⊗ l|ψm〉|k〉〈l|, respectively.

Proof. Considering ρ as a vector in B(HA)⊗B(HB) and introducing two orthonormal bases {Ap} of B(HA) and
{Bq} of B(HB), according to the proof of Theorem 4.2.1,

√
µm are the singular values of the n2

A
× n2

B
matrix

(〈Ap ⊗Bq, ρ〉)p,q. Denote by {|αp〉} and {|βq〉} the orthonormal bases of HAA and HBB associated to {Ap} and
{Bq} via the isomorphism (4.5). The statement follows by choosing Ap = |i〉〈j| and Bq = |k〉〈l| and using the
identity 〈αp|ρRJ |βq〉 = 〈Ap ⊗Bq, ρ〉, see (4.6). ✷

4.3 Purifications and pure state decompositions of mixed states

Definition 4.3.1. Let ρ be an arbitrary state on H and K be another Hilbert space. A pure state |Ψ〉 ∈ H⊗K
such that ρ = trK(|Ψ〉〈Ψ|) is called a purification of ρ on H⊗K.

In the language of C∗-algebras, a purification is an example of cyclic representation of a state [42]. An
example of purification of ρ on H⊗H is

|Ψ〉 =
n∑

k=1

√
pk|k〉|k〉 , (4.12)
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where ρ =
∑

k pk|k〉〈k| is a spectral decomposition of ρ. If |Ψ〉 and |Φ〉 are two purifications of ρ on the same
space H⊗K, then there exists a unitary operator U acting on K such that |Φ〉 = 1 ⊗ U |Ψ〉. In fact, one infers
from the Schmidt decomposition that |Ψ〉 =

∑
k

√
pk|k〉|fk〉 and |Φ〉 =

∑
k

√
pk|k〉|gk〉, where {|fk〉}nk=1 and

{|gk〉}nk=1 are two orthonormal families of K. Thus |gk〉 = U |fk〉 for some unitary U .
We will often be interested in the sequel by families of quantum states of a system S, ρi ∈ E(HS), i = 1, . . . ,m,

to which we attach some probabilities ηi ≥ 0,
∑

i ηi = 1. Following the terminology employed by physicists in
statistical physics, we call {ρi, ηi}mi=1 an ensemble of quantum states (or more simply an ensemble). A convex
decomposition of ρ is an ensemble {ρi, ηi}mi=1 such that ρ =

∑
i ηiρi. A pure state decomposition of ρ is a convex

decomposition in terms of finitely many pure states ρi = |ψi〉〈ψi|, i.e.

ρ =

m∑

i=1

ηi|ψi〉〈ψi| . (4.13)

If the vectors |ψi〉 are orthogonal, then (4.13) coincides with the spectral decomposition, but we will see that
there are infinitely many other ways to decompose ρ. Physically, (4.13) describes a state preparation: it means
that the system has been prepared in the pure state |ψi〉 with probability ηi. The non-uniqueness of the
decomposition can be interpreted as follows. If a receiver is given two ensembles {|ψi〉, ηi}mi=1 and {|φj〉, ξj}pj=1

corresponding to different state preparations of two identical systems in the same state ρ, then he cannot make
any difference between them if he has no prior knowledge on the state preparation. Indeed, any measurement
performed by him gives rise to the same distribution of outcomes for the two ensembles. In other words, the full
information that the receiver can collect on the system via measurements is encoded in ρ, and not in the ensemble
involved in the state preparation. This very important fact has consequences that are sometimes disconcerting
to people unfamiliar with the conceptual aspects of quantum mechanics. For instance, if a preparer gives a
maximally mixed state ρ = 1/n to a receiver, the latter has no way to decide whether this state was prepared
from n equiprobable orthonormal pure states (which are only known by the preparer) or if it was prepared
by another procedure involving more than n states. It is also worth mentioning that the process transforming
the ensemble {ρi, ηi}mi=1 into the average state ρ =

∑
i ηiρi, which can be viewed as the inverse of a convex

decomposition, corresponds physically to a loss of information about the state preparation.
Given a fixed orthonormal basis {|fi〉}pi=1 of K with p ≥ ran(ρ) = r, there is a one-to-one correspondence

between pure state decompositions of ρ containing at most p states and purifications of ρ on H⊗K. Actually,
given the pure state decomposition (4.13),

|Ψ〉 =
p∑

i=1

√
ηi|ψi〉|fi〉 (4.14)

defines a purification of ρ on H⊗K (we have set ηi = 0 for m < i ≤ p). Reciprocally, let |Ψ〉 be a purification
of ρ on H ⊗K. Denote as before the eigenvalues and orthonormal eigenvectors of ρ by pk and |k〉. As argued
above, one can find a unitary U on K such that

|Ψ〉 =
r∑

k=1

√
pk|k〉U |fk〉 =

p∑

i=1

r∑

k=1

√
pk〈fi|U |fk〉|k〉|fi〉 =

p∑

i=1

√
ηi|ψi〉|fi〉 (4.15)

with
√
ηi|ψi〉 =

∑
k

√
pk〈fi|U |fk〉|k〉. Hence |Ψ〉 has the form (4.14). Taking the partial trace over K, one can

associate to it a unique pure state decomposition, which is given by (4.13).
Since two purifications |Ψ〉 and |Φ〉 of the same state ρ are related by a local unitary U acting on the ancilla

space K, this implies that any two pure state decompositions ρ =
∑m
i=1 ηi|ψi〉〈ψi| and ρ =

∑p
j=1 ξj |φj〉〈φj | are

related by

√
ξj |φj〉 =

max{m,p}∑

i=1

uji
√
ηi|ψi〉 , (4.16)

where (uji) is a unitary matrix with size max{m, p} (if m < i ≤ p we set as before ηi = 0).

4.4 Entangled and separable states

Let us consider a bipartite system AB. If this system is in a tensor product state |Ψsep〉 = |ψA〉|φB〉 with
|ψA〉 ∈ HA and |φB〉 ∈ HB, then the expectation value of the product of two local observables A⊗ 1 and 1⊗B
coincides with the product of the expectations values, i.e.,

GAB(|Ψsep〉) = 〈Ψsep|A⊗B|Ψsep〉 − 〈Ψsep|A⊗ 1|Ψsep〉〈Ψsep|1 ⊗B|Ψsep〉 = 0 . (4.17)
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This means that the random outcomes of measurements of the local observablesA⊗1 and 1⊗B are uncorrelated.
More generally, if one thinks of AB as a pair of particles located far apart (e.g. a photon pair shared by two
observers Alice and Bob), this pair is in a product state if and only if there are no correlations between the
results of arbitrary local measurements performed independently on each particle (for instance, if Alice sends
her photon through a polarizer and then to a photodetector, and Bob does the same with his photon, the clicks
of the two detectors will be uncorrelated whatever the polarizer angles). One says that |Ψsep〉 = |ψA〉|φB〉 is a
separable state. If the pure state |Ψ〉 ∈ HAB is not a product state one says that it is entangled.

By applying the Schmidt decomposition, one sees that |Ψ〉 is separable if and only if all its Schmidt coeffi-
cients vanish except one, that is, if and only if its reduced states ρA and ρB are pure. In the opposite, if either
ρA or ρB is proportional to the identity matrix (maximally mixed state), we say that |Ψ〉 is maximally entangled.
Such states have the form

|Ψent〉 =
1√
n

n∑

i=1

|αi〉|βi〉 , (4.18)

where {|αi〉}ni=1 and {|βi〉}ni=1 are orthonormal families in HA and HB and n = min{nA, nB}. For instance,
denoting by |0〉 and |1〉 the canonical basis vectors of C2, the EPR (or Bell) states |Φ±〉 = (|0〉|0〉 ± |1〉|1〉)/

√
2

and |Ψ±〉 = (|0〉|1〉 ± |1〉|0〉)/
√
2 are maximally entangled states of two qubits, and any maximally entangled

two-qubit state is an EPR state, up to a local unitary transformation UA ⊗ UB.
For mixed states, entanglement is no longer equivalent to being a product state. The “good” definition of

mixed state entanglement is due to Werner [257].

Definition 4.4.1. A mixed state ρ of a bipartite system AB is separable if it admits a pure state decomposition

ρ =
∑

i

ηi|ψi ⊗ φi〉〈ψi ⊗ φi| (4.19)

in terms of pure separable states |ψi ⊗ φi〉 ∈ HAB. If such a decomposition does not exist then ρ is entangled.
The set of all separable states of AB forms a convex subset of E(HAB), which is denoted by SAB.

It follows from the Carathéodory theorem that the number of pure product states in the decomposition
(4.19) can always be chosen to be smaller or equal to (nAnB)

2 + 1.
According to this definition, a state is separable if it could have been prepared from pure product states

only. This does not mean that it has actually been prepared using such states. For example, if one prepares
two qubits in the maximally entangled states |Φ+〉 and |Φ−〉 with equal probabilities, the corresponding state

ρ =
1

2
|Φ+〉〈Φ+|+

1

2
|Φ−〉〈Φ−| =

1

2
|0〉〈0| ⊗ |0〉〈0|+ 1

2
|1〉〈1| ⊗ |1〉〈1| (4.20)

is separable! This unexpected result is inherent to the ambiguity of the state preparation discussed in the
preceding section. This quantum ambiguity unfortunately obliges us to look for all possible state preparations
of a given mixed state ρ to decide whether ρ is entangled or not. This makes this problem highly non-trivial.

An explicit complete characterization of SAB is known for qubit-qubit and qubit-qutrit systems only, that
is, for (nA, nB) = (2, 2), (2, 3), and (3, 2). In such a case, the Peres-Horodecki criterion [193, 127, 128] gives
a necessary and sufficient condition for ρ to be entangled. This criterion is formulated in terms of the partial
transpose. Given two orthonormal bases {|i〉} of HA and {|k〉} of HB, the partial transpose ρ

TB of ρ with respect
to B has matrix elements in the product basis {|i〉|k〉} given by

〈i|〈k|ρTB |j〉|l〉 = 〈i|〈l|ρ|j〉|k〉 . (4.21)

One defines similarly ρTA and note that ρTA = (ρTB)T . It follows from Definition 4.4.1 that if ρ is separable then
ρTA ≥ 0 and ρTB ≥ 0, i.e., ρTA and ρTB are states of AB. Thus, if ρTA (or, equivalently, ρTB) has negative eigenval-
ues then ρ is necessarily entangled. Since the transpose is a positive but not CP map, such negative eigenvalues
may indeed exist. However, if nAnB > 6, certain entangled states have non-negative partial transposes [128]. It
is remarkable that this does not happen when nAnB ≤ 6: then ρTA ≥ 0 if and only if ρ ∈ SAB [127]. Two remarks
should be made at this point. First, states with non-negative partial transposes cannot undergo entanglement
distillation and therefore form an interesting subset of E(HAB) on their own, which contains SAB (see [130] for
more detail). Second, extending the Peres criterion to all positive but not CP linear maps ΛB : B(HB) → B(HA)
(i.e., asking that 1⊗ ΛB(ρ) ≥ 0 for any such map) yields a necessary and sufficient condition for entanglement,
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valid whatever the space dimensions nA and nB [127]. Due to the lack of an explicit characterization of such
maps (except for (nA, nB) = (2, 2) or (3, 2))7, this condition is unfortunately not very helpful in general.

Let us also mention another necessary but not sufficient (even for two qubits) condition for entanglement,
which relies on the Schmidt decomposition (4.10) for mixed states. By using the fact that

∑
m

√
µm defines a

norm on E(HAB), one can show that if ρ ∈ SAB then
∑

m

√
µm ≤ 1 [59]. Hence

∑
m

√
µm > 1 implies that ρ is

entangled.
Once a state has been recognized as separable, it may be of relevance to determine its decomposition(s) into

pure product states. This problem has been addressed in [265, 206, 252] for two qubits.
Definition 4.4.1 can be extended straightforwardly to multipartite systems A1 . . .Ak. Then different kinds

of entanglement can be defined according to the chosen partition of {A1, . . . ,Ak}. In this article we will not
consider multipartite entanglement, which is a challenging subject in its own [110, 130].

7When (nA, nB) = (2, 2) or (3, 2), any positive map Λ : B(HB) → B(HA) can be written as Λ = M1 + M2 ◦ T , where M1 and
M2 are CP and T is the transposition [266]. The fact that the partial transpose criterion is sufficient for entanglement follows from
this characterization [127].
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Chapter 5

Generalized measurements

Wenn wir experimentell feststellen, daß das Atom eben in den Zustand m wirklich übergegangen sei, so werden

wir ihm zur Berechnung alles Folgenden nicht die Funktion
∑

m cnmSm, sondern eben die Funktion Sm mit

unbestimmter Phase zuzuordnen haben.1 (W. Heisenberg, 1927) [117]

In this chapter we review the notions of quantum operations and generalized measurements and give the
basic theorems, namely, the Stinespring theorem, the Kraus decomposition, and the Neumark extension the-
orem. We then introduce a special type of measurement called the least square measurement and show its
link with approximate reversals of quantum operations. We start by a physical description of a von Neumann
measurement.

5.1 Physical realization of a measurement process

A measurement on a quantum system S is realized by coupling S with a measurement apparatus. This apparatus
consists of a macroscopic pointer P interacting with an environment E playing the role of an infinite bath. One
may think of P as the center of mass of the needle of a meter. The environment E then includes all the other
degrees of freedom of the macroscopic apparatus. The coupling of the measured system S with the pointer
transforms the initially uncorrelated state |ψ〉 ⊗ |0〉 of the composite system SP into an entangled state,

|ψ〉 ⊗ |0〉 −→ |Ψent
SP 〉 =

∑

i,l

cil|αil〉 ⊗ |i〉 . (5.1)

Our assumption that S and P are initially in pure states is made to simplify the foregoing discussion and can be
easily relaxed. The states |αil〉 form an orthonormal basis of the system Hilbert space HS (measurement basis),
which is the eigenbasis of the measured observable A, i.e., A|αil〉 = ai|αil〉. The index l labels if necessary
the different orthogonal eigenstates of A with the same degenerate eigenvalue ai. In ideal measurements cil =
〈αil|ψ〉. The states |i〉 are the pointer states of the apparatus. After a sufficiently long coupling time between
S and P, these states are macroscopically distinct and thus nearly orthogonal, 〈i|j〉 ≃ δij (hereafter δij stands
for the Kronecker symbol, equal to 1 if i = j and zero otherwise). The transformation (5.1) is a unitary
transformation, i.e., |Ψent

SP
〉 = USP|ψ〉|0〉 where USP is a unitary evolution operator on HSP. One usually calls

such a transformation the pre-measurement [102]. This unitary evolution induces quantum correlations between
S and P, such that each eigenprojector Πi =

∑
l |αil〉〈αil| of A is in one-to-one correspondence with a pointer

state |i〉. The resulting state (5.1) is a superposition of macroscopically distinct states, sometimes referred to as
a “Schrödinger cat state”. The pointer states are singled out by their robustness against environment-induced
decoherence. More precisely, if the pointer P is initially in the state |i〉, its interaction with the environment E
does not entangle P and E. Letting P and E interact during a time t much larger than the decoherence time,
the SP-entangled state |Ψent

SP
〉 is transformed into a statistical mixture in which all the coherences between the

pointer states |i〉 have disappeared. After tracing out the environment degrees of freedom, the reduced state of
SP is modified according to

|Ψent
SP 〉〈Ψent

SP | −→ ρp.m.
SP

=
∑

ikl

cikcil|αik〉〈αil| ⊗ |i〉〈i| =
∑

i

Πi ρΠi ⊗ |i〉〈i| , (5.2)

1“If we determine experimentally that the atom has actually acquired the state m, then in the subsequent calculations we shall
have to assign it the function Sm with an indeterminate phase, instead of

∑

m cnmSm.”
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ρ = |ψ〉〈ψ| being the initial system state. The final SP-state has no quantum correlations but is classically
correlated: indeed, each pointer state |i〉 goes hand in hand with the system state

ρS|i = p−1
i Πi ρΠi , pi = tr(Πiρ) . (5.3)

Concrete models for the pointer and its coupling with the system and the environment have been investigated
in [4, 5, 223, 224]; in these works the aforementioned decoherence time and the time duration of the measurement
are estimated in the more realistic situation where the two transformations (5.1) and (5.2) occur simultaneously.
The readout of the pointer (that is, the observation of the position of the needle) cannot significantly alter the
macroscopic state |i〉. It merely selects one of the measurement outcomes,

outcome i: ρp.m.
SP

−→ ρSP|i = ρS|i ⊗ |i〉〈i| (wavepacket reduction). (5.4)

After the measurement yielding the outcome i the measured system is in the conditional state ρS|i, and this
outcome occurs with probability pi (Born rule). The transformation (5.4) results from the knowledge of the ran-
dom outcome, it should not be regarded as a true dynamical process. It is actually analog to a state preparation
(see Sec. 4.3). In mathematical terms, it corresponds to a convex decomposition of ρp.m.

SP
=

∑
i piρSP|i.

We point out that recent progresses in the understanding of quantum measurement processes via dynamical
models and their interpretation with a statistical physics viewpoint have been made by Allahverdyan, Balian,
and Nieuwenhuizen [6].

5.2 Quantum operations

In the absence of readout of the measurement result, one does not know which state ρS|i has been prepared and
the system is after the measurement in the average state

MΠ(ρ) =
∑

i

Πi ρΠi , (5.5)

where ρ is the state before the measurement.
Since {Πi} is the spectral measure of the self-adjoint operator A, the Πi form a family of projectors in

B(HS)s.a. satisfying ΠiΠj = δijΠi and
∑

iΠi = 1. We will refer in the sequel to such a family as an orthonormal
family of projectors. It is easy to show that the map MΠ is CP (as a sum of CP maps) and trace-preserving.
In quantum information, such maps are called quantum operations.

Definition 5.2.1. A quantum operation M : B(HS) → B(H′
S
) is a trace-preserving CP map from B(HS) into

B(H′
S
).

A necessary and sufficient condition for a linear map M : B(HS) → B(H′
S
) to be CP is that it satisfies

M⊗ 1(|Ψent〉〈Ψent|) ≥ 0 for the maximally entangled state |Ψent〉 = n
−1/2
S

∑
k |k〉|k〉 in HS ⊗HS, where {|k〉}

is an orthonormal basis of HS. In fact, M⊗ 1(|Ψent〉〈Ψent|) coincides with the operator OR
M defined in Sec. 4.1

up to a factor 1/nS, and it has been argued above that M is CP if and only if OR
M ≥ 0.

A quantum operation is the quantum analog of a stochastic matrix Mclas giving the transition probabilities
q(j|i) of a classical Markov process,

p = (p1, . . . , pn) 7→ Mclasp with (Mclasp)j =

n∑

i=1

q(j|i) pi , q(j|i) ≥ 0 ,

n∑

j=1

q(j|i) = 1 . (5.6)

Save for the wavepacket reduction (5.4), all physical dynamical processes on quantum systems are given by
quantum operations2. Let a system S interact with another system E at times t ≥ 0. If S and E are initially in
a product state ρ(0)⊗ ρE(0) and SE can be considered as an isolated system, so that its dynamics is governed
by the Schrödinger equation, then the reduced state of S at time t reads

ρ(t) = trE
(
e−itHSEρ(0)⊗ ρE(0)e

itHSE

)
. (5.7)

2In order to include the transformation (5.4), many authors define a more general notion of quantum operation by relaxing
the trace-preserving condition and replacing it by tr(M(ρ)) ≤ 1 for any ρ ∈ E(H). The state transformation is then given by the
non-linear map ρ 7→ M(ρ)/ tr(M(ρ)). Theorems 5.2.2 and 5.2.3 can be easily adapted to this more general definition. In particular,
the Kraus decomposition (5.10) holds, with Kraus operators Ai satisfying

∑

i A
∗
iAi ≤ 1.
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Here HSE = HS+HE+λHint is the Hamiltonian of SE, where HS and HE are the Hamiltonians of S and E, Hint

their coupling Hamiltonian, and λ the coupling constant. The time-evolved state (5.7) is related to the initial
state ρ(0) by a quantum operation Mt, i.e., ρ(t) = Mtρ(0). The Stinespring theorem says that any quantum
operation M can be viewed as a reduced evolution of the system coupled to an auxiliary system (ancilla).

Theorem 5.2.2. (Stinespring [229]) Let M be a quantum operation B(HS) → B(HS). Then one can find an
ancilla Hilbert space HE, a state |ǫ0〉 ∈ HE, and a unitary operator U on HSE such that M(ρ) = trE(Uρ ⊗
|ǫ0〉〈ǫ0|U∗).

It is appropriate at this point to review a few well-known facts from the theory of CP maps on C∗-algebras.
The adjoint M∗ with respect to the trace of M : B(HS) → B(H′

S
) is the map M∗ : B(H′

S
) → B(HS) defined by

tr[AM(ρ)] = tr[M∗(A)ρ] for any A ∈ B(H′
S
) and ρ ∈ B(HS). If M is a quantum operation then M∗ is also a

CP map and is unity-preserving, M∗(1) = 1. According to Stinespring’s theorem, one has

M∗(X) = 〈ǫ0|U∗X ⊗ 1U |ǫ0〉 (5.8)

for any X ∈ B(H). It follows that M∗ satisfies the Kadyson-Schwarz inequality

|M∗(X)|2 ≤ M∗(|X |2) . (5.9)

Theorem 5.2.3. (Kraus [149]) A linear map M from B(HS) into itself is a quantum operation if and only if it
admits the representation

M(ρ) =
∑

i

AiρA
∗
i , (5.10)

where {Ai} is a countable family of operators on HS satisfying
∑

iA
∗
iAi = 1.

For infinite dimensional Hilbert spaces and in the more general C∗-algebra setting, the Kraus decomposition
holds under the additional assumption that M is normal, that is, ultra-weakly continuous. One usually deduces
it from Stinespring’s theorem. In our finite-dimensional setting, however, a simple direct proof of Theorem 5.2.3
exists (see Remark 5.2.4 below). One can then obtain the Stinespring theorem from the Kraus decomposition
as follows. Let {|k〉}nS

k=1 be an orthonormal basis of HS and HE be a (possibly infinite-dimensional) Hilbert
space with orthonormal basis {|ǫi〉}. Define the vectors |Ψk0〉 =

∑
iAi|k〉|ǫi〉. Using

∑
iA

∗
iAi = 1, one finds

that these vectors form an orthonormal family in HSE, which can be completed so as to get an orthonormal
basis {|Ψkl〉}. Then M∗(X) = 〈ǫ0|U∗X ⊗ 1U |ǫ0〉 for any X ∈ B(HS), where the unitary U on HSE is defined
by U |k〉|ǫl〉 = |Ψkl〉 for any k and l.

Remark 5.2.4. Any quantum operation B(HS) → B(HS) with dimHS = nS <∞ admits a Kraus decomposition
(5.10) with at most n2

S
operators Ai. Consequently, one can choose the ancilla space HE in Theorem 5.2.2 of

dimension dimHE = n2
S
.

Sketch the proof [180]. To show that M has the form (5.10), consider the operator B = M⊗1(|Ψent〉〈Ψent|) with
|Ψent〉 = n

−1/2
S

∑
k |k〉|k〉 ∈ HSS as above. Since M is CP, one has B ≥ 0. Let |Φ̃i〉 be orthogonal eigenvectors

of B, normalized in such a way that nSB =
∑

i |Φ̃i〉〈Φ̃i|. Then define the Kraus operators Ai as the operators

associated to |Φ̃i〉 by the isomorphism (4.5) between B(HS) and HSS. ✷

It is important to realize that the Kraus decomposition is not unique. For indeed, if {Ai}pi=1 is a family of
Kraus operators for M and (uji)

q
i,j=1 is a unitary matrix of size q ≥ p, then the operators

Bj =

p∑

i=1

ujiAi , j = 1, . . . , q , (5.11)

define another family of Kraus operators for M. Conversely, two families {Ai}pi=1 and {Bj}qj=1 of Kraus
operators for M with p ≤ q < ∞ are related to each other by (5.11). Actually, let B and |Ψent〉 be defined as
in the Remark 5.2.4 above. Then B =

∑
i |µ̃i〉〈µ̃i| =

∑
j |ν̃j〉〈ν̃j | with

|µ̃i〉 = n
− 1

2

S

∑

k

(Ai|k〉)|k〉 , |ν̃j〉 = n
− 1

2

S

∑

k

(Bj |k〉)|k〉 . (5.12)
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In view of the link (4.16) between pure state decompositions of a non-negative operator, one has |ν̃j〉 =
∑
i uji|µ̃i〉

with (uji)
q
i,j=1 unitary. This implies (5.11).

Given a purification |Ψ〉 of ρ on HS ⊗ HR and a quantum operation M : B(HS) → B(H′
S
), it is natural

to ask about purifications of M(ρ). A slight generalization of Theorem 5.2.2 ensures that there exist a vector
|ǫ0〉 ∈ HE and a unitary U : HS ⊗HE → H′

S
⊗H′

E
such that M(ρ) = trE′(Uρ⊗ |ǫ0〉〈ǫ0|U∗). Therefore,

|ΨM〉 = 1R ⊗ U |Ψ〉|ǫ0〉 =
n∑

k=1

p∑

i=1

√
pk(Ai|k〉)|fk〉|ǫ′i〉 (5.13)

is a purification ofM(ρ) on H′
S
⊗HR⊗H′

E
. In the second equality, {|k〉} is an orthonormal eigenbasis of ρ, {|fk〉}

is the orthonormal family of HR such that |Ψ〉 = ∑
k

√
pk|k〉|fk〉, and {|ǫ′i〉} is an orthonormal basis of H′

E
such

that U |k〉|ǫ0〉 =
∑
i(Ai|k〉)|ǫ′i〉 (see the expression of U in terms of the Kraus operators after Theorem 5.2.3).

5.3 Generalized measurements

For the quantum operation MΠ defined by (5.5), the orthogonal projectors Πi form a family of Kraus operators.
One may wonder if more general quantum operations, given by Kraus operators Ai which are not necessarily
orthogonal projectors, correspond to some kind of measurements. The answer is yes: such operations can always
be obtained by coupling the system S to an auxiliary system E (the ancilla) and subsequently performing a von
Neumann measurement on E.

Theorem 5.3.1. (Neumark extension theorem) Let {Ai}pi=1 be a finite family of operators satisfying
∑
iA

∗
iAi =

1. Then there exist a space HE with dimension dimHE = p, a pure state |ǫ0〉 ∈ HE, an orthonormal family {πE
i }

of projectors in B(HE), and a unitary operator U on HSE such that for any density matrix ρ ∈ E(HS),

AiρA
∗
i = trE(1⊗ πE

i Uρ⊗ |ǫ0〉〈ǫ0|U∗1⊗ πE

i ) . (5.14)

Proof. Use the same arguments as in the above proof of Stinespring’s theorem from Theorem 5.2.3, and define
πE
i = |ǫi〉〈ǫi|. ✷

Definition 5.3.2. A generalized measurement is given by a family {Mi} of non-negative operators Mi satisfying∑
iMi = 1 (positive operator valued measure, abbreviated as POVM) together with a family of operators {Ai}

such that Mi = A∗
iAi. The conditional state ρS|i given outcome i and the probability of this outcome read

ρS|i = p−1
i AiρA

∗
i , pi = tr(Miρ) . (5.15)

According to Theorem 5.3.1, any generalized measurement can be realized by letting the system S interact
with an ancilla E in the state |ǫ0〉 and subsequently performing a von Neumann measurement on E, that is,
coupling E to a macroscopic apparatus with pointer P. The interaction between S and E first transforms the
initial state ρS ⊗ |ǫ0〉〈ǫ0| into ρSE = UρS ⊗ |ǫ0〉〈ǫ0|U∗, U being a unitary evolution operator on HSE, and the
subsequent von Neumann measurement leads to the wavepacket reduction for the system SP (compare with
(5.3) and (5.4))

outcome i: ρSP → ρSP|i = p−1
i trE(1⊗ πE

i ρSE1⊗ πE

i )⊗ |i〉〈i| = p−1
i AiρSA

∗
i ⊗ |i〉〈i| , (5.16)

where pi = tr(1⊗ πE
i ρSE) = tr(MiρS) is the probability of outcome i, in agreement with (5.15).

One has Ai = UiM
1/2
i (polar decomposition) for some unitary operator Ui depending on i. The conditional

states ρS|i are thus characterized by the POVM {Mi} up to unitary conjugations, which introduce a freedom in
choosing the output state associated to each measurement outcome. For instance, if Mi = |µ̃i〉〈µ̃i| are of rank
one then Ai = |i〉〈µ̃i| for some arbitrary normalized vector |i〉 and the output conditional states are ρS|i = |i〉〈i|.
One usually takes the vectors |i〉 to form an orthonormal basis (which can be identified to the pointer state
basis of Sec. 5.1), in such a way that the states ρS|i be perfectly distinguishable (this happens if the ρS|i are
orthogonal only, see chapter 6 below). One should keep in mind, however, that the probability pi = 〈µ̃i|ρ|µ̃i〉 of
outcome i is independent of the choice of {|i〉}. If one is interested only in functions of the post-measurement
states ρS|i which are invariant under unitary conjugations (as, for instance, the von Neumann entropy), then
the generalized measurement can be fully specified by the measurement operators Mi. Thanks to the Neumark
extension theorem, these operators may be written as

Mi = A∗
iAi = 〈ǫ0|U∗1⊗ πE

i U |ǫ0〉 . (5.17)

74



As stressed above, in the absence of read-out the state of the system after the measurement is the average of
the conditional states,

M(ρ) =
∑

i

piρS|i =
∑

i

AiρA
∗
i , (5.18)

in analogy with (5.5). This defines a quantum operation M, the Kraus decomposition of which specifies the
state preparation associated with the wavepacket reduction.

Writing the spectral decomposition of each operator Mi, one observes that

Mi =

ri∑

k=1

|µ̃ik〉〈µ̃ik| ,
∑

i

Mi =
∑

i,k

|µ̃ik〉〈µ̃ik| = 1 , (5.19)

where ri = rank(Mi) and |µ̃ik〉 are unnormalized eigenvectors with norms equal to the square roots of the
corresponding eigenvalues. The last condition in (5.19) implies that either {|µ̃ik〉} is an orthonormal basis,
in which case {Mi} is an orthonormal family of projectors (von Neumann measurement), or {|µ̃ik〉} is a non-
orthogonal family containing more than nS vectors, in which case at least two eigenvalues ‖µ̃ik‖ are strictly
smaller than one and {Mi} is not a von Neumann measurement.

The set of all POVMs is a convex set. Its boundary and extremal points have been studied in [66].

Remark 5.3.3. An alternative version of Theorem 5.3.1 states that if m =
∑
i ri with ri = rank(Mi), then

there exist a space HE with dimension m− nS + 1, a state |ǫ0〉 ∈ HE, and a von Neumann measurement {ΠSE
i }

on HSE such that
Mi = 〈ǫ0|ΠSE

i |ǫ0〉 . (5.20)

The interesting point is that the dimension of the ancilla space HE can be smaller than p in Theorem 5.3.1 (for
instance dimHE = p− nS + 1 for rank-one operators Mi).

Sketch of the proof [192]. Note that m ≥ nS by the observation above. Define

|ζik〉 = |µ̃ik〉|ǫ0〉+
m−nS∑

l=1

cik,l|φ〉|ǫl〉 , (5.21)

where |µ̃ik〉 is as in (5.19), |φ〉 ∈ HS is an arbitrary state, and {|ǫl〉}m−nS

l=0 is an orthonormal basis of HE. The
coefficients cik,l may be chosen such that {|ζik〉} is an orthonormal family of HSE. To establish this statement,
set cik,l = 〈l|µ̃ik〉 for m − nS < l ≤ m, with {|l〉}ml=m−nS+1 an orthonormal basis of HS, and let cl ∈ Cm be
the vector with components cik,l. Then cl · cl′ = δll′ for any l, l′ > m − nS, as a result of

∑
iMi = 1. One

can choose the (m− nS) other vectors cl in such a way that (c1, . . . , cm) forms a m×m unitary matrix. Then
ΠSE
i =

∑
k |ζik〉〈ζik | has the desired property. ✷

5.4 Connections between POVMs, quantum operations, and state

ensembles

To each POVM one can associate a quantum operation and vice-versa. Similarly, there is a canonical way
to associate to a quantum operation a state ensemble and vice-versa. These correspondences depend on an
orthonormal basis {|i〉}mi=1 of a fictitious pointer P with m-dimensional space HP. It has been already seen
above that one can associate to a POVM {Mi}mi=1 on S a quantum operation with Kraus operators Ai such
that Mi = A∗

iAi. This operation implements the state changes in the measurement process in the absence
of readout. If we imagine that S is coupled to P and that the measurement is performed on both S and P,
one may consider the Kraus operators Aik = |k〉|i〉〈µ̃ik| such that Mi =

∑
k A

∗
ikAik, where {|k〉}nS

k=1 is an
orthonormal basis of HS and |µ̃ik〉 are the unnormalized eigenvectors of Mi in (5.19). Provided that there is no
readout of the measurement on S, one may trace the post-measurement states over HS. The conditional states
of P are given by ρP|i = p−1

ik trS(AikρA
∗
ik) = |i〉〈i| with pik = 〈µ̃ik|ρ|µ̃ik〉, and the corresponding probability

is pi =
∑
k pik = tr(Miρ). The state changes in the absence of readout are implemented by the quantum

operation M : B(HS) → B(HP) defined by

M(ρ) =
∑

i

tr(Miρ)|i〉〈i| , ρ ∈ E(HS) ⇔ M∗(|i〉〈j|) =Miδij , i, j = 1, . . . ,m . (5.22)

Conversely, if M is a quantum operation B(HS) → B(HP) then Mi = M∗(|i〉〈i|) defines a POVM {Mi}mi=1

(actually, Mi ≥ 0 by the positivity of M∗ and
∑

iMi = M∗(1) = 1). Therefore, for a given orthonormal
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basis {|i〉}mi=1 of HP, there is a one-to-one correspondence between POVMs {Mi}mi=1 on HS and quantum
operations M : B(HS) → B(HP) of the form (5.22).

A similar one-to-one correspondence can be found between state ensembles on HS with fixed probabilities
{ηi}mi=1 and quantum operations B(HP) → B(HS) such that M(|i〉〈j|) = 0 for i 6= j. This correspondence is
given by

ρi = M(|i〉〈i|) , i = 1, . . . ,m . (5.23)

In fact, ifM : B(HP) → B(HS) is a quantum operation then {ρi, ηi}mi=1 is clearly an ensemble onHS. Conversely,
if {ρi, ηi}mi=1 is an ensemble of m states, let us write the spectral decompositions ρi =

∑
k pik|ψik〉〈ψik|. Then

the operation with Kraus operators Aik =
√
pik|ψik〉〈i| has the required property.

5.5 Transpose operation and least square measurement

5.5.1 Recovery operation in quantum error correction

The notion of transpose operation was introduced by Ohya and Petz in their monograph [183]. It plays the role
of an approximate reversal of a quantum operation, in a sense that will be made more precise below.

Definition 5.5.1. Let M : B(H) → B(H′) be a quantum operation and ρ ∈ E(H) be a state such that M(ρ) > 0.
The transpose operation of M for ρ is the quantum operation RM,ρ : B(H′) → B(H) with Kraus operators Ri =

ρ
1
2A∗

iM(ρ)−
1
2 , where {Ai} is a family of Kraus operators for M. It is independent of the Kraus decomposition

of M. Actually, for any σ ∈ E(H′),

RM,ρ(σ) = ρ
1
2M∗(M(ρ)−

1
2 σM(ρ)−

1
2

)
ρ

1
2 . (5.24)

One easily checks that
∑

iR
∗
iRi = 1, so thatRM,ρ is indeed a quantum operation, and thatRM,ρ◦M(ρ) = ρ.

Furthermore, transposing twice amounts to do nothing, that is, the transpose of RM,ρ for the state M(ρ) is
equal to M.

The operation RM,ρ appears naturally in the context of quantum error correction. The problem of quantum
error correction is to send a state ρ over a noisy quantum communication channel in such a way that ρ is resilient
to the effect of the noise in the channel. The state ρ is encoded via a unitary transformation into a subspace
HC of the Hilbert space H of the quantum channel. The noise is described by some quantum operation M.

Proposition 5.5.2. Let M be a quantum operation on B(H) with Kraus operators {Ai}. Let ΠC denote the
orthogonal projector onto a subspace HC ⊂ H and EC : ρ 7→ ΠC ρΠC be the conditional expectation onto
the space of operators supported on HC . There exists a recovery quantum operation R on B(H) satisfying
R ◦M ◦ EC = EC if and only if the following condition holds:

EC(A
∗
iAj) = aijΠC , (5.25)

where (aij) is a self-adjoint matrix. If this condition is satisfied then for any ρ with support ran(ρ) ⊂ HC , the
transpose operation RM,ρ is a recovery quantum operation.

We refer the reader to the book of Nielsen and Chuang [180] for a proof of the necessary and sufficient
condition (5.25). Some bibliographic information on this topic can also be found there.

Proof of the second statement. By taking advantage of the non-uniqueness of the Kraus decomposition,
(5.25) can be transformed into EC(B

∗
i Bj) = piδijΠC , where the Kraus operators Bi are given by (5.11) with

(uij)(aij)(uij)
∗ the diagonal matrix with entries pi. Together with the polar decomposition, this implies BjΠC =√

pjWj with Wj = VjΠC satisfying W ∗
i Wj = δijΠC , the Vj being some unitary operators. Thus the subspaces

VjHC are orthogonal for different j’s and the restriction of
∑
jWjW

∗
j to the subspace V = ⊕jVjHC equals

the identity. If ρ = EC(ρ) and the restriction of ρ to HC is invertible, then M(ρ) =
∑

j pjWjρW
∗
j and

M(ρ)−1/2 =
∑

jWjρ
−1/2W ∗

j /
√
pj , the last operator being defined on V . A simple calculation then shows that

RM,ρ ◦M ◦ EC = EC , as stated in the Proposition. ✷
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5.5.2 Transpose operation as an approximate reverse operation

Since the condition (5.25) is not always fulfilled, it is natural to ask whether one can find an optimal imperfect
recovery map, which would enable to recover a given ensemble {ρi, ηi} subject to some noise with a maximal
fidelity. A notion of fidelity has been introduced by Schumacher [213]. Its definition is as follows (for more detail
and motivations from classical information theory, see [180]). Given a state ρ ∈ E(HS), consider a purification
|Ψρ〉 of ρ on HS ⊗ HR, where R is a reference system with Hilbert space HR ≃ HS. For instance, |Ψρ〉 can
be given by (4.12). If ρ is a mixed state then |Ψρ〉 is SR-entangled (Sec. 4.4). The entanglement fidelity of ρ
quantifies how well this entanglement is preserved when the system S is subject to some noise modelized by a
quantum operation M on B(HS). It is defined by

Fe(ρ,M) = 〈Ψρ|M ⊗ 1(|Ψρ〉〈Ψρ|)|Ψρ〉 . (5.26)

Since different purifications of ρ on HSR are related by unitaries acting on HR, the right-hand side of (5.26) does
not depend on the chosen purification. As a consequence of the positivity and the trace-preserving property of
M, one has 0 ≤ Fe(ρ,M) ≤ trSR[M⊗ 1(|Ψρ〉〈Ψρ|)] = tr[M(ρ)] = 1. Plugging (4.12) and (5.10) into (5.26), a
simple calculation yields

Fe(ρ,M) =
∑

j

∣∣tr(Ajρ)
∣∣2 , (5.27)

where {Aj} is a family of Kraus operators for M. Note that the sum in the right-hand side does not depend
on the choice of Kraus decomposition (this follows from (5.11)), as it should be. For a pure state ρψ = |ψ〉〈ψ|,
the entanglement fidelity reduces to the input-output fidelity F (ρψ ,M) = 〈ψ|M(|ψ〉〈ψ|)|ψ〉. One infers from
(5.27) that Fe(ρ,M) is a convex function of ρ.

Let us now consider an ensemble of states {ρi, ηi}mi=1. The corresponding average entanglement fidelity is
defined by

F e({ρi, ηi},M) =
∑

i

ηiFe(ρi,M) . (5.28)

This fidelity belongs to the interval [0, 1].

Proposition 5.5.3. (Barnum and Knill [29]) If the states ρi commute with ρ =
∑

i ηiρi, then

F e

(
{ρi, ηi},RM,ρ ◦M

)
≥ F e

(
{ρi, ηi},Ropt ◦M

)2
, (5.29)

where RM,ρ is the transpose operation of M for ρ and Ropt the optimal recovery quantum operation R maxi-
mizing F e({ρi, ηi},R ◦M).

Hence, if the minimal fidelity error is 1− F e({ρi, ηi},Ropt ◦M) = η, then the fidelity error by using Rρ,M
as the recovery operation is at most twice larger than this minimal error.

Proof. Taking advantage of the non-uniqueness of the Kraus decomposition, one can choose for any fixed i some

families {Ropt (i)
j } and {A(i)

k } of Kraus operators for Ropt and M satisfying

tr
(
R

opt (i)
j A

(i)
k ρi

)
= 0 , j 6= k . (5.30)

Actually, given any families {Ropt
m } for Ropt and {Al} for M, the operators R

opt (i)
j =

∑
m u

(i)
jmR

opt
m and A

(i)
k =

∑
l v

(i)
kl Al have the required property if (u

(i)
jm) and (v

(i)
kl ) are the unitary matrices in the singular decomposition

of (tr(Ropt
m Alρi)). Since {Ropt (i)

j A
(i)
k } is a Kraus family for Ropt ◦M, one obtains from (5.27), (5.28), and (5.30)

F e

(
{ρi, ηi},Ropt ◦M

)
=

∑

i,j

ηi
∣∣tr(Ropt(i)

j A
(i)
j ρi)

∣∣2 . (5.31)

We first consider the case ρM = M(ρ) > 0. Without loss of generality, we may assume that ran(R
opt(i)
j ) ⊂

ran ρi ⊂ ran ρ, so that the operators

Xij = η
1
4

i ρ
− 1

4

M A
(i)
j ρ

1
4 ρ

1
2

i , Yij = η
1
4

i ρ
− 1

4

M B
(i)
j ρ

1
4 ρ

1
2

i and (B
(i)
j )∗ = ρ−

1
2R

opt (i)
j ρ

1
2

M (5.32)
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are well-defined. Since [ρi, ρ] = 0, one finds by using twice the Cauchy-Schwarz inequality

F e({ρi, ηi},Ropt ◦M)2 =

(∑

i,j

∣∣tr(Y ∗
ijXij)

∣∣2
)2

≤
∑

i,j

(
tr(Y ∗

ijYij)
)2 ∑

i,j

(
tr(X∗

ijXij)
)2

≤
∑

i,j,k

∣∣tr(Y ∗
ijYik)

∣∣2 ∑

i,j,k

∣∣tr(X∗
ijXik)

∣∣2 . (5.33)

The transpose operation Rρ,M has Kraus operators R
(i)
j = ρ

1
2 (A

(i)
j )∗ρ

− 1
2

M . As a result,

F e

(
{ρi, ηi},Rρ,M ◦M

)
=

∑

i,j,k

ηi
∣∣tr(R(i)

j A
(i)
k ρi)

∣∣2 =
∑

i,j,k

∣∣tr(X∗
ijXik)

∣∣2 . (5.34)

The first sum in the last member of (5.33) is equal to F e({ρi, ηi},Ropt ◦ B), where B is the CP map defined by

B(σ) = ∑
k B

(i)
k σ(B

(i)
k )∗ (note that B does not depend on i). Even if B is not trace-preserving, with the help

of (5.26) this fidelity can be bounded from above by tr[Ropt ◦ B(ρ)], which equals unity thanks to the identity
B(ρ) = M(ρ). This yields the inequality (5.29). If ρM is not invertible, one approximates M by some quantum
operations Mε satisfying Mε(ρ) > 0 for ε > 0 and Mε → M as ε→ 0, and obtains the result by continuity. ✷

5.5.3 Least square measurement

Let us consider an ensemble {ρi, ηi}mi=1 of states of the system S forming a convex decomposition of ρout =∑
i ηiρi. For any i, we denote by ρi =

∑
k pik|ψik〉〈ψik| the spectral decomposition of ρi and set ρi = AiA

∗
i , where

Ai =
√
ρiUi is defined up to a unitary Ui. Introducing as in Sec. 5.4 an arbitrary orthonormal basis {|k〉}nS

k=1

of HS and a fictitious pointer with m-dimensional space HP and orthonormal basis {|i〉}mi=1, one can choose

Ai =

nS∑

k=1

√
pik|ψik〉〈k|〈i| ∈ B(HSP,HS) . (5.35)

We remark that Ai is associated to a purification of ρi ⊗ |i〉〈i| on HSP ⊗ HS via the isometry (4.5) between
B(HSP,HS) and HSP ⊗HS, namely, |Ψi〉 =

∑
k

√
pik|ψik〉|i〉|k〉. Moreover, |Ψout〉 =

∑
i

√
ηi|Ψi〉 is a purification

of ρout on the same space.
The least square measurement 3 associated to {ρi, ηi}mi=1 is given by the Kraus and measurement operators

Rlsm
i =

√
ηiA

∗
i ρ

− 1
2

out =
∑

k

√
ηipik|k〉|i〉〈ψik|ρ−

1
2

out , M lsm
i =

∣∣Rlsm
i

∣∣2 = ηiρ
− 1

2
outρiρ

− 1
2

out (5.36)

for i = 1, . . . ,m. One indeed checks that
∑
iM

lsm
i = 1, so that (5.36) defines a generalized measurement in the

sense of Definition 5.3.2. While the operators M lsm
i and thus the outcome probabilities qi = tr(M lsm

i σS) (here
σS is the system state) only depend on {ρi, ηi}, the post-measurement states also depend on the choice of the
basis {|i〉}, as highlighted in chapter 5. The conditional and average post-measurement states of the pointer P
are

outcome i: σS 7→ σP|i = q−1
i trS(R

lsm
i σS(R

lsm
i )∗) = |i〉〈i| (5.37)

no readout: σS 7→ σP = Mlsm(σS) =

m∑

i=1

qiσP|i =
m∑

i=1

qi|i〉〈i| . (5.38)

For a pure state ensemble {|ψi〉, ηi}mi=1, the least square measurement consists of rank-one measurement opera-

tors Mi = |µ̃i〉〈µ̃i| with |µ̃i〉 =
√
ηiρ

− 1
2

out |ψi〉. The vectors |µ̃i〉 have the following property [125, 83], which
elucidates the name given to the measurement: they minimize the sum of the square norms ‖|µ̃i〉 − √

ηi|ψi〉‖2
under the constraint

∑
i |µ̃i〉〈µ̃i| = 1. If the |ψi〉 are linearly independent and span HS, so that m = n, then

{|µ̃i〉} is an orthonormal basis of HS. In that case {M lsm
i } is a von Neumann measurement (see Sec. 5.3).

3This measurement bears several names: it was referred to as the “pretty good measurement” in [114] and is also called
“square-root measurement” by many authors.
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Remark 5.5.4. The aforementioned property of a least square measurement can be stated as follows:

min
{|µ̃i〉}

{ m∑

i=1

∥∥|µ̃i〉 −
√
ηi|ψi〉

∥∥2
}

= nS + 1− 2 tr(ρ
1
2
out) with ρout =

∑

i

ηi|ψi〉〈ψi| , (5.39)

the minimum being over all families {|µ̃i〉}mi=1 in HS such that
∑

i |µ̃i〉〈µ̃i| = 1. This minimum is achieved if

and only if |µ̃i〉 = √
ηiρ

−1/2
out |ψi〉 (up to irrelevant phase factors).

Sketch of the proof. [125, 83] Define A =
∑

i

√
ηi|ψi〉〈i| and B =

∑
i |µ̃i〉〈i| in analogy with (5.35). Then

observe that the sum to be minimized in (5.39) is equal to ‖A∗ −B∗‖22 = 1+ nS − 2Re tr(AB∗), and use (4.3).
✷

As suggested by this result, the least square measurement plays an important role in distinguishing quantum
states drawn from a given ensemble. This point will be discussed in Sec. 6.3 below.

Let us recall from Sec. 5.4 that the relation ρi = M(|i〉〈i|), where {|i〉}mi=1 is a fixed orthonormal basis of
HP, can be used to associate to a quantum operation M : B(HP) → B(HS) an ensemble {ρi, ηi}mi=1 on HS.
Conversely, if {ρi, ηi} is an ensemble on HS, the operation M with Kraus operators Aik = Ai|k〉 = √

pik|Ψik〉〈i|
satisfies this relation (here Ai is the operator (5.35)). Similarly, the relation (5.22) establishes a one-to-one
correspondence between POVMs {Mi} on HS and quantum operations R : B(HS) → B(HP). It was recognized
by Barnum and Knill [29] that the least square measurement associated to the ensemble {ρi = M(|i〉〈i|), ηi}
is nothing but the measurement corresponding to the transpose operation RM,ρin of M for the state ρin =∑

i ηi|i〉〈i|. Actually, since M(ρin) = ρout, according to the Definition 5.5.1,

Rik = ρ
1
2

inA
∗
ikρ

− 1
2

out =
√
ηipik|i〉〈ψik|ρ−

1
2

out (5.40)

are Kraus operators for RM,ρin . Thus

M lsm
i = ηiρ

− 1
2

outρiρ
− 1

2
out =

∑

k

R∗
ikRik = R∗

M,ρin(|i〉〈i|) . (5.41)

Conversely, it is immediate to verify that RM,ρin(σ) =
∑

ik RikσR
∗
ik =

∑
i tr(M

lsm
i σ)|i〉〈i|, hence RM,ρin is the

operation associated to {M lsm
i } by the relation (5.22).
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Chapter 6

Quantum state discrimination

Theory determines what we observe (A. Einstein).

The carriers of information in quantum communication and quantum computing are quantum systems, and
the information is encoded in the states of those systems. After processing the information, it is necessary to
perform measurements in order to read out the result of the computation. In other words, one has to determine
the output state of the system. If these possible outputs form a set of orthogonal states, that is, if they are
given by m known density matrices ρi with orthogonal supports, then it is easy to devise a measurement which
discriminates them without any error (a von Neumann measurement with projectors Πi onto ran(ρi) will do
the job). However, when the ρi are non-orthogonal a perfect discrimination is impossible. Indeed, if two
non-orthogonal states |ψ1〉 and |ψ2〉 could be discriminated perfectly then one could duplicate those states by
producing copies of |ψi〉 if the measurement outcome is i = 1, 2, without prior knowledge on which of the two
states one actually possesses. This would contradict the no-cloning theorem1. Consequently, one can extract
less information from an ensemble of non-orthogonal states than from an ensemble of orthogonal ones.

It is of interest to find the best measurement to distinguish non-orthogonal states ρi with the smallest possible
failure probability. We study this state discrimination problem in this chapter. This is a quite important issue
in quantum cryptography and in quantum communication in general. As emphasized in the introduction of this
article, we aim at explaining some typical questions, providing examples, and establishing basic general results
that will be used in the next chapters, rather than giving a full account on the subject. We refer the reader
to the review articles [58, 37, 36] for more complete presentations. Measurements for distinguishing quantum
states can also be optimized using other criteria than the minimal probability of equivocation. For instance,
one can try to maximize the mutual information between the initial distribution of the state ensemble and the
distribution of the measurement outcomes. This optimization problem, which plays an important role in the
transmission of information in quantum channels, is briefly discussed at the end of this chapter.

Before entering into the detail of the theory, let us make a philosophical remark concerning the quantum-
classical differences. Let us inquire about the quantum analog of the celebrated experiment in classical probabil-
ity which consists of picking up randomly colored balls contained in an urn. In quantum mechanics, the readout
of the system’s state (the color of the ball in the classical analogy) is performed by a measurement perturbing
the system. If the urn contains an ensemble of non-orthogonal states, we have just seen above that there is
no way to identify with certainty which state from the ensemble has been picked up. Therefore, the starting
assumption that the color of the ball is known once it has been extracted from the urn is not fulfilled in the
quantum world and identifying these colors is already a non-trivial task!

6.1 Discriminating quantum states drawn from a given ensemble

We review in this section two strategies for discriminating non-orthogonal states, known as the ambiguous and
unambiguous state discriminations. Let us consider an ensemble {ρi, ηi}mi=1 of states ρi with prior probabilities
ηi. For instance, the ρi can be some states of the electromagnetic field encoding m symbols of a given alphabet,

1No unitary evolution on a system S initially in state |ψ〉 and a register R initially in state |φ〉 can transform |Ψ〉 = |ψ〉|φ〉 into
|Ψ′〉 = |ψ〉|ψ〉 for any |ψ〉 belonging to a set of distinct non-orthogonal states, e.g. |ψ〉 ∈ {|ψ1〉, |ψ2〉}. Actually, the scalar products
〈Ψ1|Ψ2〉 = 〈ψ1|ψ2〉 and 〈Ψ′

1|Ψ′
2〉 = 〈ψ1|ψ2〉2 are different if 〈ψ1|ψ2〉 6= 0, 1. More generally, the no-cloning theorem tells us that

one cannot duplicate unknown states by using any (not necessarily unitary) quantum evolution, except when these states pertain
to a family of orthogonal states [28].
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the ith symbol occurring with frequency ηi. In order to send a message, a sender prepares random states drawn
from the ensemble and gives them to a receiver. To decode the message the latter must identify these states by
performing measurements. He wants to find the measurement that minimizes the failure probability.

A first strategy, called ambiguous (or minimal error) quantum state discrimination, consists in looking for a
generalized measurement with m outcomes yielding the maximal success probability PS =

∑
i ηipi|i, pi|i being

the probability of the measurement outcome i given that the state is ρi. Here, the number of possible outcomes
is chosen to be equal to the number of states in the ensemble. The conditional probability of the outcome j
given the state ρi is (see Sec. 5.3)

pj|i = tr(Mjρi) (6.1)

so that the maximal success probability reads

P opt
S ({ρi, ηi}) = max

POVM {Mi}

{ m∑

i=1

ηi tr(Miρi)

}
, (6.2)

where the maximum is over all POVMs {Mi}mi=1.
A second strategy consists in seeking for a generalized measurement with (m + 1) outcomes enabling to

identify perfectly each state ρi, but such that one of the outcomes leads to an inconclusive result. This strategy,
originally proposed by Ivanovic [136] and further investigated by Dieks and Peres [78, 191], is called unambiguous
quantum state discrimination. In other words, if the measurement outcome is j ∈ {1, . . . ,m} then the receiver
is certain that the state is ρj , whereas if j = 0 he does not know. This means that pj|i = pi|iδij with pi|i > 0,
for any i, j = 1, . . . ,m. The probability of occurrence of the inconclusive outcome, P0 =

∑
i ηip0|i, must be

minimized. Since p0|i = 1−pi|i, the success probability is obtained from the same formula (6.2) as for ambiguous
discrimination, but with a maximum over all POVMs {Mj}mj=0 such that tr(Mjρi) = pi|iδij for j 6= 0. For pure
states ρi = |ψi〉〈ψi|, the rank-one measurement operators Mj satisfying this condition are

Mj =
pj|j

|〈ψ∗
j |ψj〉|2

|ψ∗
j 〉〈ψ∗

j | , j = 1, . . . ,m , (6.3)

with the dual normalized vectors |ψ∗
j 〉 defined by 〈ψ∗

j |ψi〉 = δij〈ψ∗
i |ψi〉. The remaining problem is to find the

values of the probabilities pj|j which maximize the success probability (6.2) under the constraint that {Mj}mj=0

is a POVM, that is,

M0 = 1−
m∑

j=1

pj|j
|〈ψ∗

j |ψj〉|2
|ψ∗
j 〉〈ψ∗

j | ≥ 0 . (6.4)

This is a non-trivial problem, which has been solved so far in particular cases only. Upper and lower bounds
on the maximal success probability can be found in terms of the scalar products 〈ψi|ψj〉 (see e.g. [37]).

It is worth noting that unambiguous discrimination is not always possible. For instance, a pure state ensemble
{|ψi〉, ηi} with linearly dependent vectors |ψi〉 cannot be discriminated unambiguously [57]. Indeed, assume
that |ψi0〉 is a linear combination of the other states |ψi〉. Together with the no-error condition pj|i = pi|iδij ,
which is equivalent to |ψi〉 ∈ kerMj for any j /∈ {0, i}, this means that |ψi0〉 ∈ ker(Mi0) and thus pi0|i0 = 0,
in contradiction with the requirement pi0|i0 > 0. The same argument shows that one cannot discriminate
unambiguously an ensemble of mixed states {ρi, ηi} such that one state ρi0 has its support ran(ρi0) contained
in the sum of the supports of the other states.

Ambiguous and unambiguous quantum state discriminations have many applications. For instance, the
discrimination of two non-orthogonal states plays a central role in the quantum cryptography protocol proposed
by Bennett in 1992 to distribute a secrete key between two parties [32]. We will not elaborate further on these
applications. Let us also mention that other optimization schemes than those discussed above have been worked
out [37, 36]. State discriminations have been implemented experimentally by using polarized photons in pure
states (see [62] and references therein) and, more recently, in mixed states [171].

6.2 Ambiguous and unambiguous discriminations of two states

6.2.1 Ambiguous discrimination

The simplest example of ambiguous discrimination is the case of m = 2 states ρ1 and ρ2. Then the optimal
success probability and measurement are easy to determine [119]. One starts by writing the measurement
operator M2 as 1−M1 in the expression of the success probability,

P
{Mi}
S,a ({ρi, ηi}) = η1 tr(M1ρ1) + η2 tr(M2ρ2) =

1

2

(
1− tr Λ

)
+ tr(M1Λ) (6.5)
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Figure 6.1: Optimal measurement {Mopt
i } in the discrimination of two non-orthogonal pure states |ψ1〉 and

|ψ2〉 with equal prior probabilities ηi = 1/2. (a) For ambiguous discrimination, {Mopt
i } is the von Neumann

measurement in the two orthogonal states |φ1〉 and |φ2〉 with |〈φi|ψi〉| = cos(π4 − θ
2 ), that is, it is the least square

measurement associated to {|ψi〉, ηi} (b) For unambiguous discrimination, if the maximal prior probability ηmax

is larger than q1 = 1/(1+cos2 θ), then the von Neumann measurement in the orthonormal basis {|ψ1〉, |ψ∗
2〉} (if

ηmax = η2 > η1) or {|ψ2〉, |ψ∗
1〉} (if ηmax = η1 > η2) indicated by the red dashed vectors yields the smallest failure

probability. Failure occurs when the outcome corresponds to the first vector in these two bases (inconclusive
result). If 1− q1 < η1 < q1, a smaller failure probability is obtained by using the generalized measurement with
rank-one operators Mi indicated schematically by the green vectors.

with Λ = η1ρ1 − η2ρ2. The maximum of tr(M1Λ) over all M1 satisfying 0 ≤ M1 ≤ 1 is achieved when M1 is
the spectral projector Π1 associated to the positive eigenvalues λ1 ≥ · · · ≥ λp > 0 of the Hermitian matrix Λ.
Consequently, the maximal success probability is given by the Helstrom formula

P opt
S,a ({ρi, ηi}) =

1

2

(
1 + tr |Λ|

)
, Λ = η1ρ1 − η2ρ2 . (6.6)

The optimal measurement is a von Neumann measurement {Πopt
1 , 1 − Πopt

1 } with Πopt
1 the projector onto the

support of Λ+ = (Λ + |Λ|)/2. If Λ ≥ 0 the optimal measurement is {Πopt
1 = 1,Πopt

2 = 0}, meaning that no
measurement can outperform the simple guess that the state is ρ1 (a similar statement holds for ρ2 if Λ ≤ 0).
For pure states ρi = |ψi〉〈ψi|, (6.6) reduces to

P opt
S,a ({|ψi〉, ηi}) =

1

2

(
1 +

√
1− 4η1η2|〈ψ1|ψ2〉|2

)
(6.7)

and the optimal measurement consists of the rank-one eigenprojectors of Λ for the positive and negative eigen-
values. When η1 = η2, these are the projections onto the two orthogonal subspaces placed symmetrically with
respect to |ψ1〉 and |ψ2〉, as represented in Fig. 6.1.

6.2.2 Unambiguous discrimination of two pure states

The power of generalized measurements is illustrated in the unambiguous discrimination of two pure states
|ψ1〉 and |ψ2〉. Indeed, we will show that such measurements enable to distinguish quantum states better than
von Neumann measurements2. Clearly, the Hilbert space H can be restricted to its two-dimensional subspace
spanned by |ψ1〉 and |ψ2〉. The unambiguity condition implies |ψ1〉 ∈ kerM2 and |ψ2〉 ∈ kerM1, so that the
measurement operatorsM1 andM2 are of rank one and given by (6.3). We can already observe at this point that
the number of outcomes is larger than the space dimension, so that the unambiguous discrimination strategy
cannot be realized with a von Neumann measurement.

The optimal success probability is given by [139]

P opt
S,u ({|ψi〉, ηi}) =

{
1− 2

√
η1η2|〈ψ1|ψ2〉| if 1− q1 ≤ η1 ≤ q1

ηmax(1− |〈ψ1|ψ2〉|2) if ηmax ≥ q1
(6.8)

2This can be considered as the main physical motivation to introduce generalized measurements [194].
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with ηmax = max{η1, η2} and q1 = 1/(1 + |〈ψ1|ψ2〉|2). It is instructive to establish this formula by using
the Neumark extension theorem [37]. Thanks to Theorem 5.3.1, one can represent {Mj} as a von Neumann
measurement on the larger space H ⊗ HE, with HE ≃ C3. Let {Aj}2j=0 be the Kraus operators for the mea-

surement and |ǫ0〉, U , and πE
j be as in this theorem. We may assume that πE

j = |j〉〈j| are of rank one, where

{|j〉}2j=0 is an orthonormal basis of HE (see the proof of Theorem 5.3.1). One writes

|Ψ′
i〉 = U |ψi〉|ǫ0〉 =

2∑

j=0

√
pj|i|ϕj|i〉|j〉 (6.9)

for i = 1, 2, where
√
pj|i|ϕj|i〉 = 〈j|Ψ′

i〉 ∈ H are in general non-orthogonal for distinct j’s and ‖ϕj|i‖ = 1. By
(5.14) and (5.15) the unnormalized post-measurement states are ρ̃j|i = 〈j|Ψ′

i〉〈Ψ′
i|j〉 = pj|i|ϕj|i〉〈ϕj|i|, hence pj|i

and |ϕj|i〉 can be interpreted as the probability of outcome j and the corresponding conditional state for the
input state |ψi〉. Since we require p2|1 = p1|2 = 0, the unitarity of U imposes the conditions p0|i = 1− pi|i and
〈Ψ′

1|Ψ′
2〉 =

√
p0|1p0|2〈ϕ0|1|ϕ0|2〉 = 〈ψ1|ψ2〉. The last relation implies that the probabilities p0|i satisfy

p0|1p0|2 ≥ p0|1p0|2|〈ϕ0|1|ϕ0|2〉|2 = cos2 θ , (6.10)

where we have set cos θ = |〈ψ1|ψ2〉|. Note that this bound could have been obtained directly from (6.4), which
is easy to solve since we are dealing here with 2× 2 matrices [37].

In order to maximize the success probability PS =
∑

i ηipi|i = 1−∑
i ηip0|i, we are looking for the smallest

possible p0|1 and p0|2. For such p0|i’s the inequality (6.10) is an equality. Assuming cos θ > 0, this holds

whenever |ϕ0|2〉 = eiδ|ϕ0|1〉 with δ = arg〈ψ1|ψ2〉. Accordingly, the conditional post-measurement state for the
inconclusive outcome is the same irrespective of the input state |ψi〉. This is physically meaningful since if this
post-measurement state was depending on |ψi〉 then one could perform a new measurement on it to increase
further the success probability. In summary, for the optimal measurement one has

|Ψ′
i〉 =

√
pi|i|ϕi|i〉|i〉+√

p0|i e
iδi |Φ0〉 (6.11)

with |Φ0〉 = |ϕ0|1〉|0〉 and δ1 = 0, δ2 = δ.
The failure probability

P0 = η1p0|1 + η2
cos2 θ

p0|1
(6.12)

is easy to minimize as a function of p0|1. The minimum is achieved for popt0|1 =
√
η2/η1 cos θ and is equal to

P opt
0 = 2

√
η1η2 cos θ. This yields the upper expression in (6.8). The restrictions on the values of η1 come

from the conditions popt0|1 ≤ 1 and popt0|2 ≤ 1. When η1 ≤ 1 − q1, the minimum is achieved for popt0|1 = 1 and

popt0|2 = cos2 θ, i.e., popt1|1 = 0 and popt2|2 = sin2 θ. In such a case only the state |ψ2〉 can be identified with certainty,

as |ψ1〉 always produces an inconclusive outcome. Strictly speaking this does not correspond to an unambiguous
discrimination. One can nevertheless determine the optimal measurement, characterized by Mopt

1 = 0 and by
two orthogonal projectors Mopt

2 = |ψ∗
2〉〈ψ∗

2 | and Mopt
0 = |ψ1〉〈ψ1|, see (6.3). A similar statement holds when

η1 ≥ q1 by exchanging the indices 1 and 2. The corresponding success probability is given by the lower expression
in (6.8).

These results are summarized in Fig. 6.1. As claimed above, when 1−q1 < η1 < q1 generalized measurements,
obtained via a coupling of the system with an ancilla and a measurement on the latter, do better in decoding
the message than a von Neumann measurement performed directly on the system.

6.2.3 Unambiguous discrimination of two mixed states

Let us now turn to the case of two mixed states ρ1 and ρ2. Such states cannot be unambiguously discriminated
when ran ρ1 is contained in ran ρ2 or vice versa. By the unambiguity condition, ranM1 ⊂ ker ρ2 and ranM2 ⊂
ker ρ1. A trivial situation is when ker ρ1 ⊥ ker ρ2, in which case the optimal POVM is the von Neumann
measurement with M1 and M2 equal to the projectors on kerρ2 and ker ρ1, respectively. Then the minimal
failure probability is P opt

0 = tr[(η1ρ1 + η2ρ2)Π0], Π0 being the projector onto ran ρ1 ∩ ran ρ2. One can as before
restrict the Hilbert space so that ran ρ1 + ran ρ2 = H. If ran ρ1 and ran ρ2 have co-dimension one in H, then
M1 and M2 are of rank one and take the form (6.3) with |ψ∗

1〉 ∈ ker ρ2, |ψ∗
2〉 ∈ ker ρ1, and |〈ψ∗

i |ψi〉|2 replaced
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by Ri = 〈ψ∗
i |ρi|ψ∗

i 〉. A simple generalization of (6.8) then yields [204]

P opt
S,u ({ρi, ηi}) = P opt

S (Ri, ηi) ≡





η1R1 + η2R2 − 2
√
η1η2R1R2 cos θ

sin2 θ
if cos2 θ < min

{η1R1

η2R2
,
η2R2

η1R1

}

max{η1R1, η2R2} otherwise

(6.13)

with cos θ = |〈ψ∗
1 |ψ∗

2〉|. For kernels of dimensions d2 ≥ d1 > 1, by a standard linear algebra argument one can
construct two orthonormal bases {|ψ∗

2k〉}d1k=1 of kerρ1 and {|ψ∗
1k〉}d2k=1 of ker ρ2 such that 〈ψ∗

1k|ψ∗
2l〉 = δkl cos θk,

with θk ∈ [0, π/2]. Let us take Mi =
∑
kMik for i = 1, 2, with Mik = mik|ψ∗

ik〉〈ψ∗
ik|. Optimizing P

{Mi}
S,u over

the non-negative numbers mik under the constraint 1−M1 −M2 ≥ 0 reduces to the optimization problem for
rank-one measurement operators studied before (in fact, this constraint is equivalent to 1−M1k −M2k ≥ 0 for
k = 1, . . . , d1 and 1−M1k ≥ 0 for d1 < k ≤ d2). This gives the lower bound [204]

P opt
S,u ({ρi, ηi}) ≥

d1∑

k=1

P opt
S (Rik, ηi) + η1

∑

d1<k≤d2
R1k with Rik = 〈ψ∗

ik|ρi|ψ∗
ik〉. (6.14)

An upper bound can be obtained in terms of the fidelity between the states ρ1 and ρ2 defined by F (ρ1, ρ2) =
(tr(|√ρ1√ρ2|))2 (see Proposition 6.5.2 and Remark 8.4.4 below) [204],

P opt
S,u ({ρi, ηi}) ≤




1− 2

√
η1η2F (ρ1, ρ2) if F (ρ1, ρ2) <

ηmin

ηmax

ηmax(1 − F (ρ1, ρ2)) otherwise.
(6.15)

A nice application of two mixed state discrimination is the state comparison problem [27]. Consider two
independent copies of a given system, the state of which is drawn from the pure state ensemble {|ψi〉, 1/2}i=1,2.
One would like to decide with the help of an appropriate measurement if the two copies are in the same state
or not, without further information on the actual state of each copies. If |ψ1〉 and |ψ2〉 are not orthogonal, this
can only be done with a probability of success PS,comp < 1. This amounts to discriminate the two mixed states

ρeq =
1

2
|ψ1 ⊗ ψ1〉〈ψ1 ⊗ ψ1|+

1

2
|ψ2 ⊗ ψ2〉〈ψ2 ⊗ ψ2|

ρdiff =
1

2
|ψ1 ⊗ ψ2〉〈ψ1 ⊗ ψ2|+

1

2
|ψ2 ⊗ ψ1〉〈ψ2 ⊗ ψ1| . (6.16)

It is shown in [204] that for such mixed states of rank two, the lower and upper bounds in (6.14) and (6.15)
coincide. A simple calculation (see Remark 8.4.4 below) then gives the optimal success probability [27]

P opt
S,comp = 1− |〈ψ1|ψ2〉| . (6.17)

6.3 Discrimination with least square measurements

How well does the least square measurement (Sec. 5.5.3) in discriminating ambiguously quantum states? More
precisely, let

P lsm
S,a ({ρi, ηi}) =

∑

i

ηi tr(ρiM
lsm
i ) (6.18)

be the success probability in discriminating the states ρi by performing the least square measurement {M lsm
i }

associated to {ρi, ηi}. We would like to compare P lsm
S,a with the optimal success probability.

Let us first observe that if ρi = M(|i〉〈i|), M being a quantum operation on B(H) and {|i〉}ni=1 a fixed
orthonormal basis ofH, then PS,a({ρi, ηi}) is related to the entanglement fidelity defined in Sec. 5.5.2. Recall that
any ensemble {ρi, ηi}mi=1 with m ≤ n states can be obtained in this way from an operation M : B(H) → B(H)
(since m ≤ n we can identify here the pointer space HP with a subspace of H, see Sec. 5.4). To establish the
relation with the average fidelity (5.28), consider a POVM {Mi}mi=1 with m measurement operators and let us
associate to it the quantum operation R on B(H) defined by R∗(|i〉〈j|) =Miδij . Then

P
{Mi}
S,a

(
{ρi, ηi}

)
=

m∑

i=1

ηi tr[R∗(|i〉〈i|)ρi] =
m∑

i=1

ηi〈i|R ◦M(|i〉〈i|)|i〉 = F e

(
{|i〉, ηi},R ◦M

)
(6.19)
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thanks to the equality of the entanglement fidelity with the input-output fidelity for pure states. In view of the
one-to-one correspondence between POVMs with m ≤ n operators and quantum operations on B(H) we obtain
the following relation between P opt

S, a and the maximal fidelity over all recovery operations R on B(H):

P opt
S, a ({ρi, ηi}mi=1) = max

R

{
F e({|i〉, ηi}mi=1,R ◦M)

}
, m ≤ n . (6.20)

Furthermore, the optimal measurement operators are given in terms of the optimal recovery operation Ropt by
Mopt
i = (Ropt)∗(|i〉〈i|). According to Proposition 5.5.3, taking R to be the transpose operation RM,ρin of M

for the state ρin =
∑

i ηi|i〉〈i| gives an entanglement fidelity larger than the square of the right-hand side of
(6.20). But the measurement associated to RM,ρin is the least square measurement, i.e., M lsm

i = R∗
M,ρin

(|i〉〈i|)
(see Sec. 5.5.3). As a result, Proposition 5.5.3 yields the following inequality.

Corollary 6.3.1. If m ≤ n = dimH, then

P opt
S,a ({ρi, ηi}mi=1) ≤

(
P lsm
S,a ({ρi, ηi}mi=1)

) 1
2

. (6.21)

Thus, if the error probability for discriminating {ρi, ηi} using the least square measurement is small, then
it is at most twice the minimal error probability P opt

err,a = 1 − P opt
S,a , up to a small correction of the order of

(P lsm
S,a )

2. Small error probabilities occur for almost orthogonal states. Therefore, for such states least square
measurements are nearly optimal [114, 29].

It is worth mentioning that least square measurements are also asymptotically optimal for discriminat-
ing ambiguously equiprobable linearly independent pure states [125]. In addition, they optimally discriminate
equiprobable states drawn from a symmetric ensemble, like for instance the states ρi = U i−1ρ1(U

i−1)∗ re-
lated between themselves through conjugations by powers of a single unitary operator U satisfying Um = ±1
(see [24, 26, 61, 83] and references therein). Necessary and sufficient conditions for the optimality of least square
measurements in state discrimination have been investigated in [86, 207].

6.4 General results on ambiguous discrimination

Let {ρi, ηi}mi=1 be an ensemble of m states of a system with a n-dimensional Hilbert space H. Hereafter we
assume that ηi > 0 for all i = 1, . . . ,m, so that m is the actual number of states to discriminate. We denote
by ρ̃i = ηiρi the unnormalized states with trace equal to the prior probability ηi. To shorten notation, the
dependence of the success probability PS on the ensemble is not written explicitly. The following proposition
contains one of the few results in ambiguous discrimination applying to arbitrary ensembles.

Proposition 6.4.1. [123, 269, 84] The optimal success probability in ambiguous state discrimination is given
by

P opt
S,a = inf

Υ≥ρ̃i

{
tr(Υ)

}
, (6.22)

where the infimum is over all self-adjoint operators Υ satisfying Υ ≥ ρ̃i for any i = 1, . . . ,m. Moreover, the
POVM {Mopt

i }mi=1 is optimal if and only if the operator Υopt =
∑

i ρ̃iM
opt
i satisfies the two conditions

(i) Υopt is self-adjoint;

(ii) Υopt ≥ ρ̃i for any i = 1, . . . ,m.

In such a case, the infimum in the right-hand side of (6.22) is attained for Υ = Υopt.

The fact that (ii) is sufficient to ensure the optimality of {Mopt
i } is obvious from the relation

P opt
S,a − P

{Mi}
S,a =

m∑

i=1

tr[(Υopt − ρ̃i)Mi] . (6.23)

The necessary and sufficient conditions (i) and (ii) are due to Holevo [123], who derived them by considering
a specific one-parameter family {Mi(ε)} of POVMs such that Mi(0) = Mopt

i and by exploiting the fact that

∂P
{Mi(ε)}
S,a /∂ε = 0 for ε = 0 (see [119], chapter 4). Yuen, Kennedy, and Lax [269] proposed another derivation

based on a duality argument in vector space optimization. We shall present below the related proof of Eldar,
Megretski and Verghese [84].
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Let us note that (i) and (ii) imply

(Υopt − ρ̃i)M
opt
i =Mopt

i (Υopt − ρ̃i) = 0 , i = 1, . . . ,m . (6.24)

In fact, since
∑

i tr[(Υ
opt−ρ̃i)Mopt

i ] = 0 and Υopt−ρ̃i ≥ 0 by (ii), one deduces that |(Υopt−ρ̃i)1/2(Mopt
i )1/2|2 = 0

(recall that A ≥ 0 and tr(A) = 0 imply A = 0). One concludes from this equality that (Υopt − ρ̃i)M
opt
i = 0. It

is easy to see by eliminating Υopt that (6.24) is equivalent to

Mopt
i (ρ̃i − ρ̃j)M

opt
j = 0 , i, j = 1, . . . ,m . (6.25)

The condition (6.25) automatically implies that Υopt is self-adjoint. Hence a necessary and sufficient condition
for {Mopt

i } to be optimal is given by conditions (ii) and (6.25).
Except in special cases such as ensembles of equiprobable states related by a symmetry [24, 26, 83, 61], it is

difficult in practice to obtain the optimal measurement and success probability from the above necessary and
sufficient conditions. Nevertheless, the formulas (6.22) and (6.24) are helpful for computing these quantities
numerically. For indeed, the minimization task in (6.22) is simpler than the maximization in (6.2) and can be
solved efficiently with the help of convex semidefinite programs [84].

Remark 6.4.2. The necessary and sufficient optimality conditions (i) and (ii) of Proposition 6.4.1 are equiv-
alent to the following condition: ReΥopt ≥ ρ̃i for any i = 1, . . . ,m, see [124].

Proof. The main idea is to show that the minimization problem in (6.22) is dual to the maximization problem
in (6.2). More precisely, there exists a convex set Γ ⊂ B(H)s.a. such that

P
{Mi}
S,a ≤ tr(Υ) , ∀ {Mi} POVM, ∀ Υ ∈ Γ , (6.26)

and the maximum of the left-hand member is equal to the minimum of the right-hand member, i.e., P opt
S,a =

minΥ∈Γ tr(Υ). The set Γ is defined by

Γ =
{
Υ ∈ B(H)s.a. ; Υ ≥ ρ̃i , i = 1, . . . ,m

}
. (6.27)

Then tr(Υ) − P
{Mi}
S,a =

∑
i tr[(Υ − ρ̃i)Mi] ≥ 0 for any Υ ∈ Γ, so that (6.26) holds true. Let us now define the

following convex subset Ω of the real vector space B(H)s.a. × R:

(B, x) ∈ Ω ⇔ B =

m∑

i=1

Bi − 1 , x = r −
m∑

i=1

tr(Biρ̃i) with Bi ≥ 0 and r > P opt
S,a . (6.28)

This space is endowed with the scalar product 〈(B, x) , (C, y)〉 = tr(BC) + xy. Since Ω is convex and does not
contain (0, 0), by the separating hyperplane theorem one can find a non-vanishing vector (Υa, a) ∈ B(H)s.a.×R

such that 〈(Υa, a) , (B, x)〉 ≥ 0 for any (B, x) ∈ Ω, that is

tr
[
Υa

( m∑

i=1

Bi − 1
)]

+ a
(
r −

m∑

i=1

tr(Biρ̃i)
)
≥ 0 . (6.29)

Taking Bi = t|ϕ〉〈ϕ| if i = k and zero otherwise, with |ϕ〉 ∈ H and t > 0, and letting t → ∞, we obtain
〈ϕ|Υa|ϕ〉 − a〈ϕ|ρ̃k|ϕ〉 ≥ 0. But |ϕ〉 and k are arbitrary, hence

Υa ≥ aρ̃i , i = 1, . . . ,m . (6.30)

Similarly, taking Bi = 0 for all i and r → P opt
S,a , (6.29) yields

aP opt
S,a ≥ tr(Υa) . (6.31)

From the same choice of Bi and r → ∞ one gets a ≥ 0. If a = 0 then Υa ≥ 0 and tr(Υa) = 0 by (6.30) and
(6.31). This would imply Υa = 0, in contradiction with (Υa, a) 6= (0, 0). Thus a > 0. The self-adjoint operator
Υopt = Υa/a satisfies Υopt ≥ ρ̃i for all i (i.e., Υopt ∈ Γ) and tr(Υopt) ≤ P opt

S,a , see (6.30) and (6.31). The

converse of the last inequality follows from (6.26). Whence P opt
S,a = tr(Υopt) = minΥ∈Γ tr(Υ), as claimed in the

proposition. This identity implies
∑

i tr[(Υ
opt − ρ̃i)M

opt
i ] = 0 if {Mopt

i } is an optimal POVM. But all traces in
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the sum are non-negative, thus they vanish and (6.24) is satisfied by the arguments given above to derive this
equation. It results from (6.24) that Υopt =

∑
i ρ̃iM

opt
i =

∑
iM

opt
i ρ̃i. This concludes the proof. ✷

Let us consider the success probability

P opt v.N.
S,a ({ρi, ηi}) = max

{Πi}

{ m∑

i=1

ηi tr(Πiρi)

}
, (6.32)

where the maximum is over all von Neumann measurements {Πi}mi=1. A natural question is whether this
probability may be equal to P opt

S,a , i.e., whether the states ρi may be discriminated optimally with a von
Neumann measurement. We have already argued above that this is not always the case, even for pure states.
A simple consequence of Proposition 6.4.1 is that the equality holds for linearly independent states. The
states ρi are called linearly independent if their eigenvectors |ζij〉 with non-zero eigenvalues form a linearly

independent family {|ζij〉}j=1,...,ri
i=1,...,m in H (here ri is the rank of ρi). We say that they span the Hilbert space H

if H = span{|ζij〉}j=1,...,ri
i=1,...,m . Without loss of generality one can restrict H to a subspace H′ spanned by the ρi.

Corollary 6.4.3. [84] Let {|ψi〉, ηi}mi=1 be an ensemble of pure states spanning H. Then the optimal mea-
surement operators Mopt

i in ambiguous state discrimination are of rank one. More generally, for any en-
semble {ρi, ηi}mi=1 spanning H, the optimal measurement operators have ranks rank(Mopt

i ) ≤ rank(ρi) for all
i = 1, . . . ,m.

Corollary 6.4.4. [85] Let {ρi, ηi}mi=1 be an ensemble of linearly independent states spanning H. Then an optimal
measurement in ambiguous state discrimination is a von Neumann measurement with orthogonal projectors
Mopt
i = Πopt

i of rank ri = rank(ρi). In particular, the probabilities (6.2) and (6.32) are equal.

Proof. Let us set Nopt
i = Υopt − ρ̃i. The relation (6.24) implies ranMopt

i ⊂ kerNopt
i , hence rank(Mopt

i ) ≤
dim(kerNopt

i ). Since the rank of the sum of two matrices is smaller or equal to the sum of their ranks,
rank(Υopt) ≤ rank(Nopt

i ) + ri and thus dim(kerNopt
i ) ≤ dim(kerΥopt) + ri. But kerΥopt ⊂ [ran(ρi)]

⊥ for all i
according to the condition (ii) of Proposition 6.4.1. Consequently, if the states ρi span H then kerΥopt = {0}.
This shows that rank(Mopt

i ) ≤ ri. If furthermore the ρi are linearly independent, then
∑
i ri = n = dimH.

Introducing the spectral decomposition Mopt
i =

∑
k |µ̃ik〉〈µ̃ik| with unnormalized vectors |µ̃ik〉, k = 1, . . . , ri,

and noting that the sum
∑
i,k |µ̃ik〉〈µ̃ik| = 1 contains at most n terms, it follows that {|µ̃ik〉} is an orthonormal

basis of H. Thus Mopt
i are orthogonal projectors of rank ri. ✷

6.5 Bounds on the maximal success probability

We now establish some inequalities satisfied by P opt
S for any number m of states to discriminate. A review

of various upper bounds for ambiguous discrimination can be found in [200] (see also [237, 238] for upper and
lower bounds of the same spirit as in (6.21)). We only discuss here the bounds involving the fidelity

F (ρ, σ) = ‖√ρ√σ‖21 =
(
tr[(

√
σρ

√
σ)

1
2 ]
)2

. (6.33)

The properties of this fidelity will be analyzed in the forthcoming chapter 8. Let us only mention here that
F (ρ, σ) is symmetric under the exchange of ρ and σ (actually,

√
σρ

√
σ and

√
ρ σ

√
ρ have the same non-zero

eigenvalues) and reduces for pure states ρψ = |ψ〉〈ψ| and σφ = |φ〉〈φ| to the square modulus of the scalar
product 〈ψ|φ〉, i.e., F (ρψ , σφ) = |〈ψ|φ〉|2. More generally, F (ρ, σ) can be seen as a measure of non-orthogonality
of ρ and σ.

The following lower and upper bounds on the maximum success probability P opt
S,a for ambiguous state

discrimination are taken from Refs. [29] and [173], respectively3.

Proposition 6.5.1. (Barnum and Knill [29], Montanaro [173]). For any ensemble {ρi, ηi}mi=1, one has

1−
∑

i>j

√
ηiηjF (ρi, ρj) ≤ P opt

S,a ({ρi, ηi}) ≤ 1−
∑

i>j

ηiηjF (ρi, ρj) . (6.34)

3The upper bound is established in [29] (and is often reported in subsequent works) with an unnecessary extra factor of two in
front of the sum (after correcting the obvious misprints in this reference).
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The inequalities (6.34) make quantitative the intuitive fact that the more pairwise orthogonal are the states
ρi, the larger is the success probability to discriminate them, and conversely.

Proof. Let ρi = AiA
∗
i , the operators Ai being, for instance, given by (5.35). Given a POVM {Mi} with Kraus

operators Ri (i.e., Mi = R∗
iRi), we set

Sij =
√
ηjRiAj , Bij =

√
ηiηjA

∗
iAj . (6.35)

We view S = (Sij)
m
i,j=1 and B = (Bij)

m
i,j=1 as m × m matrices with values in B(H), which are related by

S∗S = B ≥ 0 (this follows from
∑

iR
∗
iRi = 1). Observe that

P
{Mi}
S,a =

∑

j

ηj tr(Mjρj) = 1−
∑

i6=j
ηj tr(Miρj) = 1−

∑

i6=j
‖Sij‖22 (6.36)

and
ηiηjF (ρi, ρj) = ηiηj‖

√
ρi
√
ρj‖21 = ηiηj‖U∗

i

√
ρi
√
ρjUj‖21 = ‖Bij‖21 , (6.37)

where ‖ · ‖1,2 are the trace and Hilbert Schmidt norms. We have used in (6.37) the polar decomposition
Ai =

√
ρiUi and the unitary invariance of these norms. The main idea to prove the first inequality in (6.34) is

to bound from below the optimal success probability P opt
S,a by the success probability P lsm

S,a for discriminating
the states with the least square measurement [29]. For the latter, the matrix S in (6.35) is the square root of

B (in fact, according to (5.36), Slsm
ij =

√
ηiηjA

∗
i ρ

−1/2
out Aj so that Slsm ≥ 0, and it has been argued above that

|S|2 = B). For instance, if the ρi are pure states |ψi〉, B and Slsm can be identified with the scalar product

matrices (〈ψ̃i|ψ̃j〉)mi,j=1 and (〈µ̃i|ψ̃j〉)mi,j=1, respectively, with |ψ̃i〉 = √
ηi|ψi〉 and |µ̃i〉 = √

ηiρ
−1/2
out |ψi〉, the latter

being the vectors describing the least square measurement (Sec. 5.5.3). The identity Slsm =
√
B then becomes

evident from the definition of a POVM4. Therefore, in view of (6.36), P opt
S,a ≥ P lsm

S,a = 1 − ∑
i6=j ‖(

√
B)ij‖22.

The lower bound in (6.34) comes from the following norm inequality proven in Appendix B: for any fixed
j = 1, . . . ,m, ∑

i,i6=j
‖(
√
B)ij‖22 ≤ 1

2

∑

i,i6=j
‖Bij‖1 , (6.38)

where the last sum is related to the fidelities by (6.37).
It remains to establish the upper bound. With the notation above, this bound takes the form

1

2

∑

i6=j
‖Bij‖21 ≤

∑

i6=j
‖Sij‖22 . (6.39)

Fixing j again and introducing the notation ‖ · ‖1/2 as in (4.2) (note that this is not a norm), if one can show
that ∥∥∥

∑

i,i6=j
|Bij |2

∥∥∥
1
2

≤
∑

i,i6=j

(
‖Sij‖22 + ‖Sji‖22

)
(6.40)

then the required inequality (6.39) will be proven. Actually, by the inverse Minkowski inequality (1) in Ap-
pendix B one finds

∑
i ‖Bij‖21 =

∑
i ‖|Bij |2‖1/2 ≤ ‖∑i |Bij |2‖1/2. In order to show (6.40), let us introduce the

following (m− 1)× (m− 1) matrices with values in B(H):

C(j) =
∑

i,i6=j
(Sji)

∗ ⊗ |i〉〈1| , D(j) = Sjj ⊗ |1〉〈1|

E(j) =
∑

i6=j

∑

k 6=j
(Ski)

∗ ⊗ |i〉〈k| , F (j) =
∑

k,k 6=j
Skj ⊗ |k〉〈1|

(6.41)

(here |i〉〈k| stands for the matrix with vanishing entries except in the ith raw and kth column, which has a unit
entry). An explicit calculation leads to

∥∥C(j)D(j) + E(j)F (j)
∥∥2
1
=

∥∥∥
∑

i,i6=j
|Bij |2

∥∥∥
1
2

,
∥∥C(j)

∥∥2
2
=

∑

i,i6=j
‖Sji‖22 ,

∥∥F (j)
∥∥2
2
=

∑

k,k 6=j
‖Skj‖22 . (6.42)

4This remarkable identity has been singled out for pure states in [115]. The authors of this reference suggest to use it as a
definition of the least square measurement.
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Furthermore, ∥∥C(j)
∥∥2
2
+
∥∥D(j)

∥∥2

2
+
∥∥E(j)

∥∥2
2
+
∥∥F (j)

∥∥2
2
=

∑

i,k

‖Sik‖22 =
∑

k

ηk tr(ρk) = 1 . (6.43)

We can now take advantage of the norm inequality (4) of Appendix B. Because of (6.43), this gives

∥∥C(j)D(j) + E(j)F (j)
∥∥2
1
≤

∥∥C(j)
∥∥2
2
+
∥∥F (j)

∥∥2
2
. (6.44)

We plug the equalities (6.42) into this result to obtain (6.40). This concludes the proof. ✷

Let us now turn to unambiguous discrimination. The following easy-to-derive bound generalizes the upper
line in (6.15).

Proposition 6.5.2. [90] The maximum success probability for unambiguous state discrimination is bounded by

P opt
S,u ({ρi, ηi}) ≤ 1−

(
2m

m− 1

∑

i>j

ηiηjF (ρi, ρj)

) 1
2

. (6.45)

Proof. The failure probability P0 = 1− PS,u satisfies

P 2
0 =

( m∑

i=1

ηi tr(M0ρi)

)2

≥ m

m− 1

∑

i6=j
ηiηj tr(M0ρi) tr(M0ρj) ≥

m

m− 1

∑

i6=j
ηiηj

∣∣tr(Uij
√
ρiM0

√
ρj)

∣∣2 , (6.46)

where Uij are arbitrary unitary operators and the first and second bounds follow from the Cauchy-Schwarz
inequality. Expressing M0 as 1 − ∑

iMi and using ranMi ⊂ ker ρj for i 6= j, one gets tr(Uij
√
ρiM0

√
ρj) =

tr(Uij
√
ρi
√
ρj). Using the formula F (ρi, ρj) = maxU | tr(U√

ρi
√
ρj)|2 and maximizing over all unitaries Uij , one

obtains (6.45). ✷

One infers from the last two propositions and the Cauchy-Schwarz inequality that

Corollary 6.5.3. The minimal failure probabilities P opt
err,a = 1 − P opt

S,a and P opt
0 for discriminating m states

ambiguously and unambiguously satisfy P opt
0 ≥ 2P opt

err,a/(m− 1).

In particular, as noted in [37], for two states P opt
0 is at least twice larger than P opt

err,a.

6.6 The Holevo bound

Let us come back to the issue of encoding an input message A in an ensemble {ρi, ηi} of quantum states and
transmitting it to a receiver. From an information point of view, it makes sense to optimize the measurement
in such a way as to maximize the mutual information between the input message A and the output message
B reconstructed by the receiver (that is, B is the set of measurement outcomes). This mutual information is
defined as [215]

IA:B = H(A) +H(B)−H(A,B) , (6.47)

where H(A) = −∑
i ηi ln ηi is the Shannon entropy of the input message, H(B) = −∑

j pj ln pj is the Shannon
entropy of the measurement outcomes B with probabilities pj =

∑
i ηi tr(Mjρi), andH(A,B) = −∑

i,j pij ln pij
is the Shannon entropy of the joint process (A,B) with probabilities pij = ηipj|i = ηi tr(Mjρi), see (6.1). One
can show from the concavity of the logarithm that IA:B ≥ 0 and IA:B = 0 if and only if A and B are independent.

The conditional Shannon entropies are defined by

H(B|A) = −
∑

i

ηi
∑

j

pj|i ln pj|i , H(A|B) = −
∑

j

pj
∑

i

ηi|j ln ηi|j , (6.48)

where pj|i = tr(Mjρi) is the conditional probability of the measurement outcome j given the state ρi and ηi|j
the conditional (a posteriori) probability that the state is ρi given the outcome j. The latter is given by the
Bayes rule ηi|j = ηipj|i/pj . The conditional entropy H(A|B) represents the lack of knowledge of the receiver
on the state of the ensemble that was sent to him, after he has performed the measurement. In general the
measurement producing the lowest value of H(A|B) is not a von Neumann measurement [74]. Thanks to the
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well-known relation H(A,B) = H(A) +H(B|A) = H(B) +H(A|B), the mutual information can be expressed
in terms of these conditional entropies as [215],

IA:B = H(A)−H(A|B) = H(B)−H(B|A) . (6.49)

As H(A|B) ≥ 0 one has IA:B ≤ H(A), with equality if and only if B is a function of A. This means that if
IA:B is maximal, i.e., IA:B = H(A), the receiver can reconstruct without any error the message A from his
measurement outcomes. As stressed at the beginning of this chapter, this is never the case if A is encoded using
non-orthogonal states ρi. Hence IA:B < H(A) for non-orthogonal states. The maximum

max
POVM {Mi}

{
IA:B

}
(6.50)

measures the maximal amount of information accessible to the receiver, that is, how well can he reconstruct
the message. The determination of the optimal measurement maximizing IA:B appears to be a more difficult
task than the minimization of the probability of error in state discrimination. However, one can place an upper
bound on the maximal information (6.50) by means of the Holevo inequality

IA:B ≤ χHolevo = S(ρ)−
∑

i

ηiS(ρi) , ρ =
∑

i

ηiρi , (6.51)

where S(ρ) = − tr(ρ ln ρ) is the von Neumann entropy of ρ. The proof of this important result relies on the
monotonicity of the quantum mutual information under certain quantum operations (see Remark 11.3.3 below).
The positive number χHolevo is called the Holevo quantity. We will show below that χHolevo ≤ H({ηi}) with
equality if and only if the ρi have orthogonal supports (see (7.8)). We thus recover the aforementioned fact
that for non-orthogonal states ρi the maximum (6.50) is smaller than the entropy H(A) of the input message.

90



Chapter 7

Quantum entropies

Un certain désordre favorise la synthèse (M. Serres).

In this Chapter we give the definitions and main properties of the von Neumann entropy, the corresponding
relative entropy, and the quantum Rényi relative entropies. For classical systems these entropies reduce to the
Shannon entropy, the Kullback-Leibler divergence, and the Rényi divergences, respectively, which are central
objects in classical information theory. To begin with we recall in Sec. 7.1 the standard properties of the von
Neumann entropy. The most important result for our purpose is the monotonicity of the corresponding relative
entropy with respect to quantum operations and the characterization of pairs of states which have the same
relative entropy than their transformed states under a given operation. The proof of this result, which will
be used later in chapter 11, is given in Sec. 7.2. We finally present in Sec. 7.3 the quantum version of the
Rényi divergences introduced recently in [175, 260, 95]. This quantum version contains as special cases the von
Neumann relative entropy and the logarithm of the fidelity (6.33). The fidelity and the closely related Bures
distance will be the subject of chapter 8. Together with the von Neumann relative entropy, it plays a major
role in our geometrical approach of quantum correlations (chapter 12). The generalization of this approach to
the whole family formed by the relative Rényi entropies constitutes an interesting open problem that will not
be deeply explored in this article. The reader may thus skip Sec. 7.3 in a first reading.

7.1 The von Neumann entropy

The entropy H({pk}) = −∑
k pk ln pk introduced by Shannon in his two celebrated 1948 papers [215] quantifies

the amount of information at our disposal on the state of a classical system. It vanishes when the state is
perfectly known and takes its maximum value (equal to lnn if the system has n distinct possible states) when
one has no information on this state at all, that is, if all possible states are equiprobable. The quantum analog
of the Shannon entropy is the von Neumann entropy

S(ρ) = − tr(ρ ln ρ) . (7.1)

This is a unitary invariant quantity, i.e., S(UρU∗) = S(ρ) for U unitary. Moreover, S is additive for composite
systems, i.e., S(ρA ⊗ ρB) = S(ρA) + S(ρB) for any states ρA and ρB of the systems A and B. Another important
property of S is its strictly concavity1, i.e., for any states ρ0, ρ1 and 0 ≤ η ≤ 1 it holds S((1 − η)ρ0 + ηρ1) ≥
(1− η)S(ρ0) + ηS(ρ1), with equality if and only if ρ0 = ρ1 or η ∈ {0, 1}.

A much less trivial property of importance in quantum information theory is the so-called strong subaddi-
tivity

S(ρAB) + S(ρBC)− S(ρABC)− S(ρB) ≥ 0 , (7.2)

where ρABC is a state of ABC with marginals ρAB = trC(ρABC), ρBC = trA(ρABC), and ρB = trAC(ρABC). The
inequality (7.2) was first proven by Lieb and Ruskai [154] by using a former work of Lieb [153] on the concavity
of the map ρ 7→ tr(K∗ρ1+βKρ−β) for −1 ≤ β ≤ 0 (see Lemma 7.3.2 below). Alternatively, (7.2) is a direct
consequence of the monotonicity of the relative entropy (Theorem 7.2.1 below), which can be established by
other means than Lieb’s concavity theorem. Choosing HB = C, the strong subadditivity (7.2) implies that S is
subadditive, i.e., S(ρAC) ≤ S(ρA) + S(ρC).

1This comes from the strict convexity of f(x) = x lnx. Actually, it is not hard to prove that if f is strictly convex then the map
ρ ∈ E(H) 7→ tr[f(ρ)] is strictly convex [50].

91



As is well know in statistical physics, the von Neumann entropy S(ρ) is the Legendre transform of the free
energy Φ(β,H) = −β−1 ln tr(e−βH). More precisely, one has (see [50], Theorem 2.13)

S(ρ) = inf
H∈B(H)s.a.

{
β tr(Hρ)− βΦ(β,H)

}
, Φ(β,H) = inf

ρ∈E(H)

{
tr(Hρ)− β−1S(ρ)

}
, (7.3)

and the last infimum is attained if and only if ρ is the Gibbs state ρβ = e−βH/ tr(e−βH). The free energy is a
concave function of the energy observable H .

The following identity will be used repeatedly in chapters 10 and 11:

S(ρA) = S(ρB) if ρA and ρB are the reduced states of the pure state |ΨAB〉 of AB. (7.4)

It is a consequence of Theorem 4.2.1, since if |ΨAB〉 has Schmidt coefficients µi then S(ρA) = S(ρB) =
−∑

i µi lnµi.
A last identity worthwhile mentioning here is

S(ρ) = min
{|ψi〉,ηi}

H({ηi}) = min
{|ψi〉,ηi}

{
−

m∑

i=1

ηi ln ηi

}
, (7.5)

where the minimum is over all pure state decompositions of ρ. Furthermore, a decomposition minimizes H({ηi})
if and only if it is a spectral decomposition of ρ. These statements can be justified as follows2. Let {|k〉, pk}ri=1

be a spectral decomposition of ρ, with r = ran(ρ). An arbitrary pure state decomposition {|ψi〉, ηi}mi=1 of ρ
has the form

√
ηi|ψi〉 =

∑
k uik

√
pk|k〉, where (uik) is a m×m unitary matrix and m ≥ r (see (4.16)). Setting

pk = 0 for r < k ≤ m one gets ηi =
∑

k |uik|2pk. Since f(x) = x lnx is strictly convex, one finds

−H({ηi}) =
m∑

i=1

ηi ln ηi ≤
m∑

i,k=1

|uik|2pk ln pk =

r∑

k=1

pk ln pk = −S(ρ) , (7.6)

so that S(ρ) ≤ H({ηi}). By strict convexity, the inequality in (7.6) is an equality if and only if for any i, there
exists some ki ∈ {1, . . . , r+1} such that uik = 0 when k /∈ Ii = {k = 1, . . . ,m; pk = pki}. Thus S(ρ) = H({ηi})
if and only if √

ηi|ψi〉 =
√
pki

∑

k∈Ii
uik|k〉 (7.7)

are eigenvectors of ρ with eigenvalue ηi = pki (if pki 6= 0). It remains to check that 〈ψi|ψj〉 = 0 when
pki = pkj 6= 0. This comes from the unitarity of (uik). This yields the desired result. The inequality (7.6) can
be easily generalized to get3

S(ρ) ≤ H({ηi}) +
∑

i

ηiS(ρi) (7.8)

for any ensemble {ρi, ηi} forming a convex decomposition of ρ. Moreover, one has equality if and only if the ρi
have orthogonal supports.

7.2 Relative entropy

A related quantity to the von Neumann entropy is the relative entropy introduced by Umegaki [244] and later
extended by Araki [12] in the von Neumann algebra setting,

S(ρ||σ) =
{
tr
(
ρ(ln ρ− lnσ)

)
if ker(σ) ⊂ ker(ρ)

+∞ otherwise.
(7.9)

Note that by taking σ = 1/n proportional to the identity operator, S(ρ||1/n) = lnn − S(ρ) is the difference
between the maximal and the von Neumann entropy of ρ. The relative entropy has the following properties:

(i) S(ρ||σ) ≥ 0 with equality if and only if ρ = σ;

(ii) unitary invariance S(UρU∗||UσU∗) = S(ρ||σ) for any unitary U ;

2An alternative proof can be found in [180].
3This follows from (7.5) by writing the spectral decompositions of the ρi (see [180], Sec. 11.3).
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(iii) additivity for composite systems: S(ρA ⊗ ρB||σA ⊗ σB) = S(ρA||σA) + S(ρB||σB);

(iv) joint convexity: if 0 ≤ η ≤ 1 then S((1− η)ρ0 + ηρ1||(1− η)σ0 + ησ1) ≤ (1− η)S(ρ0||σ0) + ηS(ρ1||σ1).
The first property (i) follows from Klein’s inequality, which states that if f is continuous and strictly convex,
then tr[f(A)−f(B)−(A−B)f ′(B)] ≥ 0, with equality if and only if A = B. Its proof can be found for instance
in the excellent lecture notes of E.A. Carlen [50]. The properties (ii) and (iii) are immediate consequences of
the cyclicity of the trace and the relation ln(ρA ⊗ ρB) = ln ρA ⊗ 1+ 1⊗ ln ρB, as in the case of the von Neumann
entropy. The last property (iv) can be deduced from the strong subadditivity (7.2) [157, 158]. It will be proven
in Sec. 7.3. Let us point out that (i) implies the aforementioned subadditivity S(ρAC) ≤ S(ρA) + S(ρC) of the
von Neumann entropy, with equality if and only if ρAC = ρA ⊗ ρC is a product state (in fact, S(ρAC||ρA ⊗ ρC) =
S(ρA) + S(ρC)− S(ρAC)).

Another fundamental property of S(ρ||σ) is its monotonicity with respect to CP trace-preserving mappings.
This monotonicity means that if one performs the same measurement on two states without readout of the
outcomes, the pair of post-measurement states has a lower relative entropy than the pair of states before the
measurement. This fact was first proven by Lindblad [158] (see also [12] and [241]). Notice that unlike the
relative entropy, the von Neumann entropy is not monotonous with respect to non-projective measurements
(see [180], Exercise 11.15). The following theorem provides a necessary and sufficient condition on the two
states such that the monotonicity of the relative entropy is satisfied with equality. It is due to Petz [196].

Theorem 7.2.1. (Monotonicity of the relative entropy [196, 116]) For any quantum operation M : B(H) →
B(H′) one has S(ρ||σ) ≥ S(M(ρ)||M(σ)) for all states ρ, σ ∈ E(H). The inequality is an equality if and only
if there exists a quantum operation R : B(H′) → B(H) such that R ◦ M(σ) = σ and R ◦ M(ρ) = ρ. This
quantum operation is the transpose operation R = RM,σ defined in (5.24).

Let us recall from Sec. 5.5.1 that the transpose operation RM,σ is the quantum operation with Kraus
operators

Ri =
√
σA∗

iM(σ)−1/2 , (7.10)

where {Ai} are some Kraus operators for M. The conditions R ◦M(σ) = σ and R ◦M(ρ) = ρ, which mean
that ρ and σ can be recovered respectively from M(ρ) and M(σ) by means of the same quantum operation R,
is clearly sufficient to ensure the equality S(ρ||σ) = S(M(ρ)||M(σ)) if monotonicity holds true. It is remarkable
that this is also a necessary condition, with R = RM,σ the approximate reversal of M introduced in the context
of quantum error correction (Sec. 5.5).

We present below the derivation of this result given by Petz in Ref. [196], which also provides a nice and
simple proof of the monotonicity. A completely different proof of the monotonicity, based on Lieb’s concavity
theorem as in Ref. [158, 50, 95], will be given in Sec. 7.3 in the more general setting of the Rényi entropies. It is
noteworthy that Petz’s derivation does neither rely on the Stinespring theorem nor on the Kraus decomposition
(albeit it takes advantage of one of its consequence, namely, the Kadison-Schwarz inequality). It makes use of
the theory of operator convex functions and of Araki’s relative modular operators [13]. Let M be a quantum
operation B(H) → B(H′) and ρ and σ be two states of E(H) such that ρ and M(ρ) are invertible. One can
define two relative modular operators by (see chapter 4)

∆σ|ρ(B) = σBρ−1 , ∆M(σ)|M(ρ)(B
′) = M(σ)B′M(ρ)−1 , B ∈ B(H) , B′ ∈ B(H′) . (7.11)

Proof. Let us set ρM = M(ρ) and σM = M(σ) and assume that ρ, σ, ρM, and σM are invertible. In the whole
proof these states are fixed, so to simplify notation we write ∆ instead of ∆σ|ρ and ∆M instead of ∆σM|ρM . We

set ξ = ρ
1
2 and ξM = ρ

1
2

M. One can view these two operators as unit vectors in B(H) and B(H′), respectively,
for the Hilbert-Schmidt scalar product 〈·, ·〉. The first observation is that

S(ρ||σ) = 〈ξ , (ln ρ− lnσ)ξ〉 = −〈ξ , ln(∆)ξ〉 =
∫ ∞

0

dt
(〈
ξ , (∆ + t)−1ξ

〉
− (1 + t)−1

)
. (7.12)

The third equality can be established, for instance, with the help of the first identity in (2) (see Appendix A).
Therefore, in order to prove that S(ρ||σ) ≥ S(ρM||σM), it suffices to show that for any t > 0,

〈
ξM , (∆M + t)−1ξM

〉
≤

〈
ξ , (∆ + t)−1ξ

〉
. (7.13)

To this end, let us consider the operator CM defined by

CM(B′ξM) = M∗(B′)ξ , B ∈ B(H′) . (7.14)
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Since {B′ξM;B′ ∈ B(H′)} is equal to4 B(H′) by the invertibility of ρM, (7.15) defines an operator CM from
B(H′) to B(H). Then

C∗
M∆CM ≤ ∆M . (7.15)

Actually, thanks to the Kadison-Schwarz inequality (5.9) and the relation (M∗(B′∗))∗ = M∗(B′), one has

〈
CM(B′ξM) , ∆ CM(B′ξM)

〉
= tr

(
|M∗(B′∗)|2σ

)

≤ tr
(
M∗(B′B′∗)σ

)
=

〈
B′ξM , ∆MB′ξM

〉
. (7.16)

One shows similarly that ‖CM(B′ξM)‖2 ≤ ‖B′ξM‖2 for any B′ ∈ B(H′), hence ‖CM‖ ≤ 1.
We now use the fact that the function f(x) = (x+t)−1 is operator monotone-decreasing and operator convex.

The definitions of operator monotone and operator convex functions are given in Appendix A. Together with
the bound (7.15), this implies5

(∆M + t)−1 ≤ (C∗
M∆CM + t)−1 ≤ C∗

M(∆ + t)−1CM + t−1(1 − C∗
MCM) . (7.17)

The last inequality follows by applying the Jensen-type inequality (4) for the operator convex function g(x) =
(x + t)−1 − t−1 satisfying g(0) = 0 and the contraction CM. Since CM(ξM) = ξ by (7.14) and M∗(1) = 1, the
inequality (7.17) entails

〈
ξM , (∆M + t)−1ξM

〉
≤

〈
ξ , (∆ + t)−1ξ

〉
+ t−1

(
tr(ρM)− tr(ρ)

)
. (7.18)

The term proportional to t−1 vanishes because M is trace preserving, hence one obtains the desired bound
(7.13). We have thus proven the monotonicity of the relative entropy.

In addition to its simplicity, the above proof offers the advantage that it easily yields a necessary and
sufficient condition for having S(ρ||σ) = S(ρM||σM). Actually, this equality holds if and only if (7.13) is an
equality, i.e. 〈

ξM , (∆M + t)−1ξM
〉
=

〈
ξM ,

(
C∗
M(∆ + t)−1CM + t−1(1 − C∗

MCM)
)
ξM

〉
(7.19)

for all t > 0. But for any operators X , Y , and Z with Z invertible and X ≤ Y , 〈Z,XZ〉 = 〈Z, Y Z〉 implies
XZ = Y Z. Hence we can infer from (7.17) and (7.19) that

(∆M + t)−1ξM = C∗
M(∆ + t)−1ξ , t > 0 , (7.20)

where we have used the identity C∗
MCM(ξM) = ξM (in fact, the scalar product 〈CM(B′ξM) , CMξM〉 is equal

to 〈B′ξM , ξM〉 for any B′ ∈ B(H′)). Therefore,

∥∥C∗
M(∆ + t)−1ξ

∥∥2
2
=

〈
(∆M + t)−2ξM, ξM

〉
=

〈
C∗
M(∆ + t)−2ξ, ξM

〉
=

∥∥(∆ + t)−1ξ
∥∥2
2
, (7.21)

where the second equality is obtained by differentiating (7.20) with respect to t. Now, the identity ‖C∗(X)‖2 =
‖X‖2 for C a contraction implies that CC∗(X) = X (in fact, then the Cauchy-Schwarz inequality 〈X , CC∗(X)〉 ≤
‖X‖2‖CC∗(X)‖2 ≤ ‖X‖22 is an equality, so that CC∗(X) must be proportional to X). We conclude that

CM(∆M + t)−1ξM = CMC∗
M(∆ + t)−1ξ = (∆ + t)−1ξ (7.22)

for any t > 0. By means of the functional calculus, one deduces from this identity that

CM∆
− 1

2

M ξM = ∆− 1
2 ξ . (7.23)

In view of the definitions (7.11) and (7.14) and as ρ > 0, the last formula gives M∗(σ
− 1

2

M ξM) = σ− 1
2 ξ. By

multiplying by the adjoint and using the Kadison-Schwarz inequality, we arrive at

σ− 1
2 ρ σ− 1

2 ≤ M∗(σ
− 1

2

M ρMσ
− 1

2

M ) , (7.24)

that is, ρ ≤ RM,σ(ρM) with RM,σ defined in (5.24). But tr[ρ] = tr[ρM] = tr[RM,σ(ρM)], whence ρ =
RM,σ(ρM). The other equality σ = RM,σ(σM) is obvious. Reciprocally, as stressed above, these two identities

4In the theory of C∗-algebras, if this equality is true upon completion of {B′ξM;B′ ∈ B′} for the Hilbert-Schmidt norm one
says that (B′ ∈ B′ 7→ LB′ , ξM) defines a cyclic representation of the algebra B′ on the Hilbert space B(H′) [42].

5In [196] the last term in the right-hand side is omitted. This is a not correct as the Jensen-type inequality (4) cannot be applied
for the function f(x) = (x + t)−1, because it does not satisfy the condition f(0) ≤ 0. Fortunately, this term disappears in (7.13)
due to the trace-preserving property of M and the proof goes through.
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imply S(ρ||σ) = S(ρM||σM) thanks to the monotonicity of the relative entropy and the fact that RM,σ is a
quantum operation. ✷

Let us end this section by pointing out that the strong subadditivity of the von Neumann entropy, the joint
convexity of the relative entropy, and its monotonicity can be deduced from each other. For instance, the strong
subadditivity (7.2) is a simple consequence of the monotonicity. Actually, one checks that

S(ρAB) + S(ρBC)− S(ρABC)− S(ρB) = S(ρABC||ρA ⊗ ρBC)− S(MC(ρABC)||MC(ρA ⊗ ρBC)) (7.25)

with MC : ρ 7→ trC(ρ). It is easy to show that MC is a CP and trace-preserving map B(HABC) → B(HAB),
therefore (7.2) follows from Theorem 7.2.1. With the help of this theorem it is also possible to characterize all
states ρABC such that (7.2) becomes an equality [116].

Conversely, Lindblad [157, 158] proves the monotonicity inequality from the strong subadditivity. The basic
idea is to show that the strong subadditivity of the von Neumann entropy or the closely related Lieb concavity
theorem imply the joint convexity (iv) of the relative entropy. The corresponding arguments are given in
Sec. 7.3.2 below. One can then deduce the monotonicity of the relative entropy from its joint convexity (iv)
with the help of Stinespring’s theorem as follows [239, 263, 95]. Recall that if µH is the normalized Haar measure
on the group U(n) of n× n unitary matrices, then

∫
dµH(U)UBU∗ = n−1 tr(B) for any B ∈ B(H) (in fact, all

diagonal matrix elements of the left-hand side in an arbitrary basis are equal, as follows from the left-invariance
dµH(V U) = dµH(U) for V ∈ U(n); as a result, this left-hand side is proportional to the identity matrix). We
infer from Stinespring theorem 5.2.2 that

M(ρ)⊗ (1/nE) =

∫

U(nE)

dµH(UE) (1⊗ UE)Uρ⊗ |ǫ0〉〈ǫ0|U∗(1 ⊗ U∗
E) (7.26)

with U unitary on HSE. Thanks to the additivity (iii), the joint convexity convexity (iv), and the unitary
invariance (ii), we get

S(M(ρ)||M(σ)) = S
(
M(ρ)⊗ (1/nE)

∣∣∣∣M(σ)⊗ (1/nE)
)

≤
∫

U(nE)

dµH(UE)S
(
(1⊗ UE)Uρ⊗ |ǫ0〉〈ǫ0|U∗(1⊗ U∗

E )
∣∣∣∣(1⊗ UE)Uσ ⊗ |ǫ0〉〈ǫ0|U∗(1 ⊗ U∗

E )
)

=

∫

U(nE)

dµH(UE)S(ρ||σ) = S(ρ||σ) . (7.27)

By the same argument, one can show a slightly more general result.

Proposition 7.2.2. Let f : E(H) × E(H) → R be a unitary-invariant jointly convex function for any finite
Hilbert space H, which satisfies f(ρ ⊗ τ, σ ⊗ τ) = f(ρ, σ) for all ρ, σ ∈ E(H) and τ ∈ E(H′). Then f is
monotonous with respect to quantum operations.

7.3 Quantum relative Rényi entropies

7.3.1 Definitions

In the classical theory of information, other entropies than the Shannon entropy play a role when ergodicity
breaks down or outside the asymptotic regime. The Rényi entropy depending on a parameter α > 0 unifies
these different entropies. In the quantum setting, it is defined as

Sα(ρ) = (1− α)−1 ln tr(ρα) . (7.28)

It is easy to show that Sα(ρ) converges to the von Neumann entropy S(ρ) when α → 1 and that Sα(ρ) is a
non-increasing function of α.

A first definition of the quantum relative Réyni entropy is

S(n)
α (ρ||σ) = (α− 1)−1 ln(tr[ρασ1−α]) , α > 0 , α 6= 1 . (7.29)

This entropy appears naturally in the context of the quantum hypothesis testing (Sec. 9.1 below). We shall
discuss here a symmetrized version proposed recently by Müller-Lennert et al. [175] and by Wilde, Winter, and
Yang [260]. It is given by

Sα(ρ||σ) = (α− 1)−1 ln tr
[(
σ

1−α
2α ρ σ

1−α
2α

)α]
(7.30)
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if α ∈ (0, 1) and tr(σρ) > 0 or if α > 1 and kerσ ⊂ ker ρ (if none of these conditions are satisfied, one sets
Sα(ρ||σ) = +∞). This relative entropy has been used in Ref. [260] to solve an important open problem related
to the transmission of information in noisy quantum channels. It seems likely that much more applications in
quantum information theory will be encountered in the future. The entropies Sα appeared recently as central
objects in a very different context, namely, the quantum fluctuation relations in out-of-equilibrium statistical
physics [141, 142]. A nice feature of the family {Sα}α>0 is that it contains the von Neumann relative entropy, the
fidelity entropy, and the max-entropy as special cases. Furthermore, Sα depends continuously and monotonously
on α. The fidelity-entropy is obtained for α = 1/2. It is given by S1/2(ρ||σ) = − lnF (ρ, σ), where F (ρ, σ) is the
fidelity (6.33). The max-entropy is defined by

S∞(ρ||σ) = lim
α→∞

Sα(ρ||σ) = ln ‖σ− 1
2 ρσ− 1

2 ‖ , (7.31)

where ‖ · ‖ is the operator norm. The second equality follows from ‖A‖α → ‖A‖ as α → ∞ (see Sec. 4.1).
Finally, one recovers the von Neumann relative entropy (7.9) by letting α→ 1,

S(ρ||σ) = lim
α→1

Sα(ρ||σ) . (7.32)

To justify this statement, let us set A(α) = σ
1−α
2α ρσ

1−α
2α . Explicit calculations show that

d tr[A(α)α]

dα
= tr[A(α)α lnA(α)] + α tr

[
A(α)α−1 dA

dα

]

dA

dα
= − 1

2α2

(
ln(σ)A(α) +A(α) ln(σ)

)
. (7.33)

Consequently, Sα(ρ||σ) → (d ln tr[A(α)α]/dα)α=1 = tr(ρ ln ρ−ρ lnσ) as α → 1. Note that a similar result holds

for the unsymmetrized Rényi entropy (7.29), i.e., S(ρ||σ) = limα→1 S
(n)
α (ρ||σ). Let us also emphasize that

Sα(ρ||σ) ≤ S(n)
α (ρ||σ) (7.34)

by the Lieb-Thirring trace inequality (3).

For commuting matrices ρ =
∑
pk|k〉〈k| and σ =

∑
k qk|k〉〈k|, both Sα(ρ||σ) and S

(n)
α (ρ||σ) reduce to the

classical Réyni divergence

Sclas
α (p||q) = (α− 1)−1 ln

( n∑

k=1

pαk q
1−α
k

)
, (7.35)

which is non-negative for α > 0 by the Hölder inequality.

7.3.2 Main properties

It is shown in this subsection that the Rényi relative entropy Sα(ρ||σ) satisfies the same properties (i-iv) as the
von Neumann relative entropy in Sec. 7.2 for any α ∈ [1/2, 1]. For 0 < α <∞ we define the α-fidelity by

Fα(ρ||σ) = ‖ρ 1
2σ

β
2 ‖22α = ‖σ β

2 ρσ
β
2 ‖α = e−βSα(ρ||σ) with β =

1− α

α
. (7.36)

Here, we have used the notation ‖A‖2α = (tr[(A∗A)α])
1
2α even if this does not correspond to a norm when

0 < α < 1/2.

Theorem 7.3.1. For any α > 0, one has

(i) Sα(ρ||σ) ≥ 0 with equality if and only if ρ = σ;

(ii) Sα(ρ||σ) is unitary invariant;

(iii) Sα(ρ||σ) is additive for composite systems;

(iv) Fα(ρ||σ)α is jointly concave for α ∈ [1/2, 1) and jointly convex for α > 1. In particular, Sα(ρ||σ) is jointly
convex for α ∈ [1/2, 1];

(v) if α ≥ 1/2 then Sα(ρ||σ) ≥ Sα(M(ρ)||M(σ)) for any quantum operation M on B(H).
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The statements (i-iii), as well as (iv-v) for a restricted range of α, namely α ∈ (1, 2], have been established
in [175, 260]. The justification of (iv-v) in full generality is due to Frank and Lieb [95].

Proof. The unitary invariance (ii) and additivity (iii) are evident and also hold for the α-fidelity. We now argue
that the non-negativity (i) and the monotonicity (iv) can be deduced from the convexity/concavity property (iv).
Thanks to Proposition 7.2.2, (iv) implies that if α ∈ [1/2, 1) then Fα(M(ρ)||M(σ)) ≥ Fα(ρ||σ) for any quantum
operation M, and the reverse inequality holds true if α > 1. The monotonicity of Sα for α ≥ 1/2 then follows
immediately (the case α = 1 is obtained by continuity, see (7.32)). Let {|k〉} be an orthonormal basis of H
and MΠ be the quantum operation (5.5) associated to the von Neumann measurement {Πk = |k〉〈k|}. The
monotonicity entails

Sα(ρ||σ) ≥ Sα(MΠ(ρ)||MΠ(σ)) = Sclas
α (p||q) , (7.37)

where p and q are the vectors with components pk = 〈k|ρ|k〉 and qk = 〈k|σ|k〉. Since the classical Rényi
divergence (7.35) is non-negative and vanishes if and only if p = q, we deduce from (7.37) that Sα(ρ||σ) ≥ 0,
with equality if and only if 〈k|ρ|k〉 = 〈k|σ|k〉 for all k. The orthonormal basis {|k〉} being arbitrary, this justifies
the assertion (i) for α ≥ 1/2. To show this assertion for α ∈ (0, 1/2), we argue as in [175] that

Sα(ρ||σ) ≥ Sα(MΠ(ρ)||σ) = Sclas
α (p||q) (7.38)

with 0 < α < 1, MΠ being as before associated with the von Neumann {Πk = |k〉〈k|} but with {|k〉} an

orthonormal eigenbasis of σ. Actually, let α ∈ (0, 1) and let us set A(β) = σ
β
2 ρσ

β
2 with β = α−1 − 1. By virtue

of the Jensen type inequality (8) of Appendix A, one has

(
MΠ(A(β))

)α ≥ MΠ

(
A(β)α

)
(7.39)

due to the operator concavity of f(x) = xα. Hence, by the trace-preserving property of MΠ and the identity

σ
β
2 MΠ(ρ)σ

β
2 = MΠ(A(β)),

Sα(ρ||σ) = (α− 1)−1 ln tr
[
MΠ

(
A(β)α

)]

≥ (α− 1)−1 ln tr
[(
MΠ

(
A(β)

))α]
= Sα(MΠ(ρ)||σ) . (7.40)

This proves (7.38) and thus the non-negativity of Sα for α ∈ (0, 1). Observe that Sα(ρ||σ) = Sα(MΠ(ρ)||σ) if
and only if (7.39) holds with equality, that is, 〈k|A(β)|k〉α = 〈k|A(β)α|k〉 for all k. By the strict concavity of
f(x) = xα, {|k〉} must then be an eigenbasis of A(β), and thereby also of ρ. Thus ρ and σ commute and Sα(ρ||σ)
coincides with the classical Rényi divergence Sclas

α (p||q). By the aforementioned properties of Sclas
α (p||q), it

follows from (7.38) that Sα(ρ||σ) = 0 implies p = q and thus ρ = σ.
It remains to show the statement (iv) of the theorem. Following [95], we obtain (iv) with the help of a

duality formula for Fα(ρ, σ) and of Lieb’s concavity and Ando’s convexity theorems. We omit here the proof
of these two important theorems, which can be found in [50] (see also [180] for the Lieb theorem). The duality
formula will be shown at the end this subsection.

Lemma 7.3.2. (Lieb’s concavity and Ando’s convexity theorem [9, 153]) For any K ∈ B(H) and any β ∈ [−1, 1],
the function (R,S) 7→ tr(K∗RqKS−β) on B(H)+ × B(H)+ is jointly concave in (R,S) if −1 ≤ β ≤ 0 and
0 ≤ q ≤ 1 + β and is jointly convex in (R,S) if 0 ≤ β ≤ 1 and 1 + β ≤ q ≤ 2.

Lemma 7.3.3. (Duality formula for the α-fidelity [95]) If α ∈ (0, 1) (that is, β = α−1 − 1 > 0) then

Fα(ρ, σ)
α = inf

H≥0

{
α tr(Hρ) + (1− α) tr

[
(
√
Hσ−β√H)−

1
β

]}
. (7.41)

If α > 1 (that is, −1 < β < 0), the same identity holds but with the infimum replaced by a supremum.

Given Lemma 7.3.3, if one can show that, for a fixed operator B ∈ B(H), the function

gB,β(σ) = tr
[
(B∗σ−βB)−

1
β

]
(7.42)

is concave in σ when −1 ≤ β ≤ 1, β 6= 0, it will follow that Fα(ρ||σ)α is jointly concave for α ∈ [1/2, 1) (i.e.,
0 < β ≤ 1) and jointly convex for α > 1 (i.e., −1 < β < 0), thereby proving Theorem 7.3.1. We first assume
−1 ≤ β < 0. For any operator Y ≥ 0, let us set

hY (X) = tr(Y X1+β)− (1 + β) tr(X) (7.43)
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with X ∈ B(H)+. Given two self-adjoint matrices Y and Z, it is known that (see [38], Problem III.6.14)

n∑

i=1

yn−izi ≤ tr(Y Z) ≤
n∑

i=1

yizi , (7.44)

where y1 ≥ y2 ≥ · · · ≥ yn and z1 ≥ z2 ≥ · · · ≥ zn are the eigenvalues of Y and Z in non-increasing order.
Therefore,

sup
X≥0

{hY (X)} = max
x

{ n∑

i=1

(
yix

1+β
i − (1 + β)xi

)}
= −β

n∑

i=1

y
− 1

β

i = −β tr
(
Y − 1

β

)
, (7.45)

the maximum in the second member being over all vectors x ∈ Rn+. Similarly, it follows from (7.44) that if

0 < β ≤ 1 then infX≥0{hY (X)} = −β tr(Y − 1
β ). Plugging Y = B∗σ−βB into these identities, one finds

gB,β(σ) = sup
X≥0

{
−β−1

(
tr(B∗σ−βBX1+β)− (1 + β) tr(X)

)}
, −1 ≤ β < 0 or 0 < β ≤ 1. (7.46)

Let us introduce the 2× 2 block matrices

K =

(
0 0
B∗ 0

)
, S =

(
σ 0
0 X

)
. (7.47)

A simple calculation gives
tr(B∗σ−βBX1+β) = trH⊗C2(K∗S1+βKS−β) . (7.48)

By Lemma 7.3.2, the right-hand side of (7.48) is concave (respectively convex) in S when −1 ≤ β < 0 (respec-
tively 0 < β ≤ 1). As a result, the left-hand side is jointly concave (convex) in (σ,X). But the maximum over
X of a jointly concave function f(σ,X) is concave in σ. Thanks to (7.46), we may conclude that gB,β(σ) is
concave in σ for all β ∈ [−1, 1], β 6= 0. The proof of Theorem 7.3.1 is now complete. ✷

Let us come back to the duality formula (7.41). We observe in passing that this formula bears some similarity
with the variational formula (7.3) for the von Neumann entropy.

Proof of lemma 7.3.3. Since σ− β
2Hσ− β

2 has the same non-zero eigenvalues as
√
Hσ−β√H , the quantity inside

the infimum in (7.41) is equal to

g(H) = α tr(Hρ) + (1− α) tr
[
(σ− β

2Hσ− β
2 )−

1
β

]
. (7.49)

Differentiating the right-hand side with respect to the matrix elements of H in the some orthonormal basis {|i〉}
and using the relation ∂ tr[f(B)]/∂Bij = f ′(B)ji with f(x) a C

1-function, we get

∂g(H)

∂Hij
= α

(
ρ− σ− β

2 (σ− β
2Hσ− β

2 )−
1
β
−1σ− β

2

)
ji
. (7.50)

Hence g(H) has an extremum if and only if H = Ĥ = σ
β
2 (σ

β
2 ρσ

β
2 )α−1σ

β
2 ≥ 0. But

g(Ĥ) = tr[(σ
β
2 ρσ

β
2 )α] = Fα(ρ||σ)α . (7.51)

As B ∈ B(H)+ 7→ tr(Bp) is convex for p ≥ 1 or p ≤ 0, g(H) is convex if α ∈ (0, 1) (i.e., −β−1 < 0) and concave

if α > 1 (i.e., −β−1 > 1). It follows that g(Ĥ) is a minimum for α ∈ (0, 1) and a maximum for α > 1. ✷

Let us point out that it follows from Lemma 7.3.2 that the normal-ordered Rényi entropy (7.29) is also

jointly convex for α ∈ (0, 1). Taking α → 1 and recalling that S
(n)
α (ρ||σ) → S(ρ||σ), this gives a direct proof

the joint convexity of the relative von Neumann entropy S(ρ||σ) from the Lieb concavity theorem, as noted by
Lindblad [157, 158]. Combined with Proposition 7.2.2, this leads to a completely different justification of the
monotonicity of S(ρ||σ) in Theorem 7.2.1 than that presented in Sec. 7.2. It would be interesting to look for a
generalization of the arguments of Petz in Sec. 7.2 to the case of the α-entropies.

7.3.3 Monotonicity in α

As stated above, a very nice feature of the α-entropy (7.30) is that, like the classical Rényi divergence, it is
monotonous in α. This leads in particular to some bound between the relative von Neumann entropy and the
fidelity (see (8.32) below).
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Proposition 7.3.4. [175] For any ρ, σ ∈ E(H), Sα(ρ||σ) is a non-decreasing function of α on (0,∞).

Proof. One first derive the following identity similar to (7.46):

(
gB,−α−1(σ)

) 1
α =

∥∥B∗σ1/αB
∥∥
α
= sup
τ≥0,tr(τ)=1

tr
(
B∗σ1/αB τ1−1/α

)
, α ≥ 1 . (7.52)

If 0 < α ≤ 1 the supremum has to be replaced by an infimum. When α ≥ 1 this identity is nothing but a
rewriting of the Hölder’s inequality (4.3). The derivation for α ∈ (0, 1) relies on (7.44) and follows the same
lines as for the derivation of (7.46) (apart from the fact that we substituted β by −1/α), but one must introduce

a Lagrange multiplier to account for the constraint tr(τ) = 1. Applying the relation (7.52) for B = σ− 1
2 ρ

1
2 and

plugging the identity ‖σ β
2 ρσ

β
2 ‖α = ‖ρ 1

2σβρ
1
2 ‖α into (7.36), we are led to

Sα(ρ||σ) = sup
τ∈E(H)

{
−β−1 lnFα(ρ||σ; τ)

}
, Fα(ρ||σ; τ) = tr

(
ρ

1
2 σβρ

1
2 τ−β

)
=

〈
ξ , ∆β

σ|τ ξ
〉
, (7.53)

for any α > 0, α 6= 1. In the last identity ξ = ρ
1
2 and we have introduced the relative modular operator, see

(4.8). For any fixed τ ∈ E(H), one finds

d

dβ

(
−β−1 lnFα(ρ||σ; τ)

)
= − 1

β2Fα(ρ||σ; τ)
(
〈ξ , ∆β

σ|τ ln(∆
β
σ|τ )ξ〉 − 〈ξ , ∆β

σ|τ ξ〉 ln〈ξ , ∆
β
σ|τ ξ〉

)
. (7.54)

The Jensen inequality applied to the convex function f(x) = x lnx implies that the quantity inside the paren-
thesis in the right-hand side is non-negative. Thus −β−1Fα(ρ||σ; τ) is a non-increasing function of β. This is
true for any density matrix τ , thus one infers from (7.53) that α 7→ Sα(ρ||σ) is non-decreasing. ✷
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Chapter 8

The Bures distance and Uhlmann

fidelity

As time goes on, it becomes increasingly evident that the rules which the mathematician

finds interesting are the same as those which Nature has chosen (P.A. Dirac, 1939).

In this chapter we study the Bures distance on the set of quantum states E(H). This distance is Riemannian
and monotonous with respect to quantum operations. It is a simple function of the fidelity (6.33). Its metric
coincides with the quantum Fisher information quantifying the best achievable precision in the parameter
estimation problem discussed in Sec. 9.2. The material of this chapter (as well as of chapter 9) is completely
independent from that of chapters 10 and 11, so it is possible at this point to proceed directly to chapter 10. The
reading of Secs. 8.1–8.4 is, however, recommended before going through chapter 12 devoted to the geometrical
measures of quantum correlations, where the Bures distance plays the key role. The chapter is organized as
follows. Sec. 8.1 contains a short discussion on contractive (i.e., monotonous) distances. It is argued there that
the distances induced by the ‖ · ‖p-norm are not contractive save for p = 1. The definition and main properties
of the Bures distance are given in Secs. 8.2–8.4. The Bures metric is determined in Sec.8.5. Finally, Sec. 8.6
contains the proof of an important result of Petz on the characterization of all Riemannian contractive metrics
on E(H) for finite-dimensional Hilbert spaces H.

8.1 Contractive and convex distances

In order to quantify how far are two states ρ and σ it is necessary to define a distance on the set E(H) of
quantum states. One has a priori the choice between many distances. The most common ones are the Lp-
distances defined by (4.2). In quantum information theory it seems, however, natural to impose the following
requirement.

Definition 8.1.1. A distance d on the sets of quantum states is contractive if for any finite Hilbert spaces H
and H′, any quantum operation M : B(H) → B(H′), and any ρ, σ ∈ E(H), it holds

d(M(ρ),M(σ)) ≤ d(ρ, σ) . (8.1)

A contractive distance is in particular invariant under unitary conjugations, i.e.

d
(
UρU∗, Uσ U∗) = d(ρ, σ) if U is unitary (8.2)

(in fact, ρ 7→ UρU∗ is an invertible quantum operation on B(H)). For such a distance, if a generalized
measurement is performed on a system, two states are closer from each other after the measurement than before
it, and if the system is subject to a unitary evolution the distance between the time-evolved states remains
unchanged.

For p > 1, the distances dp (in particular, the Hilbert-Schmidt distance d2) are not contractive. A counter-
example for two qubits is obtained [187] by taking M(ρ) = A1ρA

∗
1 +A2ρA

∗
2 with

A1 = σ+ ⊗ 1 , A2 = σ+σ− ⊗ 1 , ρ =
1

2
⊗ σ+σ− , σ =

1

2
⊗ σ−σ+ (8.3)
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(here σ+ = |1〉〈0| is the raising operator and σ− = σ∗
+). Then ‖M(ρ) − M(σ)‖p = 21/p is larger than

‖ρ− σ‖p = 22/p−1.

Proposition 8.1.2. [205] The trace distance d1 is contractive.

Proof. : Let R = ρ− σ = R+ −R− with R± = (|R| ± R)/2 = ±RP± ≥ 0 the positive and negative parts of R
(here P+ and P− are the spectral projectors of R on [0,∞) and (−∞, 0)). Then ‖R‖1 = tr(R++R−) = 2 tr(R+)
because tr(R) = tr(R+) − tr(R−) = 0. Since M is trace preserving and CP, one has ‖M(R)‖1 = 2 tr[M(R)+]
and M(R)+ = (M(R+)−M(R−))+ ≤ M(R+). Thus ‖M(R)‖1 ≤ 2 tr[M(R+)] = 2 tr[R+] = ‖R‖1. ✷

A distance d on E(H) is jointly convex if for any state ensembles {ρi, pi} and {σi, pi} with the same proba-
bilities pi,

d
(∑

i

piρi,
∑

i

piσi

)
≤

∑

i

pid(ρi, σi) . (8.4)

Since they are associated to a norm, the distances dp are jointly convex for any p ≥ 1.

8.2 The Bures distance

We now introduce the Bures distance dB. This distance is contractive like d1. It was first considered by Bures
in the context of infinite products of von Neumann algebras [49] (see also [11]) and was later studied in a series
of papers by Uhlmann [240, 242, 243]. Uhlmann used it to define parallel transport and related it to the fidelity
generalizing the usual fidelity |〈ψ|φ〉|2 between pure states. Indeed, dB is a extension to mixed states of the
Fubini-Study distance on the projective space PH of pure states,

dFS
(
ρψ, σφ

)
= inf

|ψ〉,|φ〉

∥∥|ψ〉 − |φ〉
∥∥ =

(
2− 2|〈ψ|φ〉|

) 1
2 , (8.5)

where the infimum in the second member is over all representatives |ψ〉 of ρψ ∈ PH and |φ〉 of σφ ∈ PH (i.e.,
ρψ = |ψ〉〈ψ| and σφ = |φ〉〈φ|). Observe that the third member is independent of these representatives. For two
mixed states ρ and σ in E(H), one can define analogously [242, 132]

dB(ρ, σ) = inf
A,B

d2(A−B) , (8.6)

where the infimum is over all Hilbert-Schmidt matrices A and B satisfying AA∗ = ρ and BB∗ = σ. Such
matrices are given by A =

√
ρV and B =

√
σW for some unitaries V and W (polar decompositions). If ρ = ρψ

and σ = σφ are pure states, then A = |ψ〉〈µ| and B = |φ〉〈ν| with ‖µ‖ = ‖ν‖ = 1, so that (8.6) reduces to the
Fubini-Study distance (8.5).

For mixed states ρ and σ, the right-hand side of (8.6) is given by

(
2− 2 sup

U
Re tr(U

√
ρ
√
σ)
) 1

2 (8.7)

with a supremum over all unitaries U = WV ∗. This supremum is equal to ‖√ρ√σ‖1 and is attained if and

only if UU0|√ρ
√
σ| 12 = |√ρ√σ| 12 , where U0 is such that

√
ρ
√
σ = U0|√ρ

√
σ| (see Sec. 4.1). Equivalently, the

infimum in (8.6) is attained if and only if the parallel transport condition A∗B ≥ 0 holds. We obtain the
following equivalent definition of dB.

Definition 8.2.1. For any states ρ, σ ∈ E(H),

dB(ρ, σ) =
(
2− 2

√
F (ρ, σ)

) 1
2 (8.8)

where the Uhlmann fidelity is defined by

F (ρ, σ) = ‖√ρ√σ‖21 =
(
tr
[
(
√
σρ

√
σ)

1
2

])2

. (8.9)
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The fidelity F (ρ, σ) is symmetric in (ρ, σ) and belongs to the interval [0, 1]. It is clearly a generalization of
the usual pure state fidelity F (|ψ〉, |φ〉) = |〈ψ|φ〉|2. If σφ is pure, then

F (ρ, σφ) = 〈φ|ρ|φ〉 (8.10)

for any ρ ∈ E(H).
It is immediate on (8.6) that dB is positive and symmetric, and dB(ρ, σ) = 0 if and only if ρ = σ. The

triangle inequality is more difficult to show. It can be established with the help of the following astonishing
theorem.

Theorem 8.2.2. (Uhlmann [240]) Let ρ, σ ∈ E(H) and |Ψ〉 be a purification of ρ on the space H ⊗ K, with
dimK ≥ dimH. Then

F (ρ, σ) = max
|Φ〉

|〈Ψ|Φ〉|2 (8.11)

where the maximum is over all purifications |Φ〉 of σ on H⊗K.

Proof. We give here a simple proof due to Josza [144]. Let us first assume K ≃ H. Let |Ψ〉 and |Φ〉 be
purifications of ρ and σ on H⊗H, respectively. As it has been noticed in Sec. 4.3, by the Schmidt decomposition
these purifications can always be written as

|Ψ〉 =
n∑

k=1

√
pk|k〉|fk〉 , |Φ〉 =

n∑

k=1

√
qk(U |k〉)|gk〉 , (8.12)

where ρ =
∑

k pk|k〉〈k| and σ =
∑

k qkU |k〉〈k|U∗ are spectral decompositions of ρ and σ, U is a unitary operator
on H, and {|fk〉}ni=1 and {|gk〉}ni=1 are two orthonormal bases of H. Defining the unitaries V and W on H by
|fk〉 = V |k〉 and |gk〉 =W |k〉 for any k = 1, . . . , n, we have

|Ψ〉 = √
ρ⊗ V |Σ〉 , |Φ〉 = √

σ U ⊗W |Σ〉 with |Σ〉 =
n∑

k=1

|k〉|k〉 . (8.13)

The vector |Σ〉 is the vector associated to the identity operator on B(H) by the isomorphism (4.5). For any
X,Y ∈ B(H), one obtains by setting O = XT ⊗ Y in (4.6) and noting that tr(OR) = tr(XY ) that

tr(XY ) = 〈Σ|XT ⊗ Y |Σ〉 (8.14)

(here XT is the transpose of X in the basis {|k〉}). Introducing the unitary U0 = V ∗WUT , this gives

sup
|Φ〉

|〈Φ|Ψ〉| = sup
W

|〈Σ|U∗√σ√ρ⊗W ∗V |Σ〉| = sup
U0

| tr(√ρ√σ U∗
0 )| = ‖√ρ√σ‖1 . (8.15)

The last equality comes from (4.3). This proves the desired result. The supremum is achieved by choosing |Φ〉
as in (8.12) with U = UT0 (W ∗)TV T , U0 being a unitary in the polar decomposition of

√
ρ
√
σ.

If K has a dimension m larger than n, we extend ρ and σ to a space H′ ≃ K by adding to them new
orthonormal eigenvectors |k〉 and U |k〉 with zero eigenvalues pk = qk = 0, k = n+1, . . . ,m. This does not change
the fidelity F (ρ, σ), thus F (ρ, σ) = max|Φ′〉 |〈Ψ′|Φ′〉|2, where |Ψ′〉 is a purification of ρ′ =

∑m
k=1 pk|k〉〈k| = ρ on

H′ ⊗H′, and similarly for |Φ′〉. But |Ψ′〉 and |Φ′〉 have the form (8.12), hence they belong to H⊗K. ✷

Let ρ, σ, and τ be three states of E(H) and |Ψ〉 be a purification of ρ on H⊗H. According to Theorem 8.2.2,
there exists a purification |Φ〉 of σ on H⊗H such that F (ρ, σ) = |〈Ψ|Φ〉|2. One can choose the arbitrary phase
factor of |Φ〉 in such a way that 〈Ψ|Φ〉 ≥ 0, whence

√
F (ρ, σ) = 〈Ψ|Φ〉. Similarly, there exists a purification |χ〉

of τ such that
√
F (σ, τ) = 〈Φ|χ〉 ≥ 0. In view of (8.8) and (8.11),

dB(ρ, τ) ≤
(
2− 2|〈Ψ|χ〉|

) 1
2

≤
(
2− 2Re 〈Ψ|χ〉|

) 1
2 =

∥∥|Ψ〉 − |χ〉
∥∥

≤
∥∥|Ψ〉 − |Φ〉

∥∥+
∥∥|Φ〉 − |χ〉

∥∥ =
(
2− 2〈Ψ|Φ〉|

) 1
2 +

(
2− 2〈Φ|χ〉|

) 1
2 , (8.16)

showing that dB satisfies the triangle inequality dB(ρ, τ) ≤ dB(ρ, σ) + dB(σ, τ).
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Corollary 8.2.3. The map (ρ, σ) 7→ dB(ρ, σ) defines a distance dB on quantum states, with values in [0,
√
2].

This distance is contractive. Moreover, d2B is jointly convex.

Note that dB is not jointly convex. One gets a counter-example by choosing ρ0 = σ0 = |0〉〈0|, ρ1 = |1〉〈1|,
σ1 = |2〉〈2|, and p0 = p1 = 1/2, {|0〉, |1〉, |2〉} being an orthonormal family in H.

It is clear on (8.9) that F (ρ, σ) = 0 if and only if ρ and σ have orthogonal supports, ran ρ⊥ ranσ. Therefore,
two states ρ and σ have a maximal distance dB(ρ, σ) = 1 if they are orthogonal and thus perfectly distinguishable.

Proof. We have already established above that dB satisfies all the axioms of a distance. To show the contractivity,
it is enough to check that for any quantum operation M : B(H) → B(H′) and any states ρ, σ ∈ E(H),

F (M(ρ),M(σ)) ≥ F (ρ, σ) . (8.17)

This property of the fidelity is a consequence of the contractivity of the relative Rényi entropy for α = 1/2
(Theorem 7.3.1(v)). It is, however, instructive to re-derive this result from Theorem 8.2.2. According to this
theorem, there exist some purifications |Ψ〉 and |Φ〉 of ρ and σ on H ⊗K such that F (ρ, σ) = |〈Ψ|Φ〉|2. Now,
thanks to (5.13) one obtains some purifications |ΨM〉 = 1K ⊗ U |Ψ〉|ǫ0〉 of M(ρ) and |ΦM〉 = 1K ⊗ U |Φ〉|ǫ0〉 of
M(σ) on K⊗H′ ⊗H′

E
, with |ǫ0〉 ∈ HE and U : H⊗HE → H′ ⊗H′

E
unitary. Thus

F (M(ρ),M(σ)) ≥ |〈ΨM|ΦM〉|2 = |〈Ψ|Φ〉|2 = F (ρ, σ) . (8.18)

The joint convexity of d2B is a consequence of the bound1

√
F
(∑

i

piρi,
∑

i

qiσi

)
≥

∑

i

√
piqi

√
F (ρi, σi) , (8.19)

where {ρi, pi} and {σi, qi} are arbitrary ensembles in E(H). Note that the statement (8.19) is slightly more
general than the joint concavity of

√
F (ρ, σ) proven in Sec. 7.3 (Theorem 7.3.1(iv)). To show that (8.19) is true,

we introduce as before some purifications |Ψi〉 of ρi and |Φi〉 of σi on H ⊗H such that
√
F (ρi, σi) = 〈Ψi|Φi〉.

Let us define the vectors
|Ψ〉 =

∑

i

√
pi|Ψi〉|ǫi〉 , |Φ〉 =

∑

i

√
pi|Φi〉|ǫi〉 (8.20)

in H⊗H⊗HE, where HE is an auxiliary Hilbert space and {|ǫi〉} is an orthonormal basis of HE. Then |Ψ〉 and
|Φ〉 are purifications of ρ =

∑
i piρi and σ =

∑
i qiσi, respectively. One infers from Theorem 8.2.2 that

√
F (ρ, σ) ≥ |〈Ψ|Φ〉| =

∑

i

√
piqi〈Ψi|Φi〉 =

∑

i

√
piqi

√
F (ρi, σi) . (8.21)

This complete the proof of the corollary. ✷

Remark 8.2.4. A consequence of (5.26) and (8.10) and of the monotonicity of the fidelity F with respect to
partial trace operations (see (8.17)) is that the entanglement fidelity Fe(ρ,M) of a state ρ with respect to a
quantum operation M satisfies

Fe(ρ,M) ≤ F (ρ,M(ρ)) . (8.22)

Remark 8.2.5. As the fidelity satisfies F (ρ ⊗ ρ′, σ ⊗ σ′) = F (ρ, σ)F (ρ′, σ′), the Bures distance increases by
taking tensor products, dB(ρ ⊗ ρ′, σ ⊗ σ′) ≥ dB(ρ, σ) for any ρ, σ ∈ E(H), ρ′, σ′ ∈ E(H′), with equality if and
only if ρ′ = σ′. This has to be contrasted with the trace distance, which does not enjoy this property.

In the two following sections we collect some important properties of the Bures distance. We refer the reader
to the monographs [31, 180] for a list of names to which these properties should be attached.

1Note that one cannot replace
√
F by F in this inequality, that is, F (ρ, σ) is not jointly concave (one can take the same

counter-example as that given above for dB). However, by a slight modification of the proof of Corollary 8.2.3 one can show that
ρ 7→ F (ρ, σ) and σ 7→ F (ρ, σ) are concave. In their book [180], Nielsen and Chuang define the fidelity as the square root of (8.9).
This must be kept in mind when comparing the results in this monograph with those of this article.
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8.3 Bures distance and statistical distance in classical probability

The restriction of a distance d on E(H) to all density matrices commuting with a given state ρ0 defines a
distance on the simplex Eclas = {p ∈ Rn+;

∑
i pi = 1} of classical probabilities on the finite space {1, 2, . . . , n}.

In particular, if ρ and σ are two commuting states with spectral decompositions ρ =
∑
k pk|k〉〈k| and σ =∑

k qk|k〉〈k|, then

d1(ρ, σ) = d clas
1 (p,q) =

n∑

k=1

|pk − qk|

is the ℓ1-distance, and

dB(ρ, σ) = d clas
H (p,q) =

( n∑

k=1

(
√
pk −

√
qk)

2

) 1
2

=
(
2− 2

n∑

k=1

√
pkqk

) 1
2

(8.23)

is the Hellinger distance. A distance closely related to d clas
H is the so-called statistical distance Θ clas(p,q) =

arccos(1 − d clas
H (p,q)2/2), i.e., the angle between the vectors x = (

√
pk)

n
k=1 and y = (

√
qk)

n
k=1 on the unit

sphere. Given two non-commuting states ρ and σ, one can consider the distance d clas(p,q) between the outcome
probabilities p and q of a measurement performed on the system in states ρ and σ, respectively. It is natural
to ask whether there is a relation between d(ρ, σ) and the supremum of d clas(p,q) over all measurements.

Proposition 8.3.1. For any ρ, σ ∈ E(H),

d1(ρ, σ) = sup
{Mi}

d clas
1 (p,q) , dB(ρ, σ) = sup

{Mi}
d clas
H (p,q) , (8.24)

where the suprema are over all POVMs {Mi} and pi = tr(Miρ) (respectively qi = tr(Miσ)) is the probability
of the measurement outcome i in the state ρ (respectively σ). Moreover, the suprema are achieved for von
Neumann measurements with rank-one projectors Mi = |i〉〈i|.

Proof. We leave the justification of the first identity to the reader. It can be obtained by following similar
arguments as in the proof of Proposition 8.1.2 (see [180]). Let us show the second identity. Given a POVM
{Mi}, by taking advantage of the definition (8.9) of the fidelity, the polar decomposition

√
ρ
√
σ = U |√ρ√σ|,

and the identity
∑

iMi = 1, one gets
√
F (ρ, σ) =

∑

i

tr(U∗√ρ
√
Mi

√
Mi

√
σ) ≤

∑

i

√
piqi . (8.25)

The upper bound comes from the Cauchy-Schwarz inequality. It remains to show that this bound can be
attained for an appropriate choice of POVM. The Cauchy-Schwarz inequality holds with equality if and only
if

√
Mi

√
ρU = λi

√
Mi

√
σ with λi ∈ C. Assuming σ > 0 and observing that

√
ρU = σ− 1

2 |√ρ√σ|, this identity
can be recast as √

Mi(R − λi) = 0 with R = σ− 1
2 |√ρ√σ|σ− 1

2 . (8.26)

Let R =
∑
i ri|i〉〈i| be a spectral projection of the non-negative matrix R. Taking Mi to be the von Neumann

projector Mi = |i〉〈i| and λi = ri, we find that (8.26) is satisfied for all i. Thus
√
F (ρ, σ) is equal to the right-

hand side of (8.25). If σ is not invertible it can be approached by invertible density matrices σε = (1− ε)σ+ ε,
ε > 0, and the result follows by continuity. ✷

Much as for the quantum relative Rényi entropies (Sec. 7.3), one may define another distance on E(H) which
also reduces to the Hellinger distance d clas

H for commuting matrices, by setting

dH(ρ, σ) = d2(
√
ρ,
√
σ) =

(
2− 2

√
F

(n)
1
2

(ρ||σ)
) 1

2

, (8.27)

where F
(n)
α (ρ||σ) is the fidelity associated to the normal-ordered α-entropy (7.29), namely,

F (n)
α (ρ||σ) =

(
tr
[
ρασ1−α]) 1

α

= e−βS
(n)
α (ρ||σ) , β =

1− α

α
. (8.28)

This distance is sometimes called the quantum Hellinger distance. Thanks to Lieb’s concavity theorem (Lem-

ma 7.3.2), F
(n)
α (ρ||σ)α is jointly concave in (ρ, σ) for all α ∈ (0, 1). Consequently, the square Hellinger distance

dH(ρ, σ)
2 is jointly convex, just as dB(ρ, σ)

2. From Proposition 7.2.2 one then deduces that dH is contractive. It
is worth noting that dH does not coincide with the Fubini-study distance (8.5) for pure states (in fact, one finds

F
(n)
1/2(ρψ||σφ) = |〈ψ|φ〉|4). For any ρ, σ ∈ E(H), one finds by comparing (8.6) and (8.27) that dB(ρ, σ) ≤ dH(ρ, σ).
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8.4 Comparison of the Bures and trace distances

The next result shows that the Bures and trace distances dB and d1 are equivalent and gives optimal bounds of
d1 in terms of dB.

Proposition 8.4.1. For any ρ, σ ∈ E(H), one has

dB(ρ, σ)
2 ≤ d1(ρ, σ) ≤ 2

{
1−

(
1− 1

2
dB(ρ, σ)

2
)2} 1

2

. (8.29)

The lower bound has been first proven by Araki [11] in the C∗-algebra setting. We shall justify it from
Proposition 8.3.1 as in Ref. [180]. The upper bound is saturated for pure states, as shown in the proof below.
Note that this bound implies that d1(ρ, σ) ≤ 2dB(ρ, σ).

Proof. We first argue that if ρψ = |ψ〉〈ψ| and σφ = |φ〉〈φ| are pure states, then d1(ρψ, σφ) = 2
√
1− F (ρψ, σφ)

and thus the upper bound in (8.29) is an equality. Actually, let |φ〉 = cos θ|ψ〉+eiδ sin θ|ψ⊥〉, where θ, δ ∈ [0, 2π)
and |ψ⊥〉 is a unit vector orthogonal to |ψ〉. Since ρψ − σφ has non-vanishing eigenvalues ± sin θ, one has
d1(ρψ , σφ) = 2| sin θ|. But F (ρψ, σφ) = cos2 θ, hence the aforementioned statement is true. It then follows
from Theorem 8.2.2 and from the contractivity of the trace distance with respect to partial trace operations
(Proposition 8.1.2) that for arbitrary ρ and σ ∈ E(H),

d1(ρ, σ) ≤ 2
√
1− F (ρ, σ) . (8.30)

To bound d1(ρ, σ) from below, we use Proposition 8.3.1 and consider a generalized measurement {Mi} such
that

√
F (ρ, σ) =

∑
i

√
piqi with pi = tr(ρMi) and qi = tr(σMi). This yields

dB(ρ, σ)
2 =

∑

i

(
√
pi −

√
qi)

2 ≤
∑

i

|pi − qi| ≤ d1(ρ, σ) , (8.31)

where the last inequality comes from Proposition 8.3.1 again. ✷

The following bound on the relative entropy can be obtained from (7.36), (7.32), and Proposition 7.3.4

S(ρ||σ) ≥ −2 ln
(
1− 1

2
dB(ρ, σ)

2
)
≥ − ln

(
1− 1

4
d1(ρ, σ)

2
)
. (8.32)

Remark 8.4.2. By taking advantage of the inequality F (ρ, σ) ≥ tr(ρσ), which follows from (8.9) and the norm
inequality ‖A‖1 ≥ ‖A‖2, one can establish another bound on S(ρ||σ) in terms of the fidelity, which reads [231]

S(ρ||σ) ≥ −S(ρ)− lnF (ρ, σ) . (8.33)

Remark 8.4.3. The formula

F (ρ, σ) =
1

4
inf
H>0

{
tr(Hρ) + tr(H−1σ)

}2
= inf

H>0

{
tr(Hρ) tr(H−1σ)

}
(8.34)

can be easily proven with the help of Lemma 7.3.3 and Theorem 8.2.2. The last expression is due to Alberti [2].

Remark 8.4.4. We are now in position to show without much effort several results of Sec. 6.2.

(a) The upper bound (6.15) on the optimal success probability P opt
S,u in unambiguous discrimination of two

mixed states can be established from Uhlmann’s theorem, formula (6.8), and the fact that P opt
S,u ({ρi, ηi}) ≤

P opt
S,u ({|Ψi〉, ηi}), where |Ψi〉 is a purification of ρi for any i [204].

(b) It is instructive to derive in the special case of m = 2 states the lower bound on P opt
S,a given in Propo-

sition 6.5.1 by using the Helstrom formula (6.6), the fact that tr(|Λ|) ≥ ∑
i |〈i|Λ|i〉| for any orthonormal

basis {|i〉}, and Proposition 8.3.1 [37].

(c) The Uhlmann theorem gives an efficient way to calculate the fidelity between the two states (6.16) (the
result is F (ρeq, ρdiff) = |〈ψ1|ψ2〉|2).
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8.5 Bures and quantum Hellinger metrics, quantum Fisher infor-

mation

Recall that a Riemannian metric on E(H) is a map g which associates to each ρ ∈ E(H) a scalar product gρ
on the tangent space to E(H) at ρ. For any state ρ on H, this tangent space can be identified with the (real)
vector space B(H)s.a. of self-adjoint operators on H. A metric g defines a Riemannian distance d, which is such
that the square distance ds2 = d(ρ, ρ+ dρ)2 between two infinitesimally close states ρ and ρ+ dρ is given by

ds2 = gρ(dρ, dρ) . (8.35)

The Hilbert-Schmidt distance d2 is obviously Riemannian: its metric is constant and given by the scalar product
(4.1). In contrast, the trace distance d1 is not Riemannian.

Let us show that the Bures distance dB is Riemannian and determine its metric gB. It is convenient to
introduce a small parameter t ∈ R. According to Definition 8.2.1 one has

dB(ρ, ρ+ t dρ)2 = 2− 2 tr(A(t)) , A(t) =
(√
ρ(ρ+ tdρ)

√
ρ
) 1

2 . (8.36)

The scalar product (gB)ρ will be given in terms of the eigenvectors |k〉 and eigenvalues pk of ρ in the spectral

decomposition ρ =
∑

k pk|k〉〈k|. Using the notation Ȧ(t) = dA/dt, Ä(t) = d2A/dt2, and the identity A(t)2 =√
ρ(ρ+ tdρ)

√
ρ, one finds

Ȧ(0)A(0) +A(0)Ȧ(0) =
√
ρ dρ

√
ρ

Ä(0)A(0) + 2Ȧ(0)Ȧ(0) +A(0)Ä(0) = 0 (8.37)

The first equation yields
(pk + pl)〈k|Ȧ(0)|l〉 =

√
pkpl〈k|dρ|l〉 . (8.38)

Since tr(dρ) = 0, it follows that tr[Ȧ(0)] = 0. Assume that A(0) = ρ is invertible. Multiplying the second
equation in (8.37) by A(0)−1 and taking the trace, one verifies that

tr[Ä(0)] = − tr
[
Ȧ(0)2A(0)−1

]
= −

n∑

k,l=1

p−1
k

∣∣〈k|Ȧ(0)|l〉
∣∣2 = −

n∑

k,l=1

pl|〈k|dρ|l〉|2
(pk + pl)2

. (8.39)

Thus, going back to (8.36) we arrive at

dB(ρ, ρ+ tdρ)2 = − tr[Ä(0)]t2 +O(t3) = (gB)ρ(dρ, dρ)t
2 +O(t3) (8.40)

with [132]

(gB)ρ(A,A) =
1

2

n∑

k,l=1

|〈k|A|l〉|2
pk + pl

, A ∈ B(H)s.a. , ρ > 0 . (8.41)

The last formula defines a scalar product on B(H)s.a. by polarization, hence dB is Riemannian with metric gB.
One readily obtains from this metric the infinitesimal volume element. The volume of E(H) and the area of its
boundary are determined in [220].

Definition 8.5.1. Given a state ρ ∈ E(H) and an observable H ∈ B(H)s.a., the non-negative number

FQ(ρ,H) = 4(gB)ρ
(
−i[H, ρ],−i[H, ρ]

)
= 2

∑

k,l,pk+pl>0

(pk − pl)
2

pk + pl
|〈k|H |l〉|2 (8.42)

is called the quantum Fisher information of ρ with respect to H.

The quantity FQ(ρ,H) has been introduced by Braunstein and Caves [45] as a quantum analog of the Fisher
information in statistics. Similarly to the definition of the Bures distance in Sec. 8.2, these authors related it
to the metric – called the “distinguishability metric” by Wootters [264] – extending the Fubini-Study metric to
mixed states. For a pure state ρΨ = |Ψ〉〈Ψ|, the quantum Fisher information reduces to the square quantum
fluctuation of H , namely,

FQ(ρΨ, H) = 4〈(∆H)2〉Ψ = 4
(
〈Ψ|H2|Ψ〉 − 〈Ψ|H |Ψ〉2

)
. (8.43)
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In general,
√
FQ(ρ,H) gives the speed at which a given state ρ separates from its time-evolved state ρ(t) =

e−itHρeitH under the dynamics specified by the Hamiltonian H . In fact, by plugging dρ/dt = −i[H, ρ] into
(8.40) one checks that

√
FQ(ρ,H) =

(
2
d2

dt2
dB(ρ, ρ(t))

2
∣∣∣
t=0

) 1
2

≈
√
2
δdB
δt

. (8.44)

We postpone the discussion on the statistical interpretation of FQ(ρ,H) to Sec. 9.2 below. It will be argued
there that FQ(ρ,H) measures the amount of quantum correlations in the state ρ that can be used for improving
precision in quantum metrology.

Let us now turn to the quantum Hellinger distance (8.27). We proceed to determine the metric gα associated
to the normal-ordered relative Rényi entropy (7.29), from which the quantum Hellinger metric gH is obtained
by setting α = 1/2. We demonstrate that the largest metric gα for α ∈ (0, 1) is achieved for α = 1/2 and is
equal to gH/2, a result that will be needed later on (Sec. 9.1). The metric gα is defined by

S(n)
α (ρ+ tdρ||ρ) = (1 − α)−1

(
1− F (n)

α (ρ+ tdρ||ρ)α
)
+O(t3)

= t2(1− α)−1(gα)ρ(dρ, dρ) +O(t3) , (8.45)

where F
(n)
α is the α-fidelity, see (8.28). To determine gα for all α ∈ (0, 1), we use (1) in Appendix A to write

Bα(t) = ρα − (ρ+ tdρ)α =
sin(απ)

π

∫ ∞

0

dxxα
(

1

x+ ρ+ tdρ
− 1

x+ ρ

)

=
sin(απ)

π

∫ ∞

0

dx xα
(
− t

x+ ρ
dρ

1

x+ ρ
+

t2

x+ ρ
dρ

1

x+ ρ
dρ

1

x+ ρ

)
+O(t3) . (8.46)

Introducing as before the spectral decomposition ρ =
∑
k pk|k〉〈k| and using known integrals, one finds

1− F (n)
α (ρ+ tdρ||ρ)α = tr[Bα(t)ρ

1−α]

= −tα
n∑

k=1

〈k|dρ|k〉+ t2
n∑

k,l=1

p1−αk (pαk − pαl )

(pk − pl)2

∣∣〈k|dρ|l〉
∣∣2 +O(t3) . (8.47)

Because tr(dρ) = 0, the linear term in t vanishes as it should be. Plugging (8.47) into (8.45) one gets

(gα)ρ(A,A) =

n∑

k,l=1

cα(pk, pl)|〈k|A|l〉|2 , cα(p, q) =
(p1−α − q1−α)(pα − qα)

2(p− q)2
. (8.48)

It is easy to show that cα(p, q) ≤ c1/2(p, q) for any p, q > 0, hence

max
α∈(0,1)

(gα)ρ(A,A) =
(
g 1

2

)
ρ
(A,A) =

n∑

k,l=1

|〈k|A|l〉|2
2(
√
pk +

√
pl)2

, A ∈ B(H)s.a. , (8.49)

as claimed above. Furthermore, in view of (8.27) we deduce that the quantum Hellinger distance dH is Rieman-
nian and has a metric gH = 2g1/2.

8.6 Characterization of the Riemannian contractive distances

The complete characterization of Riemannian contractive distances on E(H) for finite Hilbert spaces H has been
given by Petz [195], following a work by Morozova and Chentsov [174]. Such distances are induced by metrics
g satisfying

gM(ρ)

(
M(A),M(A)

)
≤ gρ(A,A) , A ∈ B(H)s.a. , (8.50)

for any ρ ∈ E(H) and any quantum operation M : B(H) → B(H′).
In the classical setting, it is remarkable that the contractivity condition leads to a unique metric (up to a

multiplicative constant). Quantum operations correspond classically to Markov mappings p 7→ Mclasp on the
probability simplex Eclas = {p ∈ Rn+;

∑
i pi = 1}, see (5.6), with stochastic matrices Mclas having non-negative

elements Mclas
ij such that

∑
iMclas

ij = 1 for any j = 1, . . . , n. The contractive distances dclas on Eclas satisfy

dclas(Mclasp,Mclasq) ≤ dclas(p,q) for any such matrices. According to a result of Cencov [55], a Riemannian
distance on Eclas with metric gclas is contractive if and only if gclas

p
(a, a) = c

∑
k a

2
k/pk for any a ∈ Rn and some
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c > 0, that is, the infinitesimal distance between a probability vector p and a neighboring vector p + dp is
proportional to

ds2Fisher =

n∑

k=1

dp2k
pk

. (8.51)

The associated metric is known as the Fisher metric and plays an important role in statistics. It induces the
Hellinger distance (8.23) up to a factor of one fourth.

Let us come back to the quantum case. Although gρ is in principle defined on the real vector space B(H)s.a.
(the tangent space of E(H)), one can extend it as a scalar product on the complex Hilbert space B(H). Without
loss of generality, one may require that this scalar product satisfies

gρ(A,B) = gρ(B
∗, A∗) = gρ(A∗, B∗) , A,B ∈ B(H) . (8.52)

(for instance, this is the case for the Hilbert-Schmidt product (4.1)). We first note that one can associate to g a
family {Kρ; ρ ∈ E(H)} of positive operators on the Hilbert space B(H) endowed with the scalar product (4.1),
by setting

gρ(A,B) =
〈
A,K−1

ρ (B)
〉

, A,B ∈ B(H) . (8.53)

Let us write ρM = M(ρ). The monotonicity condition (8.50) reads M∗K−1
ρMM ≤ K−1

ρ , which means that

K1/2
ρ M∗K−1

ρMMK1/2
ρ is a contraction. This is equivalent toK

−1/2
ρM MKρM∗K−1/2

ρM being a contraction. Therefore
g is contractive if and only if

MKρM∗ ≤ KM(ρ) (8.54)

for any ρ and M.

Lemma 8.6.1. [195] The contractivity condition (8.54) is fulfilled by the positive operators

Kρ = R
1
2
ρ f(∆ρ)R

1
2
ρ , (8.55)

where Rρ stands for the right multiplication by ρ (see (4.7)), ∆ρ = ∆ρ|ρ is the modular operator defined in
(4.8), and f : R+ → R is an operator monotone-increasing function with values in R+.

Proof. Let us recall that the modular operators ∆ρ and ∆ρM on B(H) are (self-adjoint and) positive. In
analogy with the proof of Theorem 7.2.1, we introduce the contraction CM defined by (7.14). It has been
observed in this proof that C∗

M∆ρCM ≤ ∆ρM . Since asking that a continuous function f : R+ → R be operator
monotone-increasing and non-negative is the same as asking that f be operator concave (see Appendix A and
[38], Theorem V.2.5), it follows from the Jensen-type inequality (4) and the monotonicity of f that

C∗
Mf(∆ρ)CM ≤ f(∆ρM) . (8.56)

Multiplying both sides by B′ρ
1
2

M and taking the scalar product by the same vector, this is equivalent to

〈
B′ , MR

1
2
ρ f(∆ρ)R

1
2
ρM∗(B′)

〉
≤

〈
B′ , R

1
2
ρMf(∆ρM)R

1
2
ρM (B′)

〉
(8.57)

for any B′ ∈ B(H′). Thus the operator Kρ defined in (8.55) satisfies the contractivity condition (8.54). ✷

Formulas (8.53) and (8.55) yield a family of monotonous metrics, in one-to-one correspondence with non-

negative operator monotone functions f , given by gρ(A,B) = 〈Aρ− 1
2 , f(∆ρ)

−1(Bρ−
1
2 )〉 for any A,B ∈ B(H).

More explicitly, for any ρ with spectral decomposition ρ =
∑
k pk|k〉〈k| one finds

gρ(A,A) =

n∑

k,l=1

c(pk, pl)|〈k|A|l〉|2 , A ∈ B(H)s.a. , (8.58)

where c(p, q) is given by

c(p, q) =
pf(q/p) + qf(p/q)

2pqf(p/q)f(q/p)
(8.59)
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and satisfies c(tp, tq) = t−1c(p, q) for any t ∈ R, t 6= 0, and c(p, p) = f(1)−1p−1. By using ∆ρ(B
∗) = (∆−1

ρ (B))∗,
it is easy to see that the condition (8.52) is satisfied if and only if f(x) = xf(x−1). In particular, by choosing
the following operator monotone functions (see Appendix A) :

fHarm(x) =
2x

x+ 1
≤ fKM(x) =

x− 1

lnx
≤ fH =

(1 +
√
x)2

4
≤ fB(x) =

x+ 1

2
(8.60)

one is led to

cHarm(p, q) =
p+ q

2pq
≥ cKM(p, q) =

ln p− ln q

p− q
≥ cH(p, q) =

4

(
√
p+

√
q)2

≥ cB(p, q) =
2

p+ q
. (8.61)

In view of (8.41) and (8.49), the last choice fB gives the Bures metrics and fH gives the Hellinger metric up
to a factor of one fourth. The second choice corresponds to the so-called Kubo-Mori (or Bogoliubov) metric,
which is associated to the relative von Neumann entropy. Actually, by substituting (8.48) into (8.45) and taking
α→ 1 one obtains

S(ρ+ dρ||ρ) = 1

2

n∑

k,l=1

cKM(pk, pl)
∣∣〈k|dρ|l〉

∣∣2 =
1

2
gKM(dρ, dρ) . (8.62)

According to the formula S(ρ+ tdρ) = S(ρ)− t tr(dρ ln ρ)− S(ρ+ tdρ||ρ), one also gets

gKM(dρ, dρ) = −d2S(ρ+ tdρ)

dt2

∣∣∣∣
t=0

, (8.63)

S being the von Neumann entropy (since S is concave, the second derivative in the right-hand side is non-
positive and defines a scalar product on B(H)). As stressed by Balian, Alhassid and Reinhardt [20], this makes
the Kubo-Mori metric quite natural from a physical viewpoint. Its properties have been investigated in [23].

A result due to Kubo and Ando [151] states that there is a one-to-one correspondence between operator
monotone functions f and operator means, that is, maps m : (R,L) ∈ B(H)+ × B(H)+ 7→ m(R,L) ∈ B(H)
satisfying

(a) if 0 ≤ R ≤ T and 0 ≤ L ≤ N then m(R,L) ≤ m(T,N) (monotonicity);

(b) C∗m(R,L)C ≤ m(C∗RC,C∗LC).

This correspondence is given by the formula

mf (R,L) = R
1
2 f(R− 1

2LR− 1
2 )R

1
2 . (8.64)

By taking fHarm and fB as in (8.60) one obtains the harmonic mean mHarm(R,L) = (R/2)−1 + (L/2)−1 and
the arithmetic mean mB(R,L) = (R + L)/2, respectively, and for f(x) =

√
x one gets the so-called geometric

mean (for more detail see e.g. [50]). The positive operators (8.55) can be written as

Kρ = mf (Rρ,Lρ) . (8.65)

The theory of Kubo and Ando shows that the harmonic mean mHarm and arithmetic mean mB are respectively
the smallest and largest symmetric operator means. Thus the Bures metric gB is the smallest monotone metric
among the family of metrics given by (8.53) and (8.55) with the normalization gρ(1, 1) = tr(ρ−1). It turns out
that this family contains all contractive metrics, that is, all such metrics have the form (8.58).

Theorem 8.6.2. (Petz [195]) The distances with metrics g given by (8.58) are contractive for any non-negative
operator monotone-increasing function f(x) satisfying f(x) = xf(x−1). Conversely, any continuous metric
g : ρ 7→ gρ on E(H) may be obtained from (8.58) by a choice of a suitable function f with these properties.
In particular, there is a one-to-one correspondence between continuous contractive metrics satisfying gρ(1, 1) =
tr(ρ−1) and operator means. The Bures distance is the smallest of all contractive Riemannian distances with
metrics satisfying this normalization condition.

This theorem is of fundamental importance in geometrical approaches to quantum information.
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Proof. The first statement has been proven above. Conversely, let g be a continuous contractive metric on E(H)
and let us show that there exists an operator monotone function f : R+ → R+ such that for any ρ ∈ E(H),
gρ is given by (8.53) and (8.55) or, equivalently, by (8.58) and (8.59). We first note that g being contractive it
is in particular unitary invariant, i.e., gU∗ρU (U

∗AU,U∗BU) = gρ(A,B) for any unitary U (see Sec.8.1). More
generally, if the quantum operations M and T are such that ρ, A, and B are invariant under T ◦ M, then
gM(ρ)(M(A),M(B)) = gρ(A,B). The main idea of the proof is to combine this invariance property with the
uniqueness of the contractive classical distance. Denoting by (gρ)ij,kl = gρ(|i〉〈j|, |k〉〈l|) the matrix elements of
the scalar product gρ in an orthonormal eigenbasis {|k〉} of ρ, we need to prove that

(gρ)ij,kl = δikδjl c(pi, pj) (8.66)

where δik is the Kronecker symbol. To show that the matrix elements of gρ vanish for i 6= j and (k, l) 6= (i, j),
it suffices to establish that

gρ
(
|i〉〈j|+ s|k〉〈l|, |i〉〈j|+ s|k〉〈l|

)
= gρ

(
|i〉〈j| − s|k〉〈l|, |i〉〈j| − s|k〉〈l|

)
(8.67)

for s = 1 and s = i (the result then follows by polarization). If one of the indices i, j, k, and l is different from

the three others, say i /∈ {j, k, l}, this comes from the invariance of g under the unitary U (i) =
∑

k u
(i)
k |k〉〈k|

with u
(i)
k = −1 if k = i and 1 otherwise. Hence (gρ)ij,kl = 0 when i 6= j and (i, j) 6= (k, l), (l, k). Similarly, by

choosing u
(i)
k = i if i = k and 1 otherwise, this is also true for i 6= j and (i, j) = (l, k). The only non-vanishing

matrix elements of gρ are thus (gρ)ii,kk and (gρ)ij,ij for i 6= j.
To determine (gρ)ii,kk we observe that the restriction of gρ to the space of matrices commuting with ρ induces

a contractive metric on the probability simplex Eclas, defined by gclas
p

(a,b) = gρ(
∑

k ak|k〉〈k|,
∑

k bk|k〉〈k|) for

any a,b ∈ Eclas. Indeed, one can associate a quantum operation M to a stochastic matrix Mclas by defining
M(|k〉〈l|) = δkl

∑
j Mclas

jk |j〉〈j| (M has the Kraus form (5.10) as Mclas
jk ≥ 0 and

∑
jMclas

jk = 1 for any k). Then

M(ρ) =
∑
j(Mclasp)j |j〉〈j| where p is the vector of eigenvalues of ρ, and (8.50) implies that gclas is contractive

under Mclas. According to the uniqueness of the contractive classical metrics, one has

(gρ)ii,kk = gclas
p

(δi, δk) = c
δik
pk

, (8.68)

with c > 0 and δi = (δil)
n
l=1.

We now turn to the matrix elements (gρ)ij,ij for i 6= j. By unitary invariance, it is enough to determine
(gρ)12,12. To this end, we consider the quantum operations M from the space B(H) of n × n matrices to the
space B(C3) of 3× 3 matrices and T : B(C3) → B(H) with Kraus operators {Ai}ni=2 and {Bi}ni=2, respectively,
given by

A2 = B2 = |1〉〈1|+ |2〉〈2| , Ai = |3〉〈i| , Bi =

√
pi√

1− p1 − p2
|i〉〈3| , i = 3, . . . , n . (8.69)

A simple calculation yields T ◦ M(ρ) = ρ. As stressed above, one can deduce from the contractivity of gρ
that (gρ)12,12 = (gM(ρ))12,12, thereby showing that this matrix element depends on p1 and p2 only. By unitary
invariance, (gρ)ij,ij only depends on pi and pj and one can set (gρ)ij,ij = c(pi, pj) for i 6= j, c(p, q) being
independent of ρ. This complete the proof of (8.66), excepted that it remains to justify that c(p, p) = c/p.

We proceed by showing that c(q, p) is given by (8.59) with f having the desired properties. Thanks to (8.52),
we know that c(p, q) is real and symmetric. One verifies that c(p, p) = c/p by the following argument. Let us
assume that ρ has a degenerate eigenvalue, say p1 = p2. Then ρ = UρU∗ for any unitary U acting trivially
on span{|3〉, . . . , |n〉}. By unitary invariance, gρ(|ψ〉〈ψ|, |ψ〉〈ψ|) = (gρ)11,11 = c/p1 for any |ψ〉 ∈ span{|1〉, |2〉}.
Taking e.g. |ψ〉 = (|1〉+ |2〉)/

√
2 and using (8.66), we get (gρ)12,12 = c(p1, p1) = c/p1. In order to establish that

c(p, q) is homogeneous we consider the quantum operations M : B(H) → B(H⊗HE) and T : B(H⊗HE) → B(H)
defined by M(ρ) = ρ⊗ 1/nE and T (ρ̂) = trE(ρ̂) (here nE is the dimension of HE). Clearly, T ◦M = 1, thus by
similar arguments as above and by taking advantage of (8.66), one finds

c(pi, pj) = (gρ)ij,ij = gM(ρ)(M(|i〉〈j|),M(|i〉〈j|)) = n−1
E
c
( pi
nE

,
pj
nE

)
. (8.70)

As this is true for any positive integer nE and any state ρ, one concludes that c(tp, tq) = t−1c(p, q) for all
p, q ∈ [0, 1] and all rationals t with tp, tq ∈ [0, 1]. This is the point where we need the continuity of the metric
to make sure that c(p, q) is continuous. Then the equality holds for all real t. Setting f(x) = 1/c(x, 1) and
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using the symmetry of c(p, q), one easily derives the identities (8.59) and f(x−1) = x−1f(x). Furthermore,
f(1)−1 = c(1, 1) = c.

To complete the proof, we have to show that f is operator concave. With this aim, let us consider the
inequality (8.54) which is equivalent to gρ being contractive. We choose M in this inequality to be the partial
trace operation T : ρ̂ 7→ trC2(ρ̂)⊗ 1/2 on B(H⊗ C2) and ρ̂ = (ρ0 ⊗ |0〉〈0|+ ρ1 ⊗ |1〉〈1|)/2. From (8.54) we find
that for any A ∈ B(H), 〈

T ∗(A⊗ 1) , Kρ̂T ∗(A⊗ 1)
〉
≤

〈
A⊗ 1 , KT (ρ̂)(A⊗ 1)

〉
. (8.71)

But Kρ̂(A⊗ 1) = (Kρ0 (A)⊗ |0〉〈0|+Kρ1(A) ⊗ |1〉〈1|)/2. Accordingly, (8.71) reduces to

1

2

〈
A , (Kρ0 +Kρ1)A

〉
≤

〈
A , K(ρ0+ρ1)/2A

〉
, (8.72)

thereby showing that the map
ρ 7→ Kρ = f(LρR−1

ρ )Rρ (8.73)

is mid-point concave. By a standard argument based on a dyadic decomposition, it follows that this map
is concave [50]. Using the ∗-isomorphism between the C∗-algebras B(B(H)) and B(H ⊗ H) (Sec.4.1), this is
equivalent to say that the map

A 7→ f
(
A⊗ (AT )−1

)
1⊗AT (8.74)

is concave. One easily deduces from this that the map (A,B) 7→ f(A ⊗ (BT )−1
)
1 ⊗ BT is jointly concave. In

particular, A 7→ f(A) is concave. This shows that f is operator concave. ✷
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Chapter 9

State discrimination and parameter

estimation in large systems

A force de savoir tant sur si peu de choses, il finira par savoir tout sur rien (anonymous).

In this chapter we examine two problems related to the state discrimination task discussed in chapter 6,
namely, the quantum hypothesis testing and parameter estimation. In the first problem, one wants to determine
asymptotically the probability of error in discriminating two states when one has N independent copies of those
states, for N → ∞. In the second problem, the goal is to estimate as precisely as possible a real parameter
from measurements performed on a large number of particles in a state depending smoothly on this parameter.

9.1 Quantum hypothesis testing: discriminating two states from

many identical copies

An important issue in classical information theory is to discriminate two probability measures p1 and p2 on a
measurable space (Ω,F), given the outcomes of N independent identically distributed (i.i.d.) random variables,
whose law is either p1 or p2. Since one has to decide among two hypothesis – the first (second) one being that
the observed data is distributed according to p1 (p2) – this discrimination task bears the name of “hypothesis
testing”. For a given test function, i.e., a random variable Mclas with values in [0, 1], the probability of error is

Perr,N = η1p
(N)
1 (Mclas) + η2p

(N)
2 (1−Mclas), where p

(N)
i = p⊗N

i is the N -fold product measure and ηi the prior
probability attached to pi. It is easy to convince oneself that the minimal error is achieved for the maximum
likelihood test function defined by1

Mopt
clas = 1{η2ρ(N)

2 −η1ρ(N)
1 ≥0} , (9.1)

ρ
(N)
i = dp

(N)
i /dµ(N) being the density of p

(N)
i with respect to the measure µ(N) = p

(N)
1 + p

(N)
2 = µ⊗N . The

corresponding error is

P opt
err,N ({p(N)

i , ηi}) = min
0≤Mclas≤1

{∫

ΩN

dµ(N)
(
η1ρ

(N)
1 Mclas + η2ρ

(N)
2 (1−Mclas)

)}

=

∫

ΩN

dµ(N) min
{
η1ρ

(N)
1 , η2ρ

(N)
2

}
. (9.2)

One is typically interested in the limit of a large number of tests, i.e., N → ∞. One can show that the error
probability decays exponentially like P opt

err,N ∼ e−Nξ(p1,p2), with an exponent given by the Chernoff bound [60]

ξ(p1,p2) = − lim
N→∞

1

N
lnP opt

err,N ({p(N)
i , ηi}) = − inf

α∈(0,1)

{
ln

(∫

Ω

dµ ρα1 ρ
1−α
2

)}
, (9.3)

where we have set ρi = ρ
(1)
i . One recognizes in the infimum in the right-hand side the classical Rényi divergence

(7.35) multiplied by (α − 1).

1Here 1A stands for the indicator function on A ⊂ Ω, i.e., 1A(ω) = 1 if ω ∈ A and 0 otherwise.
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In quantum mechanics, the hypothesis testing can be rephrased as the discrimination of two N -fold tensor
product states ρ⊗N1 and ρ⊗N2 . The corresponding minimal error probability is given by the Helstrom formula
(6.6),

P opt
err,N({ρ⊗Ni , ηi}) =

1

2

(
1− tr |ΛN |

)
, ΛN = η1ρ

⊗N
1 − η2ρ

⊗N
2 , (9.4)

and the optimal measurement consists of the orthogonal projectors Mopt
± on the supports of the positive and

negative parts of ΛN . Note that if ρ1 and ρ2 commute thenMopt
− can be identified with the maximum likelihood

test function and one recovers the classical formula (9.2) from (9.4). Surprisingly, the generalization of the
Chernoff bound (9.3) to the quantum setting has been settled out only recently. It has been highlighted in
Sec. 7.3 that the Rényi divergences appearing in this bound have several natural quantum extensions, according
to the choice of operator ordering. It was proven by Audenaert et al. [19] and by Nussbaum and Szkola [181]

that the right extension is the normal-ordered relative Rényi entropy S
(n)
α (ρ||σ) defined in (7.29).

Proposition 9.1.1. (Quantum Chernoff bound [19, 181]) One has

− lim
N→∞

1

N
lnP opt

err,N({ρ⊗Ni , ηi}) = − inf
α∈(0,1)

{
ln
(
tr[ρα1 ρ

1−α
2 ]

)}
= sup
α∈(0,1)

{
(1− α)S(n)

α (ρ1||ρ2)
}
. (9.5)

This limit defines a jointly convex function ξQ(ρ1, ρ2) with values in R+ ∪ {+∞}, which is contractive under
quantum operations. Moreover, ξQ induces the quantum Hellinger metric up to a factor of one half, that is, if
ρ and ρ+ dρ are infinitesimally close then ξQ(ρ+ dρ, ρ) = gH(dρ, dρ)/2 is given by (8.49).

The infimum in (9.5) is attained for a unique α ∈ (0, 1) satisfying tr(ρα1 ρ
1−α
2 (ln ρ1− ln ρ2)) = 0 [19]. Actually,

for any fixed ρ and σ, the function α 7→ F
(n)
α (ρ||σ)α = tr[ρασ1−α] is convex (this is a simple consequence of the

convexity of α 7→ pαq1−α for p, q > 0) and F
(n)
α (ρ||σ) ≤ F

(n)
0,1 (ρ||σ) = 1 by the Hölder inequality (4.3). Before

entering into the proof, let us also mention that ξQ(ρ, σ) <∞ whenever ρ and σ do not have orthogonal supports.
If ρ = |ψ〉〈ψ| is pure, the quantum Chernoff bound is related to the fidelity by ξQ(ρ, σ) = − lnF (ρ, σ) =

− ln〈ψ|σ|ψ〉 (in fact, then F
(n)
α (ρ||σ)α = 〈ψ|σ1−α|ψ〉 is minimum for α = 0).

Proof. To shorten notation we write P opt
eff,N when referring to P opt

err,N ({ρ⊗N , η, σ⊗N , 1− η}). The fact that

lim sup
N→∞

1

N
lnP opt

eff,N ≤ −ξQ(ρ, σ) = inf
α∈(0,1)

{
ln(tr[ρασ1−α])

}
(9.6)

follows from (9.4) and the trace inequality

1

2

(
tr(A) + tr(B) − tr |A−B|

)
≤ tr(AαB1−α) , (9.7)

where A and B are non-negative operators and α ∈ [0, 1]. This inequality has been first established in [19]. A
simple proof due to N. Ozawa is reported in Appendix B. The reverse inequality to (9.6) is a consequence of the
classical Chernoff bound. This can be justified as follows [181]. Let us observe that the optimal measurement is
a von Neumann measurement {Πopt, 1−Πopt} with Πopt a projector, so that

P opt
err,N = 1− P opt

S,N = η tr
(
(1−Πopt)ρ⊗N

)
+ (1− η) tr

(
Πoptσ⊗N)

=
∑

k,l

(
ηpk

∣∣〈Φl|(1 −Πopt)|Ψk〉
∣∣2 + (1 − η)ql

∣∣〈Ψk|Πopt|Φl〉
∣∣2
)
, (9.8)

where {|Ψk〉} and {|Φl〉} are orthonormal eigenbases of ρ⊗N and σ⊗N , respectively, and pk and ql are the
corresponding eigenvalues. We may without loss of generality assume that η ≤ 1/2. By using the inequality
|a|2 + |b|2 ≥ |a+ b|2/2 one gets

P opt
err,N ≥ η

∑

k,l

1

2
min{pk, ql}

∣∣〈Φl|Ψk〉
∣∣2 . (9.9)

But ρ⊗N corresponds to N independent copies of the state ρ =
∑
k pk|ψk〉〈ψk|, hence its eigenvalues pk and

eigenvectors |Ψk〉 are products of N eigenvalues pk and N eigenvectors |ψk〉 of ρ, respectively, and similarly
for σ⊗N with the eigenvalues ql and eigenvectors |φl〉 of σ. This means that pk|〈Φl|Ψk〉|2 can be viewed as the
N -fold product of the probability π1 on {1, . . . , n}2 defined by (π1)kl = pk|〈φl|ψk〉|2. Analogously, ql|〈Φl|Ψk〉|2
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is the N -fold product of π2 with (π2)kl = ql|〈φl|ψk〉|2. Consequently, the sum in (9.9) is the minimal error

probability P opt
err,N ({π(N)

i , 1/2}) for discriminating π1 and π2 with equal prior probabilities (see (9.2)). One
then deduces from the classical Chernoff bound (9.3) that

lim inf
N→∞

1

N
lnP opt

err ≥ inf
α∈(0,1)

{
ln

( n∑

k,l=1

(π1)
α
kl(π2)

1−α
kl

)}
= −ξQ(ρ, σ) . (9.10)

Together with (9.6) this proves the quantum Chernoff bound.
It is nevertheless instructive to show (9.10) directly from (9.9), without relying on the classical result, by

using the theory of large deviations for sums of i.i.d. random variables and the relative modular operator ∆σ|ρ
(see chapter 4), which appears here quite naturally [140]. Indeed, let us set ξ = ρ

1
2 and note that for any real

function f : (0,∞) → R, according to (4.8) and by the functional calculus, it holds

〈ξ , f(∆σ|ρ) ξ〉 =
n∑

k,l=1

pkf
( ql
pk

)
|〈φl|ψk〉|2 . (9.11)

In particular, 〈ξ , ln(∆σ|ρ) ξ〉 = tr[ρ(ln σ − ln ρ)] = −S(ρ||σ), as already observed in Sec. 7.2. Let mσ|ρ be the
spectral measure of − ln∆σ|ρ with respect to the vector ξ. This is a probability measure (ξ is normalized),
which is related to the relative entropy by S(ρ||σ) =

∫
dmσ|ρ(t) t. Taking f(x) = min{x, 1} = g(− lnx) with

g(t) = min{e−t, 1} in (9.11), one finds

n∑

k,l=1

min{pk, ql}|〈φl|ψk〉|2 =
〈
ξ , g(− ln∆σ|ρ) ξ

〉
=

∫

R

dmσ|ρ(t) g(t) ≥ mσ|ρ(R−) . (9.12)

A similar inequality holds for the sum in the right-hand side of (9.9): it suffices to substitute ∆σ|ρ by ∆σ⊗N |ρ⊗N

= ∆⊗N
σ|ρ . The spectral measure of − ln∆⊗N

σ|ρ is a product measure m
(N)
σ|ρ and thus − ln∆⊗N

σ|ρ can be interpreted

as a sum of i.i.d. random variables − ln∆
(ν)
σ|ρ with law mσ|ρ. The large deviation principle ensures that if

e′σ|ρ(0) < θ < e′σ|ρ(1) then [82]

lim
N→∞

1

N
ln

(
m

(N)
σ|ρ

(
−

N∑

ν=1

ln∆
(ν)
σ|ρ ≤ −θN

))
= − sup

α∈[0,1]

{
αθ − eσ|ρ(α)

}
(9.13)

is up to a minus sign the Legendre transform of

eσ|ρ(α) = ln

(∫

R

dmσ|ρ(t)e
−tα

)
= ln

(
〈ξ , ∆α

σ|ρ ξ〉
)
= ln

(
tr[ρ1−ασα]

)
. (9.14)

If ρ 6= σ then e′σ|ρ(0) = −S(ρ||σ) < 0 and e′σ|ρ(1) = S(σ||ρ) > 0 (the second identity follows from the first one

by symmetry eσ|ρ(1− α) = eρ|σ(α)). Thus the large deviation bound (9.13) holds for θ = 0. Taking advantage
of (9.9) and (9.12) one is led to

lim inf
N→∞

1

N
lnP opt

err,N ≥ lim inf
N→∞

1

N
ln

(∑

k,l

min{pk, ql}
∣∣〈Φl|Ψk〉

∣∣2
)

(9.15)

≥ lim
N→∞

1

N
ln

(
m

(N)
σ|ρ

(
−

N∑

ν=1

ln∆
(ν)
σ|ρ ≤ 0

))
= inf

α∈[0,1]

{
eσ|ρ(α)

}
= −ξQ(ρ, σ) ,

in agreement with (9.10). Note that these arguments justify in particular that the second member in the classical
Chernoff bound (9.3) is bounded from above by the third one, as a consequence of the large deviation principle.
Applying (9.6) for commuting matrices ρ and σ, this gives a full proof of this classical bound.

The joint convexity of ξQ(ρ, σ) mentioned in the proposition results from the joint convexity of the relative

entropies S
(n)
α (ρ||σ) for α ∈ (0, 1), which follows from the Lieb concavity theorem, see Sec. 7.3. One then gets

the contractivity of ξQ with respect to quantum operations from Proposition 7.2.2. This concludes the proof.
✷
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Remark 9.1.2. The quantum Chernoff bound (9.5) can be generalized to the case where the two states ρi,N ∈
E(H⊗N ) to discriminate are not product states (i.e., for dependent copies).

Actually, the large deviation principle used in the proof is not restricted to sums of i.i.d. random variables.
It must be assumed that the limit e(α) = limN→∞N−1 ln tr[ρα1,Nρ

1−α
2,N ] exists, is continuous in α on [0, 1] and

differentiable on (0, 1), and its right derivative e′(0) is smaller than its left derivative e′(1) (see [140]).

Remark 9.1.3. In asymmetric hypothesis testing one is interested by the minimal error probability of identifying
the second state under the constraint that the error on the identification of the first state is smaller than ε,

P asym
err,N,ε = min

0≤M≤1

{
tr[Mρ⊗N2 ] ; tr[(1−M)ρ⊗N1 ] ≤ ε

}
. (9.16)

The quantum Stein’s lemma [122, 182] shows that this probability decays exponentially with a rate given by the
relative von Neumann entropy, i.e.

− lim
N→∞

1

N
lnP asym

err,N,ε = S(ρ1||ρ2) . (9.17)

The limit one gets by replacing the fixed parameter ε > 0 by e−rN (that is, asking for an exponentially decaying
error on the identification of ρ1) is, in turn, given by the Hoeffding bound (see e.g. [140] for more detail).

An interesting link between the quantum hypothesis testing and fluctuation theorems in quantum statistical
physics has been found by Jaks̆ić et al. [140]. They have shown that the quantum Chernoff bound for
discriminating the forward and backward time-evolved states ρ±T/2 as T → ∞ appears in the large deviation
principle for the full counting statistics of measurements of the energy/entropy flow over the time interval [0, T ].

9.2 Parameter estimation in quantum metrology

The parameter estimation problem is a kind of continuous version of quantum state discrimination, in which
the system state ρ(θ) depends on a continuous parameter θ. One aims at estimating this unknown parameter
with the highest possible precision ∆θ by performing measurements on ρ(θ). This precision is limited by our
ability to distinguish the states ρ(θ) for values of θ differing by ∆θ.

9.2.1 Phase estimation in Mach-Zehnder interferometers

An important example is phase estimation in the Mach-Zehnder interferometer represented in Fig. 9.1. An
input photon passes through a beam splitter [41] which transforms its state into a superposition of two modes
propagating along different paths. These two modes acquire distinct phases θ1 and θ2 during the propagation
and are finally recombined in a second beam splitter to read out interference fringes, from which the phase
difference θ = θ1 − θ2 is inferred. The interferometric sequence can be described by means of rotation matrices
acting on the two-mode photon state. We shall assume at this point that the reader is familiar with second
quantization2. The generators of the aforementioned rotations are the angular momentum operators Jx, Jy,
and Jz related to the bosonic annihilation and creation operators bj and b∗j of a photon in mode j = 1, 2 by
Jx = (b∗1b2 + b∗2b1)/2, Jy = −i(b∗1b2 − b∗2b1)/2, and Jz = (b∗1b1 − b∗2b2)/2 (Schwinger representation). These
operators act on the bosonic Fock space Fb(C

2) associated to the single photon space H ≃ C2. The output
state of the interferometer is given in terms of the input state ρin by [273]

ρout(θ) = e−iθJnρine
iθJn , (9.18)

where θ is the phase to be estimated and Jn = nxJx + nyJy + nzJz the angular momentum in the direction
specified by the unit vector n ∈ R3.

One can also realize a Mach-Zehnder interferometer with ultracold atoms forming a Bose-Einstein condensate
in an optical trap, instead of photons. Then the two modes correspond to two distinct atomic energy levels
and the total number of atoms Np = N1 + N2 in these modes is fixed. In such a case the Hilbert space of
the system has finite dimension Np + 1 (one deals here with indistinguishable particles). Atom interferometry
in Bose-Einstein condensates is very promising due to the tunable interactions between atoms, which make it

2A good mathematical introduction to this formalism can be found in [42].
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Figure 9.1: In a Mach-Zehnder interferometer, the light entering in one of the two input modes is split into
two beams by a beam splitter (represented by the rectangle BS1 inclined by 45◦). The photons in the first and
second beams acquire some phase shifts θ1 and θ2, respectively, before going through a second beam splitter
(rectangle BS2) and into the detectors D1 and D2, which count the number of photons in the two output modes.

possible to generate dynamically entangled states involving a large number of particles3. We will see below
that using such entangled states as inputs leads to smaller errors ∆θ in the phase estimation than for separable
inputs. For independent (i.e., separable) particles the precision is of the order of (∆θ)SN ≈ 1/

√
Np (shot

noise limit). Higher precisions than (∆θ)SN have been reported experimentally [106, 202]. Important potential
applications of these ultra-precise interferometers include atomic clocks and magnetic sensors with enhanced
sensitivities [254, 209].

9.2.2 Quantum Cramér-Rao bound

In the more general setting, the problem of estimating an unknown parameter θ from a θ-dependent state
evolution and measurements on the output states can be described as follows. For simplicity we assume that
the evolution is given by a self-adjoint operator H (equal to Jn in the above Mach-Zehnder interferometer), i.e.

ρ(θ) = e−iθHρ eiθH , (9.19)

where ρ = ρ(0) = ρin is the input state. One performs generalized measurements given by a POVM {Mi}mi=1

on the output state ρ(θ) = ρout. The probability to get the outcome i is pi|θ = tr[Miρ(θ)] (Sec. 5.3). After N
independent measurements4 on copies of ρ(θ) yielding the outcomes i1, i2, . . . , iN , the parameter θ is estimated
by using a statistical estimator depending on these outcomes, that is, a function θest(i1, i2, . . . , iN ). The precision
of the estimation is defined by the variance

∆θ =

〈(∣∣∣∂〈θest〉θ
∂θ

∣∣∣
−1

θest − θ

)2〉 1
2

θ

, (9.20)

where 〈 · 〉θ denotes the average for the product probability measure {pi1|θ . . . piN |θ}mi1,...,iN=1 of the independent

outcomes. The factor |∂〈θest〉θ/∂θ|−1 is put in front of θest to remove some possible differences in physical
units between θ and its estimator θest (see [45]). We restrict our attention to unbiased estimators satisfying
|∂〈θest〉θ/∂θ|−1〈θest〉θ = θ. For a given input state ρ, one looks for the smallest error ∆θ that can be achieved.
This involves two different optimization steps, associated to the optimization over (i) all possible estimators θest
and (ii) all possible measurements. The step (i) relies on a classical result in statistics known as the Cramér-Rao
bound,

〈
(∆θest)

2
〉
θ
≥ 1

NF({pi|θ})
(∂〈θest〉θ

∂θ

)2

, (9.21)

where ∆θest = θest − 〈θest〉θ and

F({pi|θ}) =
m∑

i=1

1

pi|θ

(∂pi|θ
∂θ

)2

(9.22)

3In contrast, because of the absence of direct interactions between photons it is difficult to generate large numbers of photons
having multipartite entanglement.

4In practice the experiment is repeated N times, starting from the same initial state ρ and in similar conditions, so that the
quantum evolution can be considered to be the same at each run.
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is the Fisher information. The inequality (9.21) is saturated asymptotically for N → ∞ by the maximum-
likelihood estimator. The second optimization step (ii) has been solved in Ref. [45], leading to the following
important statement. Recall that the quantum Fisher information is defined as (see Sec. 8.5)

FQ(ρ,H) = 4(gB)ρ(−i[H, ρ],−i[H, ρ]) = 4dB(ρ, ρ+ dρ)2 , (9.23)

where gB is the Bures metric and dρ = (∂ρ/∂θ)dθ = −i[H, ρ]dθ.

Proposition 9.2.1. (Braunstein and Caves [45]) The smallest error ∆θ that can be achieved in the parameter
estimation is

(∆θ)best =
1√

N
√
FQ(ρ,H)

, (9.24)

where N is the number of measurements and FQ(ρ,H) is the quantum Fisher information. Thus ∆θ ≥ (∆θ)best
and the equality ∆θ = (∆θ)best can be reached asymptotically as N → ∞.

It is worth noting that (9.24) can be interpreted as a generalized uncertainty principle [45]. In fact, if
ρ = |Ψ〉〈Ψ| is a pure state, in view of the relation (8.43) between FQ(ρ,H) and the square fluctuation 〈(∆H)2〉Ψ
of H , the bound ∆θ ≥ (∆θ)best can be written as

∆θ 〈(∆H)2〉
1
2

Ψ ≥ 1

2
√
N
. (9.25)

In this uncertainty relation H plays the role of the variable conjugated to the parameter θ.

Proof. We present here a direct proof of (9.24) based on the results of chapter 8 (see [45] for an independent
proof). Before that, let us explain how the classical Cramér-Rao bound is derived. By differentiating with
respect to θ the identity

0 = 〈∆θest〉θ =
∑

i1,...,iN

pi1|θ . . . piN |θ∆θest(i1, . . . , iN ) (9.26)

one obtains

0 =
∑

i1,...,iN

pi1|θ . . . piN |θ

N∑

ν=1

∂ ln piν |θ
∂θ

∆θest(i1, . . . , iN)−
∂〈θest〉θ
∂θ

. (9.27)

Then the Cramér-Rao bound (9.21) readily follows from the Cauchy-Schwarz inequality. Of course, the inter-
esting point is that equality can be achieved in the limit N → ∞, but we will not dwell into that. Going back
to the quantum problem, we rearrange (9.21) as

(dθ)2

N
≤ (∆θ)2

m∑

i=1

(tr[Midρ(θ)])
2

tr[Miρ(θ)]
(9.28)

with dρ(θ) = (∂ρ/∂θ)dθ. Now, by using Proposition 8.3.1 and performing an expansion up to the second order
in dρ, one finds

FQ(ρ(θ), H)(dθ)2 = sup
{Mi}

{ m∑

i=1

(tr[Midρ(θ)])
2

tr[Miρ(θ)]

}
. (9.29)

Here, the supremum is over all POVMs {Mi} and we have used
∑
i tr[Midρ(θ)] = tr[dρ(θ)] = 0. But

FQ(ρ(θ), H) = FQ(ρ,H) as a consequence of (8.42), since ρ(θ) and ρ are related by a unitary evolution gener-
ated by H . Comparing (9.28) and (9.29), we conclude that inf{Mi} ∆θ ≥ (∆θ)best, with equality as N → ∞ for
the maximum likelihood estimator, as stated in the proposition. ✷

Before proceeding to derive upper bounds on FQ(ρ,H), let us observe that the monotonicity of the Bures
metric gB implies [96]:

Corollary 9.2.2. The quantum Fisher information FQ(ρ,H) is convex in ρ.

Proof. Given two states ρ0 and ρ1 on H and η0, η1 ≥ 0, η0 + η1 = 1, we introduce the state ρ̂ = η0ρ0 ⊗ |0〉〈0|+
η1ρ1 ⊗ |1〉〈1| on H⊗ C2 as in the proof of Theorem 8.6.2. From the expression of FQ in the right-hand side of
(8.42) one deduces that

FQ(ρ̂, H ⊗ 1) = η0FQ(ρ0, H) + η1FQ(ρ1, H) . (9.30)
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Let T : σ̂ 7→ trC2(σ̂) denote the partial trace on C2. Then T (ρ̂) = ρ = η0ρ0 + η1ρ1 and T ([H ⊗ 1, ρ̂]) = [H, ρ].
As T is a quantum operation, it results from the contractivity of the Bures metric that

(gB)ρ̂
(
−i[H ⊗ 1, ρ̂],−i[H ⊗ 1, ρ̂]

)
≥ (gB)ρ

(
−i[H, ρ],−i[H, ρ]

)
. (9.31)

Collecting together (9.30) and (9.31) yields FQ(ρ,H) ≤ η0FQ(ρ0, H) + η1FQ(ρ1, H). ✷

9.2.3 Interferometer precision and inter-particle entanglement

We now show by relying on Proposition 9.2.1 that if the input state has Np particles in a maximally entangled
state, the precision (∆θ)best is smaller by a factor 1/

√
Np with respect to the precision obtained with separable

input states. The Hilbert space of the particles is H(Np) = H1 ⊗ · · · ⊗ HNp , Hν being the Hilbert space of the
νth particle. Assuming that the particles do not interact between themselves, the Hamiltonian reads

H =

Np∑

ν=1

1⊗ · · · ⊗Hν ⊗ · · · ⊗ 1 , (9.32)

where Hν acts on Hν . To simplify the discussion we suppose that the single particle Hamiltonians Hν have
the same highest eigenvalue λmax and the same lowest eigenvalue λmin. This is the case for instance if H is the
angular momentum Jn in the interferometer of Sec. 9.2.1 (then Hν = (nxσxν + nyσyν + nzσzν)/2 with |n| = 1
and σxν , σyν , and σzν the three Pauli matrices acting on Hν ≃ C2, so that λmax = −λmin = 1/2). Let us
recall that the quantum Fisher information FQ(|Ψ〉, H) of a pure state |Ψ〉 is given by the square fluctuation
〈(∆H)2〉Ψ = 〈Ψ|H2|Ψ〉 − 〈Ψ|H |Ψ〉2 up to a factor of four (see Sec. 8.5). We first observe that the maximum
of 〈(∆Hν)

2〉ψν
over all pure states |ψν〉 ∈ Hν is equal to (∆h)2 = (λmax − λmin)

2/4, the maximum being
attained when |ψν〉 = (|φν,max〉 + |φν,min〉)/

√
2, where |φν,max〉 and |φν,min〉 are the eigenvectors of Hν with

eigenvalues λmax and λmin, respectively. Let the Np particles be in a separable state ρsep and let {|Ψi〉, ηi}
be a decomposition of ρsep into pure product states |Ψi〉 = |ψi1〉 ⊗ · · · ⊗ |ψiNp〉 ∈ H(Np). A simple calculation
gives [100]

FQ(|Ψi〉, H) = 4
〈
(∆H)2

〉
Ψi

= 4

Np∑

ν=1

〈(∆Hν )
2〉ψiν

≤ 4(∆h)2Np . (9.33)

By applying Corollary 9.2.2 we get

ρsep separable ⇒ FQ(ρsep, H) ≤ 4(∆h)2Np . (9.34)

According to Proposition 9.2.1 the phase precision of the interferometer satisfies for separable inputs

∆θ ≥ (∆θ)SN =
1

2∆h
√
NNp

. (9.35)

This means that separable input states cannot do better than Np independent particles sent one-by-one through
the interferometer, henceforth producing an error of the order of 1/

√
Np. Note that (9.34) provides a sufficient

condition FQ(ρ,H) > 4(∆h)2Np for entanglement of ρ [197]. There are, however, entangled states which do
not satisfy this criterion [197]. Such entangled states are not useful for interferometry, in the sense that they
produce phase errors larger than the shot noise value (∆θ)SN.

We now argue that much higher Fisher informations, of the order of N2
p , can be achieved for entangled

states. By the same observation as above, 〈(∆H)2〉Ψ has a maximum given by the square of the half difference
of the maximal and minimal eigenvalues of H . For the Hamiltonian (9.32), one immediately finds

FQ(|Ψ〉, H) ≤ 4(∆h)2N2
p . (9.36)

This upper bound is often called the Heisenberg bound in the literature. It is saturated for the entangled
states [100]

|Ψ±
ent〉 =

1√
2

(
|φ1,max〉|φ2,max〉 . . . |φNp,max〉 ± |φ1,min〉|φ2,min〉 . . . |φNp,min〉

)
. (9.37)

For large Np such states deserve the name of macroscopic superpositions, as they are formed by a superposition
of two macroscopically distinct states in which each particle is in the highest energy eigenstate of the single
particle Hamiltonian (for the first component of the superposition) or in the lowest energy eigenstate (for
the second component). If one uses these superpositions as input states of the interferometer, an error of
∆θ = 1/(2∆h

√
NNp) = (∆θ)SN/

√
Np can be achieved asymptotically for N → ∞ on the unknown phase.

According to (9.24) and (9.36), this is the best possible precision.

118



Chapter 10

Measures of entanglement in bipartite

systems

Maximale Kenntnis von einem Gesamtsystem schließt nicht notwendig maximale Kenntnis aller seiner Teile ein,

auch dann nicht, wenn dieselben völlig voneinander abgetrennt sind und einander zur Zeit gar nicht beeinflussen.1

(E. Schrödinger 1935) [211]

Even if it would be better for many computational and communication tasks to work with maximally
entangled pure states, in practice the coupling of the system with its environment transforms such states into
non-maximally entangled mixed states because of the induced decoherence processes [46, 102, 113]. It is thus
important to quantify the amount of entanglement in an arbitrary quantum state. Unfortunately, this amount
of entanglement is not a directly measurable quantity. It is quantified by an entanglement measure, which
vanishes if and only if the state is separable and cannot increase under local operations on each subsystems and
classical communication (entanglement monotonicity). All measures satisfying these two requirements are not
equivalent, i.e., a state ρ can be more entangled than a state σ for one measure and less entangled for the other.
In this chapter, we investigate the properties of entanglement measures, give their general form for pure states,
and study more especially two of the most popular ones, the entanglement of formation and the concurrence.
We restrict our attention to bipartite entanglement (see [110, 130] for generalizations to entanglement in systems
with more than two parties).

10.1 Entanglement as correlations between local measurements

Let |Ψ〉 be a pure state of a bipartite system AB. In view of the discussion in Sec. 4.4, it seems natural
physically to characterize the entanglement in |Ψ〉 by maximizing the correlator GAB(|Ψ〉) in (4.17) over all
local observables A ∈ B(HA)s.a. and B ∈ B(HB)s.a. and to define

G(|Ψ〉) = max
A=A∗,‖∆A‖∞,Ψ≤1

max
B=B∗,‖∆B‖∞,Ψ≤1

{∣∣GAB(|Ψ〉)
∣∣} . (10.1)

One must face with some arbitrariness on the choice of the norm used to bound ∆A = A − 〈A ⊗ 1〉Ψ and
∆B = B − 〈1 ⊗ B〉Ψ. In order to obtain an entanglement measure with the required properties, we take the
Ψ-dependent norm ‖∆A‖∞,Ψ = maxi,j |〈αi|∆A|αj〉|, where {|αi〉} is an orthonormal eigenbasis of the reduced
state [ρΨ]A, and similarly for ‖∆B‖∞,Ψ with the eigenbasis {|βk〉} of [ρΨ]B. These norms correspond to the
infinity norms of the vectors in HAA and HBB associated to ∆A and ∆B via the isometry (4.5). By using the
Schmidt decomposition (4.9) and setting Aij = 〈αi|A|αj〉 and Bij = 〈βi|B|βj〉, one finds

GAB(|Ψ〉) = 〈∆A⊗∆B〉Ψ =

n∑

i=1

µi(∆A)ii(∆B)ii +

n∑

i6=j

√
µiµjAijBij . (10.2)

The Cauchy-Schwarz inequality immediately yields

G(|Ψ〉) = max
‖∆a‖∞≤1

{
(∆a)2

}
+ C(|Ψ〉) , (10.3)

1Maximal knowledge on a total system does not necessarily include maximal knowledge on all its parts, even if these are
completely separated from each other and for now cannot affect each other.
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where the overline stands for the average with respect to the Schmidt coefficients µi (e.g. a =
∑

i µiai),
∆a = a− a with a = (A11, . . . , Ann), ‖∆a‖∞ = maxi |(∆a)i|, and

C(|Ψ〉) =
n∑

i6=j

√
µiµj =

(
tr
(√

[ρΨ]A
))2

− 1 . (10.4)

Thus C(|Ψ〉) = 0 (similarly, G(|Ψ〉) = 0) is equivalent to µi = 0 save for one index i, that is, to |Ψ〉 being
separable. Furthermore, C(|Ψ〉) ≤ n − 1 with equality if and only if µi = 1/n for all i, that is, if and only
if |Ψ〉 is maximally entangled (Sec. 4.4)2. Finally, we note that G and C are invariant under local unitaries,
i.e., G(UA ⊗ UB|Ψ〉) = G(|Ψ〉) for any unitaries UA and UB on HA and HB. For two qubits one obtains

G(|Ψ〉) = µ−1
max − 1 + C(|Ψ〉) , C(|Ψ〉) = 2

√
µ0µ1 (10.5)

with µmax = max{µ0, µ1}. It is easy to show that C(|Ψ〉) = |〈Ψ|σy⊗σyJ |Ψ〉|, where σy = i(|0〉〈1|− |1〉〈0|) is the
y-Pauli matrix and J the complex conjugation in the canonical basis. This quantity has been first introduced
by Wootters [265] and is known as the concurrence.

One may wonder how the correlator GAB could be generalized for mixed states. The first guess would be
to replace the expectation value 〈·〉Ψ by 〈·〉ρ = tr(ρ · ), but one easily sees that then G(ρ) can be non-zero even
for separable mixed states, because this correlator contains both the quantum and classical (i.e., statistical)
correlations in the density matrix ρ. Noting that

GAB(|Ψ〉) = 1

2

〈(
∆(A ⊗ 1 + 1⊗B)

)2〉
Ψ
− 1

2

〈(
∆(A⊗ 1)

)2〉
Ψ
− 1

2

〈(
∆(1⊗B)

)2〉
Ψ
, (10.6)

it is tempting to define a correlator for ρ in terms of the quantum Fisher information (8.42), i.e., of the Bures
metric gB,

GAB(ρ) =
1

8

(
FQ(ρ,A⊗ 1 + 1⊗B)−FQ(ρ,A⊗ 1)−FQ(ρ, 1⊗B)

)

= Re
{
(gB)ρ

(
−i[A⊗ 1, ρ],−i[1⊗B, ρ]

)}
.

By inspection on (8.43), GAB(ρ) reduces for pure states to the previous correlator. However, the maximum of
|GAB(ρ)| over all A and B does not fulfill the axioms of an entanglement measure. We will see in Sec. 10.4
another way to define the concurrence C for mixed states, by using on a convex roof construction.

10.2 LOCC operations

The main physical postulate on entanglement measures is that they must be monotonous with respect to certain
state transformations. Such transformations that cannot increase entanglement are called Local Operations and
Classical Communication (LOCC) and can be described as follows [34, 130]. Let us consider an entangled
state ρ shared by two observers Alice and Bob. Alice and Bob can perform any quantum operations MA :
B(HA) → B(H′

A
) and MB : B(HB) → B(H′

B
) on their respective subsystems A and B. Here, the final spaces H′

A

and H′
B
may include local ancillae, or may be some subspaces of HA and HB, respectively. The corresponding

transformations on the system AB are called local quantum operations. They are of the form Mloc = MA⊗MB

and are given by families {Ai ⊗ Bj} of Kraus operators, where Ai and Bj are local observables on A and
B. Local operations are performed physically by coupling each subsystem to a local ancilla and by making
joint unitary evolutions and von Neumann measurements on the subsystem and its ancilla (see Sec. 5.2). Such
processes can clearly not increase the amount of entanglement between A and B. In addition to performing
local generalized measurements, Alice and Bob can communicate their measurement outcomes to each other via
a classical communication channel (two-way communication). No transfer of quantum systems between them
is allowed. Thanks to classical communication, the observers can increase the classical correlations between
A and B, but not the AB-entanglement. A LOCC operation is a quantum operation on B(HAB) obtained
through a succession of the aforementioned actions of Alice and Bob, taken in arbitrary order. For example, if
Alice performs a measurement on A and Bob a measurement on B depending on Alice’s outcome i (one way
communication), the post-measurement state in the absence of readout is

M1−way(ρ) =
∑

i

1⊗M(i)
B
(Ai ⊗ 1ρA∗

i ⊗ 1) . (10.7)

2This last property is not true if one uses the operator norm instead of ‖ · ‖∞,Ψ in (10.1), except in the two-qubit case n = 2.
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This defines a LOCC operation with Kraus operators Ai ⊗B
(i)
j , where

∑
iA

∗
iAi =

∑
j(B

(i)
j )∗B(i)

j = 1.
Any LOCC operation can be obtained by composing local operations Mloc with the maps

MA

LOCC(ρ) =
∑

i

(
Ai ⊗ 1 ρA∗

i ⊗ 1
)
⊗ |κi〉〈κi| , MB

LOCC(ρ) =
∑

j

(
1⊗Bj ρ 1⊗B∗

j

)
⊗ |ǫj〉〈ǫj | , (10.8)

where
∑
iA

∗
iAi =

∑
j B

∗
jBj = 1 and {|κi〉} (respectively {|ǫj〉}) is an orthonormal basis for Bob’s ancilla

(respectively Alice’s ancilla) [130]. A strictly larger but much simpler class of transformations, known as the
separable quantum operations [246], is the set of all operations with Kraus operators Ai ⊗Bi, i.e.

Msep(ρ) =
∑

i

Ai ⊗BiρA
∗
i ⊗B∗

i (10.9)

with Ai ∈ B(HA,H′
A
), Bi ∈ B(HB,H′

B
), and

∑
iA

∗
iAi ⊗B∗

iBi = 1. The local operations and maps (10.8) being
separable, any LOCC operation is separable. A result from Ref. [35] shows, however, that certain separable
operations are not LOCCs.

It is clear that the set SAB of separable states is invariant under separable operations. It is also true that
every separable state can be converted into any other separable state by a separable operation. Actually, any
separable state can be obtained from the classical state ρclas =

∑
jk pjk|j〉〈j|⊗ |k〉〈k| by such an operation (take

Aijk =
√
ηi|ψi〉〈j| and Bijk = |φi〉〈k| with ηi, |ψi〉, and |φi〉 as in (4.19)). Furthermore, an arbitrary state ρ

can be transformed into a classical state ρclas by a measurement in the product basis {|j〉|k〉}, which is a local
operation.

When one restricts LOCC transformations to pure states, a great simplification comes from the following ob-
servation. If the space dimensions of A and B are such that nA ≥ nB, any measurement by Bob can be simulated
by a measurement by Alice followed by a unitary transformation by Bob conditioned to Alice’s outcome (such
a conditioning is allowed as Alice and Bob can communicate classically). In fact, let {|αi〉}nA

i=1 and {|βi〉}nB

i=1

be orthonormal eigenbasis of the reduced states [ρΨ]A and [ρΨ]B, and let Bi be the Kraus operators describing
Bob’s measurement. Consider the measurement done by Alice with Kraus operators Ai =

∑
j,l(Bi)lj |αl〉〈αj |,

where (Bi)lj = 〈βl|Bi|βj〉. The unnormalized post-measurement states

|Φ̃i〉 = 1⊗Bi|Ψ〉 =
∑

j,l

√
µj(Bi)lj |αj〉|βl〉 , |Φ̃′

i〉 = Ai ⊗ 1|Ψ〉 =
∑

j,l

√
µj(Bi)lj |αl〉|βj〉 (10.10)

have the same Schmidt coefficients because trB(|Φ̃i〉〈Φ̃i|) and trA(|Φ̃′
i〉〈Φ̃′

i|) are related by an isometry HA → HB.

Thus |Φ̃′
i〉 = Ui ⊗ Vi|Φ̃i〉 for some local unitaries Ui on HA and Vi on HB. Consequently, Bob performing the

measurement {Bi} is equivalent to Alice performing the measurement {U∗
i Ai} and Bob performing the unitary

transformation V ∗
i when Alice gets the outcome i. Applying this result to all Bob’s measurements, we conclude

that a LOCC acting on a pure state |Ψ〉 may always be simulated by a one-way communication protocol
involving only three steps: (1) Alice first performs a generalized measurement on subsystem A; (2) she sends
her measurement result to Bob; (3) Bob performs a unitary evolution on B conditional to Alice’s result.

Based on this observation, we say that a pure state |Ψ〉 ∈ HAB can be transformed by a LOCC into the pure
state |Φ〉 ∈ HAB if there are families of Kraus operators {Ai} on HA and unitaries {Vi} on HB such that all
unnormalized conditional states Ai ⊗ Vi|Ψ〉 are proportional to |Φ〉, irrespective of the measurement outcome
i. Note that this is equivalent to MLOCC(|Ψ〉〈Ψ|) being equal to |Φ〉〈Φ|, with MLOCC the LOCC operation
with Kraus family {Ai ⊗ Vi}. One defines in this way an order relation on the set of pure states. Nielsen [179]
discovered a nice relation between this order and the theory of majorization for n-dimensional vectors [38].
Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two vectors in Rn. We denote by x↓ the vector formed by the
components of x in decreasing order, and similarly for y↓. One says that x is majorized by y and write x ≺ y

if
∑k

i=1 x
↓
i ≤

∑k
i=1 y

↓
i for any k = 1, . . . , n, with equality instead of inequality for k = n.

Proposition 10.2.1. (Nielsen [179]) A pure state |Ψ〉 of the bipartite system AB can be transformed into
another pure state |Φ〉 of AB by a LOCC if and only if µΨ ≺ µΦ, where µΨ and µΦ are the vectors formed by
the Schmidt coefficients of |Ψ〉 and |Φ〉, respectively.

A detailed proof of this result can be found in [180] (Sect. 12.5), so we omit it here. This proof relies on
the following theorem: if λH and λK are vectors formed by the eigenvalues of two Hermitian matrices H and
K, respectively, then λH ≺ λK if and only if H =

∑
i ηiUiKU

∗
i with {ηi} a set of probabilities and Ui some

unitary matrices.

121



Remark 10.2.2. Even if |Ψ〉 cannot be transformed into |Φ〉 by a LOCC, it may still happen that |Ψ〉⊗ |κ〉 can
be transformed into |Φ〉⊗|κ〉 by a LOCC (here the state of the ancilla does not change during the transformation,
i.e., it acts as catalysts in chemical reactions) [143].

10.3 Axioms on entanglement measures

We are now in position to formulate the physical postulates on entanglement measures [34, 246, 248].

Definition 10.3.1. An entanglement measure of a bipartite system AB is a function E : E(HAB) → R such
that

(i) E(ρ) = 0 if and only if ρ is separable;

(ii) E is convex;

(iii) E cannot increase under LOCCs, i.e., if MLOCC is a LOCC operation then E(MLOCC(ρ)) ≤ E(ρ).

As any two separable states can be transformed one into each other by means of a LOCC operation, the
monotonicity (iii) implies that E is constant on the set of separable states SAB. Taking this constant equal to
zero yields ρ ∈ SAB ⇒ E(ρ) = 0, so that only the reverse implication is needed in (i). Furthermore, any state ρ
can be converted into a separable state by a LOCC, thus E(ρ) is minimum for separable states and E(ρ) ≥ 0.
The convexity condition (ii) is motivated by the following observation [248]. Assume that Alice and Bob share
m pairs of particles in the states ρ1, . . . , ρm. By classical communication, they can agree to keep the ith pair
with probability ηi, thus preparing the ensemble {ρi, ηi}mi=1. By erasing the information about which state ρi
was kept, the state becomes ρ =

∑
ηiρi (see Sec. 4.3). The inequality E(ρ) ≤ ∑

i ηiE(ρi) means that this local
loss of information does not increase the average entanglement.

It results from the monotonicity (iii) that entanglement measures are invariant under conjugations by local
unitaries, i.e., E(UA ⊗UB ρU

∗
A
⊗U∗

B
) = E(ρ). For pure states |Ψ〉, this implies that E(|Ψ〉) only depends on the

Schmidt coefficients µi of |Ψ〉. Consequently, E(|Ψ〉) = f([ρΨ]A) is a unitary-invariant function of the reduced
state [ρΨ]A = trB(|Ψ〉〈Ψ|) (or, equivalently, of [ρΨ]B = trA(|Ψ〉〈Ψ|)). Given that a pure state is separable if and
only if it has a single non-vanishing Schmidt coefficient, one deduces from axiom (i) that f(ρA) vanishes if and
only if ρA is of rank one. The result below due to Vidal [248] characterizes all entanglement measures on pure
states satisfying a slightly stronger condition than (iii). This shows in particular that there are many measures
of entanglement fulfilling the three physical requirements (i-iii) of Definition 10.3.1, given by concave functions
f .

Proposition 10.3.2. (Vidal [248]) Let f : E(HA) → R be concave, unitary invariant, and such that f(ρA) = 0
if and only if ρA is a pure state. Then

Ef (|Ψ〉) = f([ρΨ]A) (10.11)

defines an entanglement measure on the set of pure states of AB, which satisfies the monotonicity condition

(iii’)
∑

i piE(|Φi〉) ≤ E(|Ψ〉), where pi = ‖Ai ⊗ Bi|Ψ〉‖2 and |Φi〉 = p
−1/2
i Ai ⊗ Bi|Ψ〉 and the probabilities and

conditional states of a separable measurement with Kraus operators Ai ⊗Bi.

Conversely, any entanglement measure on pure states fulfilling (iii’) is given by (10.11) for some function f
satisfying the above assumptions.

It should be noted that asking E(|Φi〉) ≤ E(|Ψ〉) for all outcomes i would put a too strong condition on E.
Indeed, local measurements can in principle create entanglement on some conditional states, but not on average
(see below).

Proof. Let f be like in the proposition. We have already argued above that Ef fulfills axiom (i), and (ii) is
empty because of the restriction to pure states. Recall that for such states any measurement on B can be
simulated by a measurement on A followed by a unitary operation on B conditioned to the measurement result.
Hence it suffices to show the monotonicity (iii’) for Bi = Vi unitary. Let us set ρB|i = trA(|Φi〉〈Φi|). Then
{V ∗

i ρB|iVi, pi} is a pure state decomposition of [ρΨ]B, i.e.,
∑
i piV

∗
i ρB|iVi = [ρΨ]B. This can be interpreted
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by saying that a local measurement on A does not modify the state of B when B has no information on the
measurement outcomes3. The concavity and unitary invariance of f imply

∑

i

piEf (|Φi〉) =
∑

i

pif(V
∗
i ρB|iVi) ≤ f([ρΨ]B) = Ef (|Ψ〉) . (10.12)

This shows (iii’). Thus Ef is an entanglement measure.
Reciprocally, let E be an entanglement measure on pure states satisfying (iii’). From the discussion before

the proposition we know that E(|Ψ〉) = f([ρΨ]A) = f([ρΨ]B) for some unitary-invariant function f vanishing on
pure states only. It remains to show that f is concave. We may assume that the space dimensions of A and B
are such that nA ≤ nB (otherwise one can exchange the role of A and B in the arguments below). Let ρA be an

arbitrary state of A and σ
(1)
A

, σ
(2)
A

be such that ρA = p1σ
(1)
A

+p2σ
(2)
A

with p1+p2 = 1. As nA ≤ nB, one may find
a purification |Ψ〉 of ρA on HAB (Sec. 4.3). If one can exhibit a measurement on B with outcome probabilities

pi and conditional states |Φi〉 having marginals trB(|Φi〉〈Φi|) = σ
(i)
A

for i = 1, 2, then the concavity of f can be
deduced from (iii’) thanks to the bound

f(ρA) = E(|Ψ〉) ≥ p1E(|Φ1〉) + p2E(|Φ2〉) = p1f(σ
(1)
A

) + p2f(σ
(2)
A

) . (10.13)

The measurement we are looking for is just the square root measurement associated to {σ(i)
A
, pi} (Sec. 5.5.3).

Indeed, let {|αj〉}nA

j=1 and {|βk〉}nB

k=1 be eigenbases of [ρΨ]A and [ρΨ]B and M lsm
i , i = 1, 2, be the operators on

HB with matrix elements given by (compare with (5.36))

〈βj |M lsm
i |βl〉 =

{
pi〈αl|ρ−

1
2

A
σ
(i)
A
ρ
− 1

2

A
|αj〉 if j, l = 1, . . . , nA

0 otherwise.
(10.14)

If nB > nA we add a third measurement operator, equal to the projector onto span{|βk〉;nA < k ≤ nB}. Then
M lsm

1 +M lsm
2 +M lsm

3 = 1. With the help of the Schmidt decomposition (4.9) one finds that 〈Ψ|1 ⊗M lsm
i |Ψ〉

equals pi for i = 1, 2 and zero for i = 3, and the conditional state |Φi〉 = p
−1/2
i 1 ⊗

√
M lsm
i |Ψ〉 has marginal

trB(|Φi〉〈Φi|) = σ
(i)
A

for i = 1, 2. This concludes the proof. ✷

Proposition 10.3.2 can be partially justified with the help of Proposition 10.2.1. More precisely, the latter
implies that Ef (|Ψ〉) ≥ Ef (|Φ〉) if |Φ〉〈Φ| = MLOCC(|Ψ〉〈Ψ|), that is, if there exists a LOCC measurement
on |Ψ〉 with all conditional states |Φi〉 equal to |Φ〉. This comes from the fact that, by unitary invariance,
f([ρΨ]A) is a symmetric function of the eigenvalues (µΨ)1, . . . , (µΨ)n of [ρΨ]A. But concave symmetric functions
f : Rn → R are Schur-concave, i.e., x ≺ y ⇒ f(x) ≥ f(y) (see [38], Theorem II.3.3).

Many entanglement measures satisfying the axioms (i-iii) of Definition 10.3.1 have been defined in the
literature. Their restrictions to pure states are all given by (10.11) for specific concave functions f . We present
in the next section a few of these measures, namely, the entanglement of formation, the concurrence, and the
Schmidt number. An integer-valued entanglement measure has been introduced in [208] by using a symplectic
geometry approach, but this goes beyond the scope of this article.

10.4 Entanglement of formation

10.4.1 Entanglement of formation for pure states

A natural choice for the function f is the von Neumann entropy. We set

EEoF(|Ψ〉) = S
(
[ρΨ]A

)
= S

(
[ρΨ]B

)
= −

∑

i

µi lnµi . (10.15)

Then EEoF(|Ψ〉) = 0 if and only if |Ψ〉 is separable and EEoF(|Ψ〉) is maximum (and equal to lnn with
n = min{nA, nB}) if and only if |Ψ〉 is maximally entangled. Since the von Neumann entropy is concave,
Proposition 10.3.2 ensures that EEoF is an entanglement measure on pure states.

An important result due to Bennett et al. [33] relates EEoF(|Ψ〉) to entanglement distillation and entangle-
ment cost, which consist in the following problems. The EPR two-qubit state |Φ+〉 = (|0〉|0〉+ |1〉|1〉)/

√
2 ∈ C4

corresponds to an e-bit of information shared by Alice and Bob. One such e-bit is required, for instance, if Alice

3If this would not be true, information could be sent faster than light in contradiction with Einstein’s principle of relativity [194].

123



wants to teleport an unknown quantum state to Bob [180]. Entanglement distillation is the transformation of
N copies of |Ψ〉 onto M < N copies of |Φ+〉. It was demonstrated by Bennett et al. that in the large N limit,
EEoF(|Ψ〉) is equal to the maximal rate of distillation M/N , the maximum being over all LOCC operations.
Stated differently, EEoF(|Ψ〉) is the highest number of e-bits per input copy of |Ψ〉 that can be distilled from
|Ψ〉 via LOCCs. Conversely, EEoF(|Ψ〉) is the smallest number of e-bits per unit copy of |Ψ〉 from which |Ψ〉
may be obtained via LOCCs. The precise mathematical statement is given in the proposition below.

Proposition 10.4.1. (Bennett et al. [33])

EEoF(|Ψ〉)
ln 2

= sup
{
r ; lim

N→∞

(
inf

LOCC

∥∥M(N)
LOCC(|Ψ⊗N〉〈Ψ⊗N |)− |Φ⊗rN

+ 〉〈Φ⊗rN
+ |

∥∥
1

)
= 0

}
(10.16)

= inf
{
r ; lim

N→∞

(
inf

LOCC

∥∥|Ψ⊗N〉〈Ψ⊗N | −M(N)
LOCC(|Φ⊗rN

+ 〉〈Φ⊗rN
+ |)

∥∥
1

)
= 0

}
. (10.17)

Let us stress that these identities are no longer valid for mixed states: then the right-hand sides of (10.16) and
(10.17) are, in general, not equal. They define two measures of entanglement called the distillable entanglement
and the entanglement cost (see [130] and references therein). The fact that these quantities coincide with
EEoF(|Ψ〉) for pure states basically indicates that, among all the possible entanglement measures, only one
(namely EEoF(|Ψ〉)) becomes relevant asymptotically when dealing with many copies of |Ψ〉.

Proof. A simple and illuminating proof due to Nielsen [179] is based on Proposition 10.2.1 and the Shannon
equipartition theorem. It runs as follows. Let µi be the Schmidt coefficients of |Ψ〉. Consider N i.i.d. random
variables with distribution {µi} and values in I = {1, . . . , n}. The joint probabilities of these random variables
are p(i) = µi1 . . . µiN with i = (i1, . . . , iN ) ∈ IN . Given ε > 0, the “most likely set” AN,ε ⊂ IN is by
definition the set of all i ∈ IN such that 2−N(H+ε) ≤ p(i) ≤ 2−N(H−ε), H being the Shannon entropy of
{µi}, which is defined here by using the binary logarithm (in our case, H = EEoF(|Ψ〉)/ ln 2). The Shannon
equipartition theorem [215] tells us that AN,ε has probability PN,ε > 1 − ε and cardinality |AN,ε| satisfying
(1− ε)2N(H−ε) ≤ |AN,ε| ≤ 2N(H+ε) for sufficiently large N . The idea of Nielsen’s proof is to approximate

|Ψ⊗N 〉 =
∑

i∈IN

√
p(i) |αi1〉 . . . |αiN 〉 ⊗ |βi1〉 . . . |βiN 〉

≃ |ΦN,ε〉 =
∑

i∈AN,ε

√
q(i) |αi1〉 . . . |αiN 〉 ⊗ |βi1〉 . . . |βiN 〉 (10.18)

with q(i) = p(i)/PN,ε and |αi〉, |βi〉 as in Theorem 4.2.1. Observe that the fidelity |〈Ψ⊗N |ΦN,ε〉|2 = PN,ε is
almost one for small ε. For any A ⊂ |AN,ε|, one has

(1 − ε)|A| 2−2Nε

|AN,ε|
≤

∑

i∈A
q(i) ≤ |A| 22Nε

(1− ε)|AN,ε|
. (10.19)

The second inequality implies that q = (q(i))i∈AN,ε
≺ (2−M , . . . , 2−M , 0, . . . , 0) with

M = ln2(|AN,ε|(1− ε))− 2Nε . (10.20)

By Proposition 10.2.1, this means that |ΦN,ε〉 can be transformed by a LOCC into the M -qubit state

|Φ⊗M
+ 〉 =

∑

j∈{0,1}M

2−
M
2 |j1〉 . . . |jM 〉 ⊗ |j1〉 . . . |jM 〉 . (10.21)

We conclude that for N sufficiently large there exists a LOCC operation M(N,ε)
LOCC from B(H⊗N

AB
) into B(C⊗2M )

such that

∥∥M(N,ε)
LOCC(|Ψ⊗N 〉〈Ψ⊗N |)− |Φ⊗M

+ 〉〈Φ⊗M
+ |

∥∥
1

≤
∥∥|Ψ⊗N〉〈Ψ⊗N | − |ΦN,ε〉〈ΦN,ε|

∥∥
1

≤ 2
(
1−

∣∣〈Ψ⊗N |ΦN,ε〉
∣∣2) 1

2 ≤ 2
√
ε (10.22)

(we have used Propositions 8.1.2 and 8.4.1 to get the first and second inequalities, respectively). In addition,
the distillation rate M/N is bounded from below by H − 3ε + 2N−1 ln(1 − ε). Taking e.g. ε = 1/

√
N , this

proves that EEoF(|Ψ〉) ≤ ED(|Ψ〉), where ED(|Ψ〉) denotes the right-hand side of (10.16).
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Similarly, the first inequality in (10.19) implies that |ΦN,ε〉 can be obtained asymptotically by transforming

M ′ copies of |Φ+〉 with LOCCs, more precisely it shows the existence of a LOCC operation M(N,ε) ′

LOCC such that

∥∥|Ψ⊗N 〉〈Ψ⊗N | −M(N,ε) ′

LOCC(|Φ⊗M ′

+ 〉〈Φ⊗M ′

+ |
∥∥
1
≤ 2

√
ε (10.23)

for N large enough, with
M ′ = ln2(|AN,ε|/(1− ε)) + 2Nε . (10.24)

The production rateM ′/N is bounded from above by H+3ε−N−1 ln(1−ε). This establishes that EEoF(|Ψ〉) ≥
EC(|Ψ〉), where EC(|Ψ〉) denotes the right-hand side of (10.17). But ED(|Ψ〉) ≤ EC(|Ψ〉), as otherwise one
could transform asymptotically by a LOCC r′N e-bits into rN e-bits with r′ < r, which is impossible. Hence
EEoF(|Ψ〉 = ED(|Ψ〉) = EC(|Ψ〉). ✷

10.4.2 Convex roof constructions

The extension of EEoF to mixed states is done via a convex roof construction [34].

Definition 10.4.2. The entanglement of formation of a mixed state ρ ∈ E(HAB) is

EEoF(ρ) = min
{|Ψi〉,ηi}

{∑

i

ηiEEoF(|Ψi〉)
}
, (10.25)

where the minimum is over all pure state decompositions ρ =
∑

i ηi|Ψi〉〈Ψi| of ρ.

Proposition 10.4.3. (Vidal [248]) EEoF(ρ) is an entanglement measure with values in the interval [0, lnn]. It
satisfies the monotonicity condition (which is stronger than (iii))

(iii”)
∑

i piEEoF(p
−1
i M(i)

loc(ρ)) ≤ EEoF(ρ) with pi = tr[M(i)
loc(ρ)], for any family of CP local maps M(i)

loc with
Kraus operators {Aij ⊗Bik}j,k such that

∑
i,j,k A

∗
ijAij ⊗B∗

ikBik = 1.

Note that the maps M(i)
loc are not required to be trace preserving (but tr[M(i)

loc(ρ)] ≤ 1). Modulo a state
normalization, they describe wavepacket reduction processes, see (5.16).

Proof. One has clearly 0 ≤ EEoF(ρ) ≤ lnn. We now argue that EEoF satisfies all the axioms (i-iii) of an
entanglement measure. In fact, EEoF is convex by construction. Moreover, it follows from the aforementioned
properties of EEoF(|Ψ〉) and the definition of mixed state entanglement (Sec. 4.4) that EEoF(ρ) = 0 if and
only if ρ ∈ SAB. Finally, the monotonicity with respect to LOCC operations is a consequence of the convexity
and can be shown as follows. Let ρ =

∑
i ηi|Ψi〉〈Ψi| be the pure state decomposition minimizing the average

entanglement in the right-hand side of (10.25). Let M be a separable operation with Kraus operators Aj ⊗Bj .
We denote by ηj|i = ‖Aj⊗Bj|Ψi〉‖2 the probability of outcome j given that the state is |Ψi〉. From the convexity
of EEoF and its monotonicity (iii’) for pure states (which holds by Proposition 10.3.2) one finds

EEoF

(
M(ρ)

)
≤

∑

i

ηiEEoF

(
M(|Ψi〉〈Ψi|)

)
≤

∑

ij

ηiηj|iEEoF

(
η
− 1

2

j|i Aj ⊗Bj |Ψi〉
)

≤
∑

i

ηiEEoF(|Ψi〉〈Ψi|) = EEoF(ρ) . (10.26)

Thus EEoF is an entanglement measure. A similar reasoning shows that EEoF satisfies (iii”). ✷

More generally, one can construct entanglement measures by extending to mixed states any entanglement
measure on pure states via a convex roof construction analog to (10.25). One gets in this way a family of
measures Ef depending on the choice of the function f in Proposition 10.3.2. Conversely, any entanglement
measure E satisfying the axiom (iii”) above coincides with Ef on pure states for some function f fulfilling the
assumptions of Proposition 10.3.2 [248]. In particular, this suggests to define the concurrence for mixed states
as

C(ρ) = min
{|Ψi〉,ηi}

{∑

i

ηiC(|Ψi〉)
}
, (10.27)
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where C(|Ψi〉) is given by (10.4). It is known that ρA 7→ ‖ρA‖1/2 = (tr[ρ
1/2
A

])2 is concave (see (1) in Appendix B),
whence C(ρ) is an entanglement measure. Another measure of entanglement of common use for pure states is
the Schmidt number obtained by choosing f(ρA) = 1/ tr(ρ2

A
) in Proposition 10.3.2.

As stated above, (iii”) means that separable measurements cannot increase the average entanglement, but
entanglement can increase if one considers conditional expectations over subgroups of outcomes, i.e., one may

have EEoF(p
−1
i M(i)

loc(ρ)) ≥ EEoF(ρ) for some i. An example is given by the qutrit-qutrit system in the state

ρ =
1

2
|Φ+〉〈Φ+|+

1

2
|2〉〈2| ⊗ |2〉〈2| , |Φ+〉 =

1√
2

(
|0〉|0〉+ |1〉|1〉

)
. (10.28)

Assume that Alice and Bob perform each a von Neumann measurement with projectors Π1 onto span{|0〉, |1〉}
and Π2 onto C|2〉. The conditional states ρAB|11 = |Φ+〉〈Φ+| and ρAB|22 = |2〉〈2| ⊗ |2〉〈2| have entanglement of
formations ln 2 and 0, respectively. The first value is larger than EEoF(ρ), which is equal to ln 2/2 according to
the following result.

Corollary 10.4.4. Let ρ1 and ρ2 be two states on HAB with bi-orthogonal supports ran ρi ⊂ VA
i ⊗ VB

i , where
VA
i ⊂ HA and VB

i ⊂ HB are such that VA
2 = (VA

1 )
⊥ and VB

2 = (VB
1 )

⊥. Let ρ = η1ρ1 + η2ρ2 with ηi ≥ 0,
η1 + η2 = 1. Then EEoF(ρ) = η1EEoF(ρ1) + η2EEoF(ρ2).

Proof. The inequality EEoF(ρ) ≤ η1EEoF(ρ1) + η2EEoF(ρ2) follows from convexity. The reverse inequality is a
consequence of the monotonicity property (iii”) applied to the maps

M(i)
loc(ρ) = πA

i ⊗ πB

i ρ π
A

i ⊗ πB

i , i = 1, 2 , M(3)
loc(ρ) = πA

1 ⊗ πB

2 ρ π
A

1 ⊗ πB

2 + πA

2 ⊗ πB

1 ρ π
A

2 ⊗ πB

1 , (10.29)

where πA
i and πB

i are the projectors onto VA
i and VB

i , respectively. ✷

It is worth realizing the link between EEoF(ρ) and the classical mutual information IX:Y , where X = {ηi}
is associated to a pure state decomposition {|Ψi〉, ηi} of ρ and Y to the outcomes of a local measurement on A
(Sec. 6.6). Indeed, the maximum of IX:Y over all pure state decompositions and all POVMs on A is bounded
by

max
{|Ψi〉,ηi},{MA

i }

{
IX:Y

}
≤ S(ρA)− EEoF(ρ) . (10.30)

This inequality is a direct consequence of the Holevo bound (6.51) and the definition (10.25) of EEoF(ρ).

10.4.3 The Wootters formula for two qubits

The main problem with the convex-roof construction (10.25) is that finding the pure state decomposition
minimizing the average entanglement is a non-trivial task. Nevertheless, an astonishing formula enabling to
evaluate EEoF(ρ) explicitly for two qubits was found by Wootters [265]. It reads

EEoF(ρ) = h(C(ρ)) (10.31)

where C(ρ) is given by (10.27) and h : [0, 1] → [0, lnn] is the convex increasing function

h(C) = −1 +
√
1− C2

2
ln
(1 +

√
1− C2

2

)
− 1−

√
1− C2

2
ln
(1−

√
1− C2

2

)
. (10.32)

The main point is that C(ρ) can be calculated explicitly as follows. Let λ1 ≥ λ2 ≥ λ3 ≥ λ4 be the square roots
of the eigenvalues of ρσy ⊗ σy ρ σy ⊗ σy (here σy is the y-Pauli matrix and ρ = JρJ the complex conjugate of ρ
in the canonical basis). Then

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} . (10.33)

For pure states this yields C(|Ψ〉) = |〈Ψ|σy ⊗ σyJ |Ψ〉|2, in agreement with the result of Sec. 10.1. The proof of
(10.31) is somehow tricky but relies on simple linear algebra arguments (see [265]).
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10.5 Maximally entangled states

One may expect intuitively that the most entangled states are extremal states in E(HAB), that is, they are the
pure maximally entangled states described in Sec. 4.4. If one uses as a criterion for being mostly entangled the
property of having the highest entanglement of formation, this is indeed correct when the dimensions of HA and
HB are such that nA/2 < nB < 2nA. When nB ≥ 2nA, convex combinations of pure maximally entangled states
with reduced B-states living on orthogonal subspaces of HB are also maximally entangled (a similar statement
holds of course by exchanging A and B).

Proposition 10.5.1. Assume that n = nA ≤ nB and let r = 1, 2, . . . be such that rnA ≤ nB < (r + 1)nA. Then
the states ρ ∈ E(HAB) having a maximal entanglement of formation EEoF(ρ) = lnn are convex combinations of
the r orthogonal maximally entangled states

|k〉 = n− 1
2

n∑

i=1

|α(k)
i 〉 ⊗ |β(k)

i 〉 , k = 1, . . . , r , (10.34)

with 〈α(k)
i |α(k)

j 〉 = δij and 〈β(k)
i |β(l)

j 〉 = δklδij .

Proof. Let ρ be a state with EEoF(ρ) = lnn. According to Definition 10.4.2 and given that EEoF(|Ψ〉) ≤ lnn with
equality if and only if |Ψ〉 is maximally entangled, this means that any pure state decomposition of ρ is made of
maximally entangled states. This is the case in particular for the spectral decomposition ρ =

∑
k pk|k〉〈k|, from

which one can obtain all other pure state decompositions {|Ψi〉, ηi} by the formula
√
ηi|Ψi〉 =

∑
k uik

√
pk|k〉

with ηi =
∑

k |uik|2pk (see (4.16)). Let us set Dkl = trB(|k〉〈l|). We would like to show that Dkl = n−1δkl if
pkpl 6= 0. We already know that Dkk = 1/n if pk 6= 0, since |k〉 is maximally entangled. By plugging the above
expression of

√
ηi|Ψi〉 into trB(|Ψi〉〈Ψi|) = 1/n, one is led to

∑

k,l,k 6=l

√
pkpluikuilDkl = 0 . (10.35)

This equality holds for any i and any unitary matrix (uik), hence
√
pkplDkl = 0 if k 6= l and the above claim is

true. One deduces from Dkk = 1/n that the eigenvectors |k〉 with eigenvalues pk > 0 have Schmidt decomposi-

tions given by (10.34). For k 6= l, Dkl = 0 is then equivalent to V(k)
B

⊥V(l)
B

with V(k)
B

= span{|β(k)
i 〉}ni=1 ⊂ HB.

If nB < (r + 1)n then at most r subspaces V(k)
B

may be pairwise orthogonal. Thus at most r eigenvalues pk are
non-zero. ✷
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Chapter 11

The quantum discord

Wer Kràch säiht, schaft fir deifels Schiir [Qui sème la discorde, travaille pour la grange du diable]

(proverbe alsacien).

The quantum discord was introduced by Ollivier and Zurek [184] and Henderson and Vedral [120] as an
indicator of the “degree of quantumness” of mixed states. For pure states it coincides with the entanglement
of formation. Certain separable mixed states have, however, a non-zero discord. These states are obtained
by preparing locally mixtures of non-orthogonal states, which cannot be perfectly discriminated by local mea-
surements. Such separable states cannot be classified as “classical” and actually contain quantum correlations
that are not captured by the entanglement measures reviewed in chapter 10. Apart from this observation, a
motivation for the quantum discord came out in the last decade from the claim that it could play the role of a
resource in certain quantum algorithms and quantum communication protocols [72, 152, 190, 163, 108, 68]. In
particular, it has been suggested [72, 152, 190] that the discord might capture the quantum correlations at the
origin of the quantum speedup in the deterministic quantum computation with one qubit (DQC1) of Knill and
Laflamme [147]. The DQC1 algorithm computes the trace of a 2N × 2N unitary matrix exponentially faster
than all known classical algorithms. The entanglement produced during the computation with (N +1) qubits is
bounded independently of N , for any bipartition of the (N+1) qubits [71]. This means that the total amount of
bipartite entanglement is a negligible fraction of the maximal entanglement possible. However, a non-vanishing
quantum discord between the control qubit and the N target qubits appears during the computation [72], save
for particular unitaries [67]. The DCQ1 algorithm is singled out by the fact that it uses mixed states, the N
target qubits being initially in a Gibbs state at infinite temperature. In contrast, for quantum computations
using pure states, Jozsa and Linden [145] have shown that in order to offer an exponential speedup over classical
computers, the computation must produce entanglement which is not restricted to qubit blocks of fixed size as
the problem size increases.

The definition of the quantum discord δA is given in Sec. 11.1. We then characterize the states with vanishing
discord in Sec. 11.2 and exhibit some important properties of δA in Sec. 11.3. The so-called monogamy relation
linking the discord and the entanglement of formation in tripartite systems is stated and proven in Sec. 11.4.

11.1 Definition of the quantum discord

Let us first consider some classical discrete random variables A and B with joint probabilities pij and marginals
pA(i) =

∑
j pij and pB(j) =

∑
i pij . The correlations between A and B are measured by the mutual information

IA:B = H(A) +H(B)−H(A,B). We recall from Sec. 6.6 that

IA:B = H(B)−H(B|A) , (11.1)

where H(B|A) =
∑
i pA(i)H(B|i) is the conditional entropy, see (6.48). This conditional entropy gives the

amount of information on B left after the value A = i has been measured, averaged over all possible outcomes i.
In the quantum setting, the analog of the random variables A and B is a bipartite quantum system AB in

a state ρ. The marginals are the reduced states ρA = trB(ρ) and ρB = trA(ρ). The generalization of the mutual
information reads

IA:B(ρ) = S(ρA) + S(ρB)− S(ρ) , (11.2)

where S(·) is the von Neumann entropy (7.1). Similarly to the classical case, one has IA:B(ρ) ≥ 0 and IA:B(ρ) = 0
if and only if ρ is a product state, i.e., ρ = ρA ⊗ ρB (this is nothing but the subadditivity property of S, see
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Sec. 7.1). It is easy to verify that IA:B(ρ) is related to the relative entropy (7.9) by

IA:B(ρ) = S(ρ||ρA ⊗ ρB) . (11.3)

By the monotonicity of the relative entropy (Theorem 7.2.1), IA:B(Mloc(ρ)) ≤ IA:B(ρ) for any local operation
Mloc = MA⊗MB, where the operations MA : B(HA) → B(H′

A
) and MB : B(HB) → B(H′

B
) may have different

initial and final spaces (for instance, MA can be the partial trace over a part of A).
However, there is no quantum analog of the identity (11.1). Let us define a conditional entropy of B given

a von Neumann measurement {πA
i } on A by SB|A(ρ|{πA

i }) =
∑
i ηiS(ρB|i), where

ρB|i = η−1
i trA(π

A

i ⊗ 1 ρ) , ηi = tr(πA

i ⊗ 1 ρ) . (11.4)

Here ηi is the probability of the measurement outcome i and ρB|i = trA(ρAB|i) is the corresponding conditional
state of B (see chapter 5). The ensemble {ρB|i, ηi} defines a convex decomposition of ρB (i.e., ρB =

∑
i ηiρB|i)

describing a state preparation of subsystem B realized by the measurement on A. The quantum version of the
right-hand side of (11.1) is the maximal reduction of entropy of B due to a von Neumann measurement on A,

Jv.N.
B|A (ρ) = S(ρB)−min

{πA

i }

{∑

i

ηiS(ρB|i)

}
, (11.5)

the minimum being over all orthonormal families of projectors on HA. This quantity represents the classical
correlations between A and B (see the discussion after Proposition 11.1.2 below). Note that Jv.N.

B|A (ρ) places an

upper bound on the classical mutual information between the ensemble {ρB|i, ηi} and the outcome probabilities
when performing measurements on B to discriminate the states ρB|i (Sec. 6.6). Actually, J

v.N.
B|A (ρ) coincides with

the corresponding Holevo quantity (6.51). By concavity of the von Neumann entropy, one has Jv.N.
B|A (ρ) ≥ 0.

Furthermore, (7.8) entails Jv.N.
B|A (ρ) ≤ max{πA

i }H({ηi}).
It also follows from the concavity of S that the minimum in (11.5) is achieved for rank-one projectors.

In fact, by decomposing each projector πA
i of rank ri as a sum of ri rank-one projectors πA

ik, one finds that
ρB|i =

∑
k(ηik/ηi)ρB|ik is a convex combination of the states ρB|ik = η−1

ik trA(π
A

ik ⊗ 1 ρ) if ηi =
∑

k ηik > 0.
Thereby

∑
i ηiS(ρB|i) ≥

∑
ik ηikS(ρB|ik).

Ollivier and Zurek [184] and Henderson and Vedral [120] proposed in two independent works published in
2001 to characterize the amount of non-classicality in the state ρ by forming the difference between the total
correlations given by IA:B(ρ) and the classical correlations given by Jv.N.

B|A (ρ).

Definition 11.1.1. The quantum discord of the bipartite system AB in state ρ is

δv.N.A (ρ) = IA:B(ρ)− Jv.N.
B|A (ρ) = S(ρA)− S(ρ) + min

{πA

i }

{∑

i

ηiS(ρB|i)

}
. (11.6)

In [120], the minimization is done over generalized measurements given by POVMs {MA
i } on HA, instead of

von Neumann measurements. The conditional states and outcome probabilities are then (chapter 5)

ρB|i = η−1
i trA(M

A

i ⊗ 1 ρ) , ηi = tr(MA

i ⊗ 1 ρ) . (11.7)

We denote the corresponding discord by δA(ρ). As in the case of von Neumann measurements, the minimum
is achieved for rank-one measurement operators MA

i . In general, the inequality δA(ρ) < δv.N.
A

(ρ) is strict1.
Nevertheless, by the Neumark extension theorem, δA coincides with δv.N.

A
up to an enlargement of the space

HA. More precisely, by plugging MA
i = 〈ǫ0|ΠAE|ǫ0〉 (see Remark 5.3.3) into (11.7) and using the additivity of S

under tensor products, a simple calculation gives

δA(ρ) = δv.N.AE (ρ⊗ |ǫ0〉〈ǫ0|) , (11.8)

the right-hand side being independent of the ancilla state |ǫ0〉 ∈ HE.
The discords δv.N.

A
(ρ) and δA(ρ) thus measure the amount of total correlations between A and B which cannot

be accessed by local measurements on the subsystem A. Note that they are asymmetric under the exchange
A ↔ B. One can define similarly the discords δv.N.

B
(ρ) and δB(ρ) by performing the measurements on the

subsystem B.

1See e.g. [111, 98] for a comparison of the von Neumann and POVM discords for two qubits.
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For pure states ρΨ = |Ψ〉〈Ψ|, the mutual information IA:B(ρΨ) is equal to 2S([ρΨ]B), see (7.4), and the
measurement minimizing the conditional entropy of B is the measurement in the eigenbasis {|αi〉} of the reduced
state [ρΨ]A. In fact, according to (4.9) the corresponding post-measurement states ρB|i = |βi〉〈βi| are pure and
thus have zero entropy. Then (11.5) yields JB|A(ρΨ) = S([ρΨ]B). As a result, the discords coincide for pure
states with the entanglement of formation,

δA(|Ψ〉) = δv.N.A (|Ψ〉) = δB(|Ψ〉) = δv.N.B (|Ψ〉) = EEoF(|Ψ〉) . (11.9)

For mixed states, it was pointed out in [184] that if the measurement operators MA
i are of rank one then

∑

i

ηiS(ρB|i) = S
(
MA ⊗ 1(ρ)

)
− S

(
[MA ⊗ 1(ρ)]A

)
= −IA:B

(
MA ⊗ 1(ρ)

)
+ S(ρB) , (11.10)

where MA is the quantum operation on A associated to the measurement. Actually, consider the family of
Kraus operators for MA given by {Ai = |i〉〈µ̃i|}, where |µ̃i〉 are unnormalized vectors such that MA

i = |µ̃i〉〈µ̃i|
and {|i〉} is an orthonormal basis of a pointer space HP. Then MA ⊗ 1(ρ) =

∑
i ηi|i〉〈i| ⊗ ρB|i and the reduced

state [MA ⊗ 1(ρ)]A =
∑
i ηi|i〉〈i| has entropy −∑

i ηi ln ηi. A simple calculation yields the first equality in
(11.10). The second equality is clear once one notices that [MA ⊗ 1(ρ)]B = ρB.

Therefore, by combining (11.5), (11.6), and (11.3) one obtains the following result.

Proposition 11.1.2. [162] The discord δ(ρ) = IA:B(ρ)−JB|A(ρ) is the minimal difference of mutual information
of AB before and after a measurement on A, i.e.

JB|A(ρ) = max
{MA

i }

{
IA:B(MA ⊗ 1(ρ))

}
, (11.11)

where the maximum is over all POVMs on A with rank-one operators MA
i and MA is the associated quantum

operation on B(HA). As a result,

δA(ρ) = min
{MA

i }

{
S
(
ρ||ρA ⊗ ρB

)
− S

(
MA ⊗ 1(ρ)||MA(ρA)⊗ ρB)

)}
. (11.12)

Similarly, Jv.N.
B|A (ρ) is given by maximizing IA:B(MπA ⊗ 1(ρ)) over all von Neumann measurements MπA on A

of the form (5.5) with rank-one projectors πA
i .

Observing that a measurement on A with no readout removes the quantum correlations between A and
B, the right-hand side of (11.11) can be interpreted as the amount of classical correlations between the two
subsystems. These subsystems are not correlated classically, i.e., JB|A(ρ) = 0, if and only if ρ = ρA ⊗ ρB is
a product state. This result holds for Jv.N.

B|A (ρ) as well. Actually, by (11.11), JB|A(ρ) = 0 is equivalent to

MA ⊗ 1(ρ) being a product state for any collection of operators MA
i = |µ̃i〉〈µ̃i| forming a POVM. This implies

ηiρB|i = 〈µ̃i|ρ|µ̃i〉 = ηiρB for all i (see the discussion before Proposition 11.1.2). Choosing the |µ̃i〉 to be the
eigenvectors of the observable A, one obtains that 〈A ⊗ B〉ρ = 〈A ⊗ 1〉ρ〈1 ⊗ B〉ρ for any A ∈ B(HA)s.a. and
B ∈ B(HB)s.a., with 〈·〉ρ = tr(·ρ).

Let us emphasize that finding the optimal measurement which maximizes the post-measurement mutual
information, and hence calculating the discords δv.N.

A
(ρ) and δA(ρ), is a difficult problem in general. Even for

two qubits, this problem has been solved so far for a restricted family of states only, namely, the states ρ with
maximally mixed marginals ρA = ρB = 1/2 [161]. In other cases2 the discords must be evaluated numerically
(however, δA(ρ) can be determined analytically for low-rank density matrices with the help of the monogamy
relation, see Sec. 11.4 and [170]).

11.2 The A-classical states

The monotonicity property of the relative entropy and formula (11.12) imply that δA(ρ) is non-negative. The
states with vanishing discord can be determined with the help of Theorem 7.2.1, leading to the following result3.

2An incorrect work [3] claiming to extend the result of Ref. [161] to the larger family of the so-called X-states has generated a
profusion of articles. Comparing with numerical evaluations, the result of [3] apparently gives good approximations of the discord
for randomly chosen X-states (see the discussion in [170]).

3In Ref. [184], the authors argue that the non-negativity of δv.N.
A

(ρ) is a direct consequence of (11.10) and the concavity
of S(ρ) − S(ρA) with respect to ρ. I do not see how such a claim could be justified and believe that the simplest proof of
Proposition 11.2.1 is to rely on Theorem 7.2.1. Alternatively, the non-negativity of the discord can be justified with the help of the
strong subadditivity of the von Neumann entropy (which is closely related to Theorem 7.2.1, see Sec. 7.2), as shown in Ref. [164].

130



Proposition 11.2.1. The quantum discord is non-negative and δA(σ) = 0 if and only if

σ =

nA∑

i=1

qi|ϕi〉〈ϕi| ⊗ σB|i , (11.13)

where {|ϕi〉}nA

i=1 is an orthonormal basis of HA, σB|i are some (arbitrary) states of B depending on the index i,
and qi ≥ 0 are some probabilities,

∑
i qi = 1.

The non-negativity of δA(ρ) means that one cannot gain more information on a bipartite system AB by
performing a measurement on the subsystem A than the entropy of A, namely, S(ρAB)−

∑
ηiS(ρAB|i) ≤ S(ρA)

for any ρAB ∈ E(HAB). The important point is that if ρAB is not of the form (11.13), then any measurement on
A gives less information on AB than S(ρA). Stated differently, one can not retrieve all the information on A by
a local measurement, because of the presence of quantum correlations between A and B.

Proof. It remains to show the second affirmation. It is easy to convince oneself that the states (11.13) have
a vanishing discord. In fact, one finds IA:B(σ) = S(σB) −

∑
i qiS(σB|i) ≤ Jv.N.

B|A (σ) (the inequality follows
by noting that σB|i and qi are the conditional state and outcome probability for a measurement on A in the
basis {|ϕi〉}). Hence δA(σ) = δv.N.

A
(σ) = 0 as a consequence of the non-negativity of δA. Reciprocally, let

σ ∈ E(HAB) be such that δv.N.
A

(σ) = 0. As we shall see below it is enough to work with the von Neumann
discord, the result for δA will then follow from (11.8). According to (11.12) and Theorem 7.2.1, δv.N.

A
(σ) = 0 if

and only if there exists a von Neumann measurement MA on A with rank-one projectors πA
i = |ϕi〉〈ϕi| such

that σ = RAMA⊗1(σ), where RA = RMA⊗1,σ0 is the transpose operation of MA⊗1 for the state σ0 = σA⊗σB.
Without loss of generality we may assume ηi = 〈ϕi|σA|ϕi〉 > 0 for all i. Thanks to (7.10) and to the identity

MA ⊗ 1(σ0) =
∑
i ηi|ϕi〉〈ϕi| ⊗ σB, the transpose operation RA has Kraus operators Ri = η

−1/2
i

√
σA|ϕi〉〈ϕi| ⊗ 1.

We now argue that this implies that σ = M̂A ⊗ 1(σ) with M̂A the von Neumann measurement with projectors
π̂A

k onto the subspaces span{|ϕi〉; i ∈ Ik}, where {I1, . . . , Id} is a partition of {1, . . . , nA}. Actually, the condition
σ = RAMA ⊗ 1(σ) reads

〈ϕi|σ|ϕj〉 =
nA∑

l=1

η−1
l (

√
σA)il(

√
σA)lj〈ϕl|σ|ϕl〉 , i, j = 1, . . . , nA (11.14)

with (
√
σA)ij = 〈ϕi|

√
σA|ϕj〉 ∈ R. Let us set σB|i = η−1

i 〈ϕi|σ|ϕi〉 and ηl|i = |(√σA)il|2/ηi. This defines
respectively a state on HB and a probability distribution for any fixed i. With this notation, (11.14) can be
rewritten for i = j as

σB|i =
nA∑

l=1

ηl|iσB|l , i = 1, . . . , nA . (11.15)

Let Ii = {j;σB|j = σB|i} ⊂ {1, . . . , nA}. Clearly, the sets Ii are either equal or disjoint. Hence one can extract
from them a partition {Ii1 , Ii2 , . . . , Iid} of {1, . . . , nA}. We claim that (11.15) implies ηl|i = 0 for l /∈ Ii. This is
a consequence of the following lemma.

Lemma 11.2.2. Let x = (x1, . . . , xd) be a vector of X d with distinct components xk, where X is a real vector
space, and {ξk|m}dk=1 be some probability distributions such that ξk|m = 0 ⇔ ξm|k = 0 and the components of x
have convex decompositions

xm =

d∑

k=1

ξk|mxk ∀ m = 1, . . . , d . (11.16)

Then ξk|m = δkm for any k,m = 1, . . . , d.

We postpone the proof of this result to the next paragraph. By rewriting (11.15) as

σB|im =

d∑

k=1

ξk|mσB|ik with ξk|m = |Iim |−1
∑

(l,i)∈Iik×Iim

ηl|i , (11.17)

one concludes from Lemma 11.2.2 that ξk|m = 0 for k 6= m, i.e., ηl|i = (
√
σA)il = 0 for any (i, l) such that l /∈ Ii.

One then obtains from (11.14)

σ =

nA∑

i,j=1

∑

l∈Ii∩Ij
(
√
σA)il(

√
σA)lj |ϕi〉〈ϕj | ⊗ σB|l =

d∑

k=1

∑

i,j∈Iik

(σA)ij |ϕi〉〈ϕj | ⊗ σB|ik . (11.18)
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This gives

σ =

d∑

k=1

π̂A

kσAπ̂
A

k ⊗ σB|ik , π̂A

k =
∑

i∈Iik

|ϕi〉〈ϕi| . (11.19)

The last expression is of the form (11.13) (note that the vectors |ϕi〉 in the latter formula are the eigenvectors of
π̂A
kσAπ̂

A
k , so that they are in general linear combinations of the vectors |ϕi〉 defined above). To get the result for

the discord δA we take advantage of (11.8). From the foregoing result, δA(σ) = 0 is equivalent to σ⊗|ǫ0〉〈ǫ0| being
of the form (11.13) for some orthonormal basis {|ϕAE

i 〉} of HAE. This straightforwardly implies |ϕAE
i 〉 = |ϕi〉|ǫ0〉

with {|ϕi〉} an orthonormal basis of HA. ✷

Proof of Lemma 11.2.2. One proceeds by induction on d. The result is trivial for d = 2. Let us assume that it
holds true for d ≥ 2 and that one can find a vector x ∈ X d+1 and some probabilities {ξk|m}d+1

k=1 like in the lemma
such that ξk0|k0 < 1 for some k0 ∈ {1, . . . , d + 1}. We are going to show that this leads to a contradiction. By
plugging xk0 = (1−ξk0|k0)−1

∑
k 6=k0 ξk|k0xk into the p other convex decompositions, one gets xm =

∑
k 6=k0 ζk|mxk

for k 6= k0, with ζk|m = ξk|m + (1 − ξk0|k0)
−1ξk0|mξk|k0 . As {ζk|m}k 6=k0 is a probability distribution satisfying

ζk|m = 0 ⇔ ζm|k = 0, by the induction hypothesis one has ζk|m = δkm for any k,m ∈ {1, . . . , d + 1} \ {k0}.
Now ξm0|k0 > 0 for some index m0 6= k0 (because ξk0|k0 < 1). One deduces from the above identities and the
hypothesis on ξk|m that the only non-vanishing probabilities are ξk0|m0

, ξm0|k0 , and ξk|k, k = 1, . . . , p+ 1. The
problem then reduces to the case p = 2. Thus ξk0|k0 = ξm0|m0

= 1, in contradiction with our assumption. ✷

Definition 11.2.3. The zero-discord states of the form (11.13) are called the A-classical states. We denote
by CA the set of all A-classical states. Similarly, CB is the set of all B-classical states, namely, the states with
vanishing B-discord. A classical state is a state which is both A- and B-classical. We write CAB = CA ∩ CB.

Our terminology can be justified by noting that if AB is in a state of the form (11.13) then the subsystem
A is in one of the orthogonal states |ϕi〉 with probability qi, whence A behaves as a classical system being in
state i with probability qi. Alternatively, a state σ is A-classical if and only if there exists a von Neumann
measurement on A with rank-one projectors πA

i = |ϕi〉〈ϕi| which does not perturb it in the absence of readout,
i.e., σ = M{πA

i } ⊗ 1(σ). The unfortunate name “classical-quantum states” has become popular in the literature
to refer to the A-classical states, the B-classical states being called “quantum-classical”. Using the spectral
decompositions of the σB|i’s, any A-classical state σA−cl ∈ CA can be decomposed as

σA−cl =

nA∑

i=1

nB∑

j=1

qij |ϕi〉〈ϕi| ⊗ |χj|i〉〈χj|i| , (11.20)

where qij ≥ 0,
∑
i,j qij = 1 and, for any i, {|χj|i〉}nB

j=1 is an orthonormal basis of HB (note that the |χj|i〉 need
not be orthogonal for distinct i’s). A classical state σclas ∈ CA ∩ CB possesses an eigenbasis {|ϕi〉 ⊗ |χj〉}nA,nB

i=1,j=1

of product vectors. It is fully classical, in the sense that any quantum system in this state can be “simulated”
by a classical apparatus being in the state (i, j) with probability qij .

Let us point out that CA, CB, and CAB are not convex. Their convex hull is the set SAB of separable states.
It is also important to realize that for pure states, A-classical, B-classical, classical, and separable states all
coincide. Actually, according to (11.20) the pure A-classical (and, similarly, the pure B-classical) states are
product states. In contrast, one can find mixed separable states which are not A-classical. An example for two
qubits is

ρ =
1

4

(
|+〉〈+| ⊗ |0〉〈0|+ |−〉〈−| ⊗ |1〉〈1|+ |0〉〈0| ⊗ |−〉〈−|+ |1〉〈1| ⊗ |+〉〈+|

)
(11.21)

with |±〉 = (|0〉 ± |1〉)/
√
2. It is clear that ρ ∈ SAB, but ρ is neither A-classical nor B-classical. A schematic

picture of the sets SAB, CA, CB, and CAB for a general bipartite system AB is displayed in Fig. 11.1.

11.3 Properties of the quantum discord

11.3.1 Invariance and monotonicity properties

Unlike entanglement measures, the quantum discord is not monotonous with respect to LOCCs. In particular,
local operations on the measured subsystem A can create discord. For instance, consider the classical state

σ =
1

2

(
|0〉〈0| ⊗ |0〉〈0|+ |1〉〈1| ⊗ |1〉〈1|

)
(11.22)
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of two qubits. One can transform this state by a local operation MA on A into

ρ = MA ⊗ 1(σ) =
1

2

(
|0〉〈0| ⊗ |0〉〈0|+ |+〉〈+| ⊗ |1〉〈1|

)
, (11.23)

where MA has Kraus operators A0 = |0〉〈0| and A1 = |+〉〈1|. The final state ρ has less total correlations
than σ, its mutual information IA:B(ρ) = −p ln p − (1 − p) ln(1 − p) being smaller than IA:B(σ) = ln 2 (here
p = 1/2 +

√
2/4). However, it has a positive discord δA(ρ) > δA(σ) = 0. This means that the loss of classical

correlations JB|A(σ) − JB|A(ρ) is larger than the loss of total correlations IA:B(σ)− IA:B(ρ).
In contrast, as far as local operations on B are concerned everything goes as expected, as shown by the

following result.

Proposition 11.3.1. The quantum discord δA and classical correlations JB|A(ρ) are invariant with respect to
unitary conjugations UA : ρA 7→ UAρAU

∗
A
on A and monotonous with respect to quantum operations MB on B,

namely,
δA(UA ⊗ 1(ρ)) = δA(ρ) , δA(1⊗MB(ρ)) ≤ δA(ρ)
JB|A(UA ⊗ 1(ρ)) = JB|A(ρ) , JB|A(1⊗MB(ρ)) ≤ JB|A(ρ)

(11.24)

and similarly for δv.N.
A

and Jv.N.
B|A .

Proof. The unitary invariance is trivial. The monotonicity of JB|A(ρ) with respect to operations on B comes
from the monotonicity of the relative entropy and the formula

JB|A(ρ) = max
{MA

i }

{∑

i

ηiS(ρB|i||ρB)
}
, (11.25)

which is a consequence of the definition (11.5) and of ρB =
∑
i ηiρB|i. A simple justification of the monotonicity

of δA with respect to operations on B uses the following reasoning [198]. Let us consider a generalized mea-
surement {MA

i } on A with associated quantum operation MA. By invoking the Stinespring theorem, one can
represent MA as MA ⊗ 1(ρ) = trE(σABE) with σABE = UAEρ⊗ |ǫ0〉〈ǫ0|U∗

AE
pertaining to an enlarged space HABE

and UAE a unitary on HAE. Thanks to the additivity and unitary invariance of the von Neumann entropy and
to the relation trAE(σABE) = ρB, one finds

IA:B(ρ) = IAE:B(σABE) , IA:B(MA ⊗ 1(ρ)) = IA:B(σAB) . (11.26)

Plugging these expressions into (11.12) gives the following expression of δA(ρ) in terms of the conditional mutual
informations

δA(ρ) = min
{MA

i }

{
IAE:B(σABE)− IA:B(σAB)

}
= min

{MA

i }

{
IAB:E(σABE)− IA:E(σAE)

}
. (11.27)

The monotonicity of δA then follows from the monotonicity of the mutual information with respect to local
operations (Sec. 11.1). ✷

11.3.2 States with the highest discord

As stated at the beginning of this chapter, the quantum discord δA(ρ) is an indicator of the degree of quantumness
of ρ. It is thus natural to ask whether the “ most quantum” states having the highest discord are the maximally
entangled states characterized in Proposition 10.5.1. The answer is affirmative when nA ≤ nB.

Proposition 11.3.2. For any state ρ of the bipartite system AB, one has

δA(ρ) ≤ δv.N.A (ρ) ≤ S(ρA) ≤ lnnA . (11.28)

If nA ≤ nB then the maximal value of δA(ρ) over all states ρ ∈ E(HAB) is equal to lnnA and δA(ρ) = lnnA if and
only if ρ has highest entanglement of formation. Thus, the states ρent with highest discord are the maximally
entangled states given by Proposition 10.5.1, which satisfy

δA(ρent) = δv.N.A (ρent) = EEoF(ρent) = lnnA . (11.29)

The statements in this proposition are probably well known in the literature, although I have not found an
explicit reference.
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Proof. Let ρ =
∑

k pk|k〉〈k| be the spectral decomposition of ρ and r = rank(ρ). As mentioned earlier, the
von Neumann measurement minimizing the conditional entropy

∑
i ηiS(ρB|i) consists of rank-one projectors

πA
i = |ϕi〉〈ϕi|. The conditional states (11.4) take the form

ρB|i =
r∑

k=1

pk|i|φki〉〈φki| with pk|i =
pkηi|k
ηi

and
√
ηi|k|φki〉 = 〈ϕi|k〉 ∈ HB , (11.30)

where ηi|k = ‖〈ϕi|k〉‖2 is the probability of outcome i given the state |k〉 and pk|i is the “a posteriori” prob-
ability that the state is |k〉 given the measurement outcome i (Bayes rules). Since {|φki〉, pk|i} is a pure state
decomposition of ρB|i, the formula (7.5) yields

∑

i

ηiS(ρB|i) ≤
∑

i

ηiH({pk|i}) . (11.31)

The right-hand side is the classical conditional entropy given the measurement outcomes, see (6.48). By the
non-negativity of the classical mutual information, it is bounded from above by the Shannon entropy H({pk}) =
−∑

k pk ln pk = S(ρ). Hence δv.N.
A

(ρ) ≤ S(ρA) by (11.6). But S(ρA) ≤ lnnA, thus we have proven (11.28).
Let us assume that δA(ρ) = S(ρA). We know from Sec. 7.1 that a necessary and sufficient condition for (11.31)

to be an equality is that {|φki〉, pk|i} be a spectral decomposition of ρB|i, for any i. Setting Dkl = trB(|k〉〈l|)
as in the proof of Proposition 10.5.1, one gets

√
ηi|lηi|k〈φli|φki〉 = 〈ϕi|Dkl|ϕi〉 = 0 if k 6= l and pk|ipl|i > 0.

Since δA(ρ) = S(ρA), (11.31) holds with equality for any orthonormal basis {|ϕi〉} and thus Dkl = 0 for such
k and l. In addition, the conditional entropy in the right-hand side of (11.31) is equal to its upper bound
H({pk}) = S(ρ). This can happen only if pk|i = pk, i.e., ηi|k = 〈ϕi|Dkk|ϕi〉 = ηi, for all i and k (indeed,
the mutual information vanishes for independent random variables only). Hence δA(ρ) = S(ρA) if and only
if Dkk is independent of k and Dkl = 0 when k 6= l and pkpl > 0. Suppose now that δA(ρ) = lnnA. Then
δA(ρ) = S(ρA) = lnnA and the foregoing conditions on Dkl are fulfilled. In addition, ρA =

∑
pkDkk = 1/nA,

whence Dkk = 1/nA for all k with pk > 0. One concludes that the eigenvectors |k〉 are as in Proposition 10.5.1
by following the same steps as in the proof of this proposition. ✷

Note that when nA > nB, δA(ρ) is strictly smaller than lnnA for any ρ ∈ E(HAB). In fact, in that case
rank(Dkk) ≤ nB < nA by the Schmidt decomposition (4.9), and the necessary condition Dkk = 1/nA for having
δA(ρ) = lnnA cannot be fulfilled.

11.3.3 Monotonicity when disregarding a part of the measured subsystem

We close this review of the properties of the discord by a simple remark concerning tripartite systems ABC. If
such a system is in the state ρABC, it is easy to show that

JB|AC(ρABC) ≥ JB|A(ρAB) . (11.32)

This means that if B is coupled to both A and C, the gain of information on B from joint measurements on A
and C is larger than the gain of information by measuring A only and ignoring C, as this sounds reasonable.
A similar bound exists for the total correlations: by (11.3) and the monotonicity of the relative entropy (or,
equivalently, the strong subadditivity of S),

IAC:B(ρABC) ≥ IA:B(ρAB) . (11.33)

Remark 11.3.3. The Holevo bound (6.51) can be derived by using the monotonicity of the quantum mutual
information under operations acting on one subsystem (Sec. 11.1) and the property (11.33).

Sketch of the proof [180]. Given an ensemble {ρi, ηi}mi=1 of states on HA and a family {Aj}pj=1 of Kraus
operators describing the measurement on A, consider the state ρARP =

∑
i ηiρi ⊗ |νi〉〈νi| ⊗ |0〉〈0| on HARP,

where R and P are auxiliary systems with orthonormal bases {|νi〉}mi=1 and {|j〉}p−1
j=0 . These systems represent

a register of the state preparation and a pointer for the measurement, respectively. Let MAP be the quantum
operation on B(HAP) with Kraus operators Aj ⊗ Uj , Uj being the unitary on HP defined by Uj|l〉 = |l + j〉 for
any l = 0, . . . , p− 1 (the addition is modulo p). It is an easy exercise to show that the Holevo bound (6.51) is
equivalent to IR:P([MAP ⊗ 1(ρARP)]RP) ≤ IAP:R(ρARP).
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ρ

CA C
ABS

CAB

B

Figure 11.1: Schematic view of the set of quantum states EAB = E(HAB) of a bipartite system AB. The subset
CAB of classical states (in magenta) is the intersection of the subsets CA and CB of A- and B-classical states (in
red and blue). The convex hull of CA (or CB) is the subset SAB of separable states (gray square). All these
subsets intersect the border of EAB (pure states of AB) at the pure product states, represented by the four
vertices of the square. The maximally mixed state ρAB = 1/(nAnB) lies at the center (cross). The two points at
the left and right extremities of the ellipse represent the maximally entangled pure states, which are the most
distant states from SAB (and also from CA, CB, and CAB). The closest distances of a state ρ to SAB (black line)
and of ρ to CA (red line) define the square roots of the geometric measure of entanglement EBu(ρ) and of the
geometric discord DA(ρ), respectively. Note that this picture is for illustrative purposes and does not reflect all
geometrical aspects (in particular, CA, CB, and CAB typically have a lower dimensionality than EAB and SAB).

11.4 Monogamy relation

Consider a tripartite system ABC in a pure state |ΨABC〉. If B and C are entangled, is there a limit on the
amount of entanglement B can have with A? In other words, can entanglement be freely shared between
different subsystems? A negative answer to the last question has been highlighted in [64], where it is shown
that when A, B, and C are qubits, the sum C(ρAB)

2 + C(ρBC)
2 of the square concurrences is smaller or equal

to 4 det(ρB). It is instructive to consider the limiting case where B and C are maximally entangled. Then,
if one also assumes that rnB ≤ nC < (r + 1)nB with 1 ≤ r ≤ nA, A and B cannot be entangled and even
have vanishing discords δA(ρAB) = δB(ρAB) = 0. In fact, the state of BC being maximally entangled, one has
ρBC =

∑
k pk|k〉〈k| for some orthogonal maximally entangled states |k〉 satisfying Dkl = trC(|k〉〈l|) = n−1

B
δkl

(see Proposition 10.5.1). Hence the pure state of ABC is |ΨABC〉 =
∑

k

√
pk|αk〉|k〉 with {|αk〉} an orthonormal

family of HA (Sec. 4.3). Consequently, ρAB = (
∑

k pk|αk〉〈αk|) ⊗ (1/nB) is a product state and thus a classical
state.

The proposition below exhibits an astonishing bound, called the monogamy relation, between the entangle-
ment of formation of ρBC and the POVM-discord of ρAB measuring A.

Proposition 11.4.1. (Koashi and Winter [148]) Let ABC be a tripartite system in the state ρABC. Let ρAB =
trC(ρABC) and ρBC = trA(ρABC) denote the reduced states of the bipartite systems AB and BC, respectively. Then

EEoF(ρBC) ≤ S(ρB)− JB|A(ρAB) = δA(ρAB) + S(ρAB)− S(ρA) . (11.34)

Moreover, the inequality is an equality if ρABC is a pure state.

The inequality (11.34) tells us that the more classically correlated are A and B, the less B can be entangled to
a third system C. If nB ≤ nC and B and C are maximally entangled, i.e., EEoF(ρBC) = ln(nB), then this inequality
entails JB|A(ρAB) = 0 (since S(ρB) ≤ ln(nB)). Thus A and B are not correlated classically, in agreement with
the above statement that ρAB is a product state.

The entropy difference SB|A(ρAB) = S(ρAB)−S(ρA) in the right-hand side of (11.34) is called the conditional
von Neumann entropy. It is known that SB|A(ρAB) ≥ 0 if ρAB is separable [129, 56]. Thanks to the subadditivity
of S one has −S(ρB) ≤ SB|A(ρAB) ≤ S(ρB) (the first inequality is obtained by considering a purification of ρAB
on HABC and using the subadditivity for ρBC together with the identities S(ρBC) = S(ρA) and S(ρC) = S(ρAB)).
The quantity −SB|A(ρAB) is the coherent information introduced by Schumacher and Nielsen in the context of
the quantum channel capacity [214].
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Two consequences of the claim that (11.34) is an equality for tripartite systems ABC in pure states deserve
further comments. First, one easily deduces from this claim and the identity (7.4) that [88]

EEoF(ρAB) + EEoF(ρBC) = δA(ρAB) + δC(ρBC) . (11.35)

Hence the sum of all entanglement of formations describing the bipartite entanglement shared by B is equal
to the sum of the corresponding quantum discords with measurements on the other subsystems. Second, if B
is a qubit and ρAB is of rank two, then ρAB admits a purification |ΨABC〉 on HAB ⊗ C2 (see (4.12)) and the
entanglement of formation of the two-qubit state ρBC can be computed with the help of the Wootters formula
(10.31). One may in this way determine δA(ρAB) via (11.34).

Proof. We first assume that ABC is in a pure state |ΨABC〉. Let {Mopt
A,i } be an optimal measurement on A

maximizing the gain of information on B, that is, such that JB|A(ρAB) = S(ρB) −
∑
i η

opt
i S(ρopt

B|i ), where η
opt
i

and ρopt
B|i are the outcome probabilities and conditional states of B for this measurement. Without loss of

generality one may assume that Mopt
A,i = |µ̃opt

i 〉〈µ̃opt
i | are of rank one (see the discussion after (11.5)). Since

ρAB = trC(|ΨABC〉〈ΨABC|), one has ηopti = tr(ρABM
opt
A,i ⊗ 1) = ‖〈µ̃opt

i |ΨABC〉‖2. Moreover, the post-measurement
conditional state of BC is the pure state

|ΨBC|i〉 = (ηopti )−
1
2 〈µ̃opt

i |ΨABC〉 (11.36)

and the conditional state of B is ρopt
B|i = trC(|ΨBC|i〉〈ΨBC|i|). The ensemble {|ΨBC|i〉, ηopti } gives a pure state

decomposition of ρBC. Actually, let us consider the post-measurement state of ABC in the absence of readout,
ρ′
ABC

= Mopt
A

⊗ 1(|ΨABC〉〈ΨABC|). The measurement being performed on A, it does not change the state of BC,
i.e.

ρBC = ρ′BC =
∑

i

ηopti |ΨBC|i〉〈ΨBC|i| . (11.37)

From the definition (10.25) of the entanglement of formation one has

EEoF(ρBC) ≤
∑

i

ηopti S(ρopt
B|i ) = S(ρB)− JB|A(ρAB) . (11.38)

Conversely, let {|ΨBC,i〉, ηi} be a pure state decomposition of ρBC which achieves the minimum in the definition
of the entanglement of formation. Let us show that there exists a generalized measurement {MA

i } on A such
that ηi is the probability of outcome i and |ΨBC,i〉 the corresponding conditional state of BC, i.e.

trA(M
A

i ⊗ 1|ΨABC〉〈ΨABC|) = ηi|ΨBC,i〉〈ΨBC,i| . (11.39)

In fact, let us observe that |Ψ′
ABCE

〉 = ∑
i

√
ηi|ΨBC,i〉|φi〉 is a purification of ρBC on HABCE for some ancilla E,

where {|φi〉} is an orthonormal family ofHAE. Given an arbitrary state |ǫ0〉 ∈ HE, |ΨABC〉|ǫ0〉 is also a purification
of ρBC on the same space. As a result, there is a unitary UAE on HAE such that |Ψ′

ABCE
〉 = 1 ⊗ UAE|ΨABC〉|ǫ0〉

(see Sec. 4.3). Define
MA

i = 〈ǫ0|U∗
AE|φi〉〈φi|UAE|ǫ0〉 (11.40)

(note the analogy with (5.20)). Then (11.39) is satisfied. Let ρB|i = trC(|ΨBC,i〉〈ΨBC,i|) be the post-measurement
states of B, so that EEoF(|ΨBC,i〉) = S(ρB|i). Since by assumption EEoF(ρBC) =

∑
i ηiEEoF(|ΨBC,i〉), one infers

from the definition (11.5) of the classical correlations that

JB|A(ρAB) ≥ S(ρB)−
∑

i

ηiS(ρB|i) = S(ρB)− EEoF(ρBC) . (11.41)

Together with (11.38) this proves that

EEoF(ρBC) = S(ρB)− JB|A(ρAB) . (11.42)

Let us now turn to the case of a tripartite system ABC in a mixed state ρABC. Consider a purification |ΨABCE〉 of
ρABC in the Hilbert space HABC ⊗HE. Thanks to (11.32) one then has JB|A(ρAB) ≤ JB|AE(ρABE). The inequality
(11.34) then follows by applying (11.42) with A → AE. ✷
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Chapter 12

Distance and entropic measures of

quantum correlations

Explicar un hecho es unirlo a otro1 (J.L. Borges).

In this chapter we study the measures of entanglement and quantum correlations based on the Bures distance
and the relative entropies. First, we introduce in Sec. 12.1 the geometric measure of entanglement, defined as
the minimal square distance between the state ρ and a separable state, as well as similar measures obtained by
replacing the square distance by relative entropies. We define analogously in Sec. 12.2 the geometric discord as
the minimal square distance between ρ and an A-classical state. We show there that this discord is related to a
quantum state discrimination task and determine the closest A-classical states to ρ in terms of the corresponding
optimal measurements.

12.1 Geometric and relative-entropy measures of entanglement

12.1.1 Definition and main properties

From a geometrical point of view, it is natural to quantify the amount of entanglement in a state ρ of a bipartite
system AB by the distance d(ρ,SAB) of ρ to the subset SAB ⊂ E(HAB) of separable states (see Fig 11.1). As it will
become clear below, in order to obtain an entanglement monotone measure the distance d must be contractive.
Choosing the Bures distance, it is easy to verify that

EBu(ρ) = dB(ρ,SAB)
2 = min

σsep∈SAB

{
dB(ρ, σsep)

2
}

(12.1)

satisfies all the axioms of an entanglement measure in Definition 10.3.1. Actually, the axiom (i) holds because
dB is a distance on E(HAB). The convexity property (ii) is a consequence of the convexity of SAB and the
joint convexity of the square Bures distance2 (Corollary 8.2.3). Finally, the monotonicity (iii) is shown in the
following way. Let σρ ∈ SAB be a closest separable state to ρ, i.e., EBu(ρ) = dB(ρ, σρ)

2. Let us recall from
Sec. 10.3 that any LOCC is a separable quantum operation and can be written as M(ρ) =

∑
iAi⊗BiρA∗

i ⊗B∗
i .

Furthermore, one has M(SAB) ⊂ SAB. One can then use the contractivity of dB to obtain

EBu(ρ) ≥ dB(M(ρ),M(σρ))
2 ≥ EBu(M(ρ)) . (12.2)

This shows that EBu is monotonous with respect to separable operations and, in particular, to LOCCs. The
entanglement measure EBu has been first introduced by Vedral and Plenio [246]. Another measure was consid-
ered in [245, 246] by replacing the square distance in (12.1) by the relative entropy S(ρ||σsep). More generally,
we can define

Eα(ρ) = min
σsep∈SAB

{
Sα(ρ||σsep)

}
, (12.3)

where Sα is the quantum relative Rényi entropy (Sec. 7.3). For 1/2 ≤ α ≤ 1, this defines an entanglement
measure by the same arguments as above, because Sα is jointly convex and contractive (see Theorem 7.3.1; the

1“Explaining a fact is linking it to another”.
2This justifies the square in our definition (12.1).
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property (i) in this theorem ensures that Eα(ρ) ≥ 0 with equality if and only if ρ ∈ SAB). One establishes the
following result by invoking the fact that Sα is non-decreasing in α (Proposition 7.3.4) and by using (8.8) and
the relation (7.36) between S1/2(ρ||σ) and the fidelity F (ρ, σ).

Corollary 12.1.1. {Eα}1/2≤α≤1 constitutes a non-decreasing family of entanglement measures and

E 1
2
(ρ) = −2 ln

(
1− EBu(ρ)

2

)
≤ Eα(ρ) ,

1

2
≤ α ≤ 1 . (12.4)

The measure E1 associated to the relative entropy (7.9) is less geometrical than EBu (it is not associated to
a distance) but has the following interesting property.

Proposition 12.1.2. (Vedral and Plenio [246]) The entanglement measure E1 coincides with the entanglement
of formation EEoF for pure states, and for mixed states ρ ∈ E(HAB) it is bounded from above by EEoF,

E1(ρ) ≤ EEoF(ρ) . (12.5)

Proof. We refer the reader to [246] for a detailed proof of the first statement. It is based on the observation that
for a pure state with Schmidt decomposition |Ψ〉 =

∑
i

√
µi|αi〉|βi〉, the minimum in (12.3) is achieved when

σsep is the classical state

σ∗ =

n∑

i=1

µi|αi〉〈αi| ⊗ |βi〉〈βi| . (12.6)

Since S(ρΨ||σ∗) = −〈Ψ| lnσ∗|Ψ〉 = −∑
i µi lnµi, the equality E1(|Ψ〉) = EEoF(|Ψ〉) follows once one has proven

that S(ρΨ||σsep) ≥ S(ρΨ||σ∗) for all σsep ∈ SAB. This is done in Ref. [246] by showing that for any σsep ∈ SAB,

dfΨ(t, σsep)

dt

∣∣∣
t=0

= 1−
∫ ∞

0

dt tr
(
(σ∗ + t)−1ρΨ(σ∗ + t)−1σsep

)
≥ 0 (12.7)

with fΨ(t, σ) = S(ρΨ||(1 − t)σ∗ + tσ). Indeed, assume that S(ρΨ||σsep) < S(ρΨ||σ∗) for some σsep ∈ SAB. By
taking advantage of the right convexity of the relative entropy, one then finds for any t ∈ (0, 1]

fΨ(t, σsep)− fΨ(0, σsep)

t
≤ −S(ρΨ||σ∗) + S(ρΨ||σsep) < 0 , (12.8)

in contradiction with (12.7). Note that it suffices to prove the non-negativity in (12.7) for the pure product
states σsep = |φ⊗ χ〉〈φ⊗ χ|, because of the linearity in σsep of the trace in the right-hand side.

The second statement in the proposition is a consequence of the first one and of the convexity of E1. Actually,
if {|Ψi〉, ηi} is a pure state decomposition of ρ minimizing the average entanglement, then

EEoF(ρ) =
∑

i

ηiEEoF(|Ψi〉) =
∑

i

ηiE1(|Ψi〉) ≥ E1

(∑

i

ηi|Ψi〉〈Ψi|
)
= E1(ρ) . (12.9)

✷

Note that the inequality (12.5) can be strict. Examples of two-qubit states ρ for which E1(ρ) < EEoF(ρ)
are given in [245]. Thanks to (12.4) and (12.5), one can place an upper bound on EBu(ρ) by a function of
the entanglement of formation EEoF. Such a bound does not seem to be known in the literature, but it is not
optimal for pure states as a consequence of the next proposition.

Remark 12.1.3. As shown in [246], E1 fulfills the stronger monotonicity condition (iii”) of Sec. 10.4.2.

12.1.2 Geometric measure of entanglement and convex roof constructions

Let F (ρ,SAB) denote the maximal fidelity between ρ and a separable state,

F (ρ,SAB) = max
σsep∈SAB

{
F (ρ, σsep)

}
. (12.10)
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Proposition 12.1.4. (Streltsov, Kampermann, and Bruß [231]) The geometric measure of entanglement is
given for pure states by

EBu(|Ψ〉) = 2− 2
√
F (|Ψ〉,SAB) = 2(1−√

µmax) , (12.11)

where µmax = max{µi} is the largest Schmidt coefficient of |Ψ〉. For mixed states, F (ρ,SAB) is obtained via a
maximization over the pure state decompositions of ρ,

F (ρ,SAB) = max
{|Ψi〉,ηi}

{∑

i

ηiF (|Ψi〉,SAB)

}
. (12.12)

The nice relation (12.12) is intimately related to Uhlmann’s theorem (Sec. 8.2) and to the convexity of SAB.
Note that the relative-entropy measure E1 does not fulfill a similar property (compare with Proposition 12.1.2).
Even though EBu is not a convex roof, it is a simple function of another entanglement measure EG defined via
a convex-roof construction like in (10.25) and from its expression

EG(|Ψ〉) = 1− max
|Φ〉∈SAB

{
|〈Φ|Ψ〉|2

}
(12.13)

for pure states [216, 255]. Actually, we will see that a pure state always admits a pure product state as
closest separable state, hence the maximum in (12.13) coincides with F (|Ψ〉,SAB) and EG(ρ) = 1 − F (ρ,SAB)
by the proposition above. According to (12.11), EG(|Ψ〉) = 1 − µmax is of the form (10.11) with fG(ρA) =
1 − ‖ρA‖ satisfying all hypothesis of Proposition 10.3.2. Therefore, by a similar reasoning as in the proof of
Proposition 10.4.3, EG is an entanglement measure which fulfills the strong monotonicity property (iii”). In
contrast, EBu(|Ψ〉) = fBu([ρΨ]A) = 2(1−

√
‖[ρΨ]A‖) but fBu is not concave, whence Proposition 10.3.2 indicates

that EBu does not fulfill (iii’). We should not be bothered too much about that, the two measures EBu and EG

being equivalent (that is, they define the same order of entanglement) and simply related to each other.

Proof. For a pure state ρΨ = |Ψ〉〈Ψ|, the fidelity reads F (ρΨ, σsep) = 〈Ψ|σsep|Ψ〉. Writing the decomposition of
separable states into pure product states, σsep =

∑
i ξi|ϕi ⊗ χi〉〈ϕi ⊗ χi|, we get

F (ρΨ,SAB) = max
{|ϕi〉,|χi〉,ξi}

{∑

i

ξi|〈ϕi ⊗ χi|Ψ〉|2
}
= max

‖ϕ‖=‖χ‖=1

{
|〈ϕ ⊗ χ|Ψ〉|2

}
, (12.14)

where we have used
∑

i ξi = 1. For any normalized vectors |ϕ〉 ∈ HA and |χ〉 ∈ HB, one derives from the
Schmidt decomposition (4.9) and the Cauchy-Schwarz inequality that

|〈ϕ⊗ χ|Ψ〉| ≤
n∑

j=1

√
µj

∣∣〈ϕ|αj〉〈χ|βj〉
∣∣ ≤ √

µmax

n∑

j=1

∣∣〈ϕ|αj〉〈χ|βj〉
∣∣

≤ √
µmax

( n∑

j=1

|〈ϕ|αj〉|2
)1/2( n∑

j=1

|〈χ|βj〉|2
)1/2

≤ √
µmax . (12.15)

All bounds are saturated for |ϕ〉 = |αjmax〉 and |χ〉 = |βjmax〉, where jmax is the index for which µj is maximum.
Thus F (ρΨ,SAB) = µjmax = µmax and the formula (12.11) is proven. It is of interest to note that the pure
product state |αjmax〉|βjmax〉 is a closest separable state to |Ψ〉 (a characterization of all these closest separable
states will be given in Proposition 12.2.2 below).

We now proceed to show (12.12). Consider a fixed separable state σsep =
∑p

i=1 ξi|Φi〉〈Φi| with |Φi〉 ∈ SAB

and ξi ≥ 0. Without loss of generality one may assume p = (nAnB)
2+1 (see the discussion after Definition 4.4.1).

Let {|fi〉}pi=1 be an orthonormal basis of an ancilla space K and |Φ〉 = ∑
i

√
ξi|Φi〉|fi〉 be a purification of σsep

on H ⊗ K. Thanks to Theorem 8.2.2, F (ρ, σsep) is the maximum over all purifications |Ψ〉 of ρ on H ⊗ K of
the transition probability |〈Ψ|Φ〉|2. Writing |Ψ〉 in the form (4.15) and using the one-to-one correspondence
between pure state decompositions and purifications (see Sec. 4.3), one can equivalently maximize over all pure
state decompositions {|Ψi〉, ηi} of ρ. Moreover, the maximization of F (ρ, σsep) over the separable states σsep
leads to a maximization over the pure state ensembles {|Φi〉, ξi} in SAB. This yields

F (ρ,SAB) = max
{|Φi〉,ξi}

max
{|Ψi〉,ηi}

{∣∣∣∣
p∑

i=1

√
ηiξi〈Ψi|Φi〉

∣∣∣∣
2}

. (12.16)

But, using once more the Cauchy-Schwarz inequality and
∑
i ξi = 1, one has

max
{|Φi〉,ξi}

{∣∣∣∣
p∑

i=1

√
ηiξi〈Ψi|Φi〉

∣∣∣∣
2}

=

p∑

i=1

ηi max
|Φ〉∈SAB

{
|〈Ψi|Φ〉|2

}
. (12.17)
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It has been argued above that the maximal fidelity between |Ψi〉 and a separable state is attained for pure
product states, thus F (|Ψi〉,SAB) = max|Φ〉∈SAB

|〈Ψi|Φ〉|2. Substituting this expression into (12.17) and (12.16),
we arrive at the required relation (12.12). ✷

According to (12.11), EBu(|Ψ〉) = 0 if and only if |Ψ〉 is a product state, in agreement with the fact that
separable pure states are product states. Another consequence of (12.11) and of the bound µmax ≥ 1/n (which
follows from

∑
i µi = 1) is F (|Ψ〉,SAB) ≥ 1/n, with n = min{nA, nB}. Furthermore, F (|Ψ〉,SAB) = 1/n if and

only if |Ψ〉 is maximally entangled (Sec. 4.4). One deduces from (12.12) that

EBu(ρ) ≤ 2− 2√
n
. (12.18)

By the same arguments as in the proof of Proposition 10.5.1, this bound is saturated if and only if ρ has maximal
entanglement of formation EEoF(ρ) = lnn. This means that EBu and EEoF capture the same maximally
entangled states.

12.1.3 Geometric measure of entanglement for two qubits

In the case of two qubits, a closed formula for EBu(ρ) can be obtained with the help of Proposition 12.1.4 and
of Wootters’s result on the concurrence (Sec. 10.4.3). It reads [231]

EBu(ρ) = 2−
√
2
(
1 +

√
1− C(ρ)2

) 1
2 (12.19)

with C(ρ) given by (10.33). Actually, for pure states one finds by comparing C(|Ψ〉) = 2
√
µ0µ1 and (12.11) that

F (|Ψ〉,SAB) = g(C(|Ψ〉)) with g(C) = (1 +
√
1− C2)/2. As g is decreasing and concave, (10.27) and (12.12)

yield F (ρ,SAB) ≤ g(C(ρ)). But it is shown in [265] that there is an optimal pure state decomposition {|Ψi〉, ηi}
of ρ such that C(ρ) = C(|Ψi〉) for any i. Thus

g
(
C(ρ)

)
≥ F (ρ,SAB) ≥

∑

i

ηiF (|Ψi〉,SAB) =
∑

i

ηig
(
C(|Ψi〉)

)
= g

(
C(ρ)

)
, (12.20)

which justifies (12.19).

12.2 Geometric quantum discord

12.2.1 Discord-like measures of quantum correlations

In the same spirit as for the geometric measure of entanglement, one defines the geometric quantum discord as

DA(ρ) = dB(ρ, CA)2 = 2(1−
√
F (ρ, CA)) , F (ρ, CA) = max

σA−cl∈CA

{
F (ρ, σA−cl)

}
, (12.21)

where CA is the (non-convex) set of A-classical states (see Definition 11.2.3). One can introduce similarly the
relative-entropy discords

D
(α)
A

(ρ) = min
σA−cl∈CA

{
Sα(ρ||σA−cl)

}
. (12.22)

As in Corollary 12.1.1 one has D
(1/2)
A

(ρ) = −2 ln(1 −DA(ρ)/2) ≤ D
(α)
A

(ρ) for any α ∈ [1/2, 1].
An analog of the geometric discord DA based on the Hilbert-Schmidt distance d2 has been first introduced by

Dakić, Vedral, and Brukner [67]. We hope to have convinced the reader in chapter 8 that the Bures distance is a
more natural choice in quantum information. We will see that the discord (12.21) shares many of the properties
of the quantum discord δA of chapter 11, while its analog with the d2-distance has unpleasant features. In
particular, like δA the Bures geometric discord is invariant under conjugations by local unitaries and contractive
with respect to quantum operations MB on B. For indeed, the set of A-classical states is invariant under such
transformations (see (11.13)), whence

DA(UA ⊗ UB ρU
∗
A ⊗ U∗

B) = DA(ρ) , DA(1⊗MB(ρ)) ≤ DA(ρ) (12.23)

by unitary invariance and contractivity of dB. These properties also hold for D
(α)
A

, 1/2 ≤ α ≤ 1, because the
relative Rényi entropy is also contractive (Theorem 7.3.1). This should be contrasted with the non-monotonicity
with respect to operations on B of the Hilbert-Schmidt geometric discord, which is due to the lack of monotonicity
of d2 (Sec. 8.1). An explicit counter-example is given in [198]. We now precise the axioms on discord-like
correlation measures.
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Definition 12.2.1. A measure of quantum correlations of a bipartite system AB with respect to subsystem A is
a function DA : E(HAB) → [0,∞) satisfying

(i) DA(ρ) = 0 if and only if ρ is A-classical;

(ii) DA is invariant under local unitary transformations and contractive under quantum operations on B, that
is, (12.23) holds true;

(iii) DA coincides with an entanglement measure for pure states.

This definition is at the time of writing of this article believed to capture all relevant physical requirements
for quantifying the amount of quantum correlations in AB given that one can access to subsystem A only [203].
The axioms (i-iii) are in particular satisfied by the quantum discord δA (Propositions 11.2.1 and 11.3.1). This
is also true for the geometric discord DA. Actually, we have just shown above that DA satisfies (ii), and (i)
is trivial. Since the closest separable state to a pure state is a pure product state, which is A-classical, DA

coincides with the geometric measure of entanglement EBu for pure states (see (12.26) below). Hence DA is a

measure of quantum correlations. Similarly, the relative-entropy based discord D
(1)
A

is a measure of quantum
correlations. The property (iii) follows in this case from the fact that if ρΨ is a pure state then a separable state
σsep minimizing S(ρΨ||σsep) is the classical state given by (12.6) (see the proof of Proposition 12.1.2), so that

D
(1)
A

(ρΨ) coincides with the entanglement measure E1(ρΨ) defined in (12.3). It is an open problem to show that

D
(α)
A

satisfies (iii) when α 6= 1/2, 1.

The B-discords DB and D
(α)
B

are defined by exchanging A and B in (12.21) and (12.22). As for the quantum
discord of chapter 11, in general DA 6= DB. Symmetric measures of quantum correlations are obtained by
considering the square distance to the set of classical states CAB = CA ∩ CB,

DAB(ρ) = 2
(
1− max

σclas∈CAB

{√
F (ρ, σclas)

})
, D

(α)
AB

(ρ) = min
σclas∈CAB

{
S(ρ||σclas)

}
. (12.24)

Let us mention that a similar symmetric information-based discord can be defined by modifying the maximiza-
tion procedure in (11.12) so as to involve projectors πA

i ⊗πB
i (or generalized measurement operatorsMA

i ⊗MB
i ),

instead of MA
i ⊗ 1. It is called the measurement-induced disturbance [160]. The relative-entropy symmetric

discord D
(1)
AB

has been studied in [169], together with other quantities characterizing quantum and classical
correlations. We will not elaborate further here on the numerous discord-like measures defined in the literature
and their operational interpretations (see e.g. [170]).

We emphasize that since CAB ⊂ CA ⊂ SAB (see Fig. 11.1), the geometric measures are ordered as

EBu(ρ) ≤ DA(ρ) ≤ DAB(ρ) . (12.25)

This ordering is a nice feature of the geometrical approach. It also holds for the relative-entropy measures. In
contrast, depending on ρ the entanglement of formation EEoF(ρ) can be larger or smaller than the quantum
discord δA(ρ).

Before going on to general results, let us say few words about explicit calculations of the discords. In
the special case of two-qubit states ρ with maximally mixed marginals ρA = ρB = 1/2, the relative-entropy

measure D
(1)
AB

(ρ) coincides with the usual discord δv.N.
A

(ρ) [169, 167]. For the same states, a closed formula for
DA(ρ) has been found in [1, 227] and the closest A-classical states to ρ have been determined explicitly3. The
Hilbert-Schmidt geometric discord is much easier to calculate. A simple formula for arbitrary 2-qubit states is
derived in [67] and has been later on extended to higher dimensions. The geometric discord defined with the
trace distance d1 has been determined recently for certain families of two-qubit states (the so-called X-states,
containing in particular the states with maximally mixed marginals, and the B-classical states) [63, 177]. Note
that since d1 is contractive, this geometric discord fulfills the axiom (ii) of Definition 12.2.1.

12.2.2 Geometric discord for pure states

We now proceed to determine the geometric discord DA for pure states. It has been seen in the proof of
Proposition 12.1.4 that the family of closest separable states of a pure state |Ψ〉 contains a pure product state,
which is a classical state. By inspection of (12.11) and (12.25), one gets

DA(|Ψ〉) = DB(|Ψ〉) = DAB(|Ψ〉) = EBu(|Ψ〉) = 2(1−√
µmax) . (12.26)

3This is done in [227] with the help of Corollary 12.2.6 below.
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One deduces from the bound µmax ≥ 1/n (which follows from
∑n

i=1 µi = 1) that

DA(|Ψ〉) ≤ 2
(
1− 1√

n

)
, n = min{nA, nB} . (12.27)

This bound is saturated when µi = 1/n for any i, that is, for the maximally entangled states. We will see below
that this statement is still true for mixed states provided that nA ≤ nB.

The identities (12.26) are analogous to the equality between the entanglement of formation EEoF and the
discord δA for pure states (Sec. 11.1). As said before, they reflect the existence of a pure product state which
is closer or at the same distance from |Ψ〉 than any other separable state. It is of interest to find all the closest
A-classical states to |Ψ〉. This is done in the next proposition.

Proposition 12.2.2. (Spehner and Orszag [226]) Let ρΨ = |Ψ〉〈Ψ| be a pure state of AB with largest Schmidt
coefficient µmax. If µmax is non-degenerate, then the closest A-classical (respectively classical, separable) state
to ρΨ for the Bures distance is unique. It is given by the pure product state |αmax〉|βmax〉, where |αmax〉 and
|βmax〉 are eigenvectors with eigenvalue µmax of [ρΨ]A and [ρΨ]B, respectively. If µmax is r-fold degenerate, say
µmax = µ1 = . . . = µr > µr+1, . . . , µn, then infinitely many A-classical (respectively classical, separable) states
σ minimize dB(ρΨ, σ). These closest states are convex combinations of the pure product states |ϕl〉|χl〉 with

|ϕl〉 =
r∑

i=1

uil|αi〉 , |χl〉 =
r∑

i=1

uil|βi〉 , l = 1, . . . , r , (12.28)

where {|αi〉}ri=1 and {|βi〉}ri=1 are orthonormal families of Schmidt vectors associated to µmax in the Schmidt
decomposition (4.9), and (uil)

r
i,l=1 is an arbitrary r × r unitary matrix.

It should be noticed that when µmax is degenerate, the vectors (12.28) provide together with |αi〉, |βi〉,
i = r + 1, . . . , n, a Schmidt decomposition of |Ψ〉 (in that case this decomposition is not unique, see Sec. 4.2).
Conversely, disregarding the degeneracies of the other eigenvalues µi < µmax, all Schmidt decompositions of
|Ψ〉 are of this form for some unitary matrix (uil)

r
i,l=1. Thus, the existence of an infinite family of closest

A-classical states to |Ψ〉 is related to the non-uniqueness of the Schmidt vectors associated to µmax, and this
family contains the products |ϕl〉|χl〉 of these vectors and convex combinations thereof. This shows in particular
that the maximally entangled pure states are the pure states with the largest family of closest states4.

Proof. An arbitrary A-classical state σ can be decomposed as σ =
∑

ij qij |ϕi〉〈ϕi| ⊗ |χj|i〉〈χj|i|. In much the
same way as in the proof of Proposition 12.1.4, F (|Ψ〉, CA) = µmax and the closest A-classical states to ρ fulfill

|〈ϕi ⊗ χj|i|Ψ〉|2 = max
‖ϕ‖=‖χ‖=1

{
|〈ϕ⊗ χ|Ψ〉|2

}
= µmax when qij > 0. (12.29)

We have thus to determine all |ϕ〉 ∈ HA and |χ〉 ∈ HB such that |〈ϕ ⊗ χ|Ψ〉|2 = µmax. This occurs if all
inequalities in (12.15) are equalities. Let us first assume that µ1 = µmax > µ2, . . . , µn. After a close look to
(12.15) one immediately finds that |〈ϕ⊗χ|Ψ〉|2 = µmax if and only if |ϕ〉 = |α1〉 and |χ〉 = |β1〉 up to irrelevant
phase factors. Hence (12.29) is satisfied for a single pair (i, j). Therefore, all the qij vanish except one and the
closest A-classical state to |Ψ〉 is the pure product state |α1〉|β1〉.

We now proceed to the degenerate case µ1 = . . . = µr = µmax > µr+1, . . . , µn. Let us establish the necessary
and sufficient conditions for the inequalities in (12.15) to be equalities. For the first inequality, the condition
is arg(〈ϕ|αj〉〈χ|βj〉) = θ with θ independent of j. For the second one, the condition is that |ϕ〉 belongs to
Vmax = span{|αj〉}rj=1 or |χ〉 belongs to Wmax = span{|βj〉}rj=1. The Cauchy-Schwarz inequality in (12.15) is
saturated if and only if |〈ϕ|αj〉| = λ|〈χ|βj〉| for all j, with λ ≥ 0. Finally, the last inequality holds with equality if
and only if |ϕ〉 ∈ span{|αj〉}nj=1 and |χ〉 ∈ span{|βj〉}nj=1. Putting all conditions together, we obtain |ϕ〉 ∈ Vmax,

|χ〉 ∈ Wmax, and 〈χ|βj〉 = eiθ〈αj |ϕ〉 for j = 1, . . . , r. Therefore, from any orthonormal family {|ϕl〉}rl=1 of
Vmax one can construct r orthogonal vectors |ϕl ⊗ χl〉 satisfying |〈ϕl ⊗ χl|Ψ〉|2 = µmax for all l = 1, . . . , r, with
〈χl|βj〉 = 〈αj |ϕl〉. The probabilities {qij} are then given by qij = qi if i = j ≤ r and zero otherwise, {ql}rl=1

being an arbitrary probability distribution. The corresponding A-classical states σ maximizing the fidelity
F (ρΨ, σ) are the classical states

σ =

r∑

l=1

ql|αl ⊗ βl〉〈αl ⊗ βl| . (12.30)

✷

4This family forms a (n2 + n− 2) real-parameter sub-manifold of E(HAB).
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12.2.3 Geometric discord for mixed states and quantum state discrimination

As for all other measures of entanglement and quantum correlations, determining DA(ρ) is harder for mixed
states than for pure states. Interestingly, this problem is related to an ambiguous quantum state discrimination
task.

Proposition 12.2.3. (Spehner and Orszag [226]) For any state ρ of the bipartite system AB, the maximal
fidelity between ρ and an A-classical state reads

F (ρ, CA) = max
{|ϕi〉}

{
P opt v.N.
S,a ({ρi, ηi})

}
= max

{|ϕi〉}
max
{Πi}

{ nA∑

i=1

ηi tr(Πiρi)

}
, (12.31)

where the maxima are over all orthonormal bases {|ϕi〉}nA

i=1 of HA and all von Neumann measurements given by

orthonormal families {Πi}nA

i=1 of projectors of HAB with rank nB. Here, P
opt v.N.
S,a ({ρi, ηi}) is the maximal success

probability in discriminating ambiguously by such measurements the states ρi with probabilities ηi defined by

ηi = 〈ϕi|ρA|ϕi〉 , ρi = η−1
i

√
ρ|ϕi〉〈ϕi| ⊗ 1

√
ρ , i = 1, . . . , nA (12.32)

(if ηi = 0 then ρi is not defined but does not contribute to the sum in (12.31)). Furthermore, the closest
A-classical states to ρ are given by

σρ =
1

F (ρ, CA)

nA∑

i=1

|ϕopt
i 〉〈ϕopt

i | ⊗ 〈ϕopt
i |√ρΠopt

i

√
ρ|ϕopt

i 〉 , (12.33)

where {|ϕopt
i 〉} and {Πopt

i } are any orthonormal basis of HA and von Neumann measurement maximizing the
right-hand side of (12.31).

The ρi are quantum states if ηi > 0 because ρi ≥ 0 and ηi is chosen such that tr(ρi) = 1. Moreover, {ηi}nA

i=1

is a probability distribution (since ηi ≥ 0 and
∑

i ηi = tr(ρ) = 1) and the ensemble {ρi, ηi}nA

i=1 is a convex
decomposition of ρ, i.e., ρ =

∑
i ηiρi.

Corollary 12.2.4. If ρ is invertible then one can substitute P opt v.N.
S,a ({ρi, ηi}) in (12.31) by the maximal success

probability P opt
S,a ({ρi, ηi}) over all POVMs, given by (6.2).

Proof. This is a simple consequence of Corollary 6.4.4. Actually, if ρ > 0 then the states ρi defined in (12.32) are
linearly independent, thus the optimal measurement to discriminate them is a von Neumann measurement with
projectors of rank ri = rank(ρi). The linear independence can be justified as follows. Let us first notice that ρi
has rank ri = nB (for indeed, it has the same rank as ηiρ

−1/2ρi = |ϕi〉〈ϕi| ⊗ 1
√
ρ). A necessary and sufficient

condition for |ξij〉 to be an eigenvector of ρi with eigenvalue λij > 0 is |ξij〉 = (λijηi)
−1√ρ|ϕi〉 ⊗ |ζij〉, where

|ζij〉 ∈ HB is an eigenvector of Ri = 〈ϕi|ρ|ϕi〉 with eigenvalue λijηi > 0. For any i, the Hermitian invertible

matrix Ri admits an orthonormal eigenbasis {|ζij〉}nB

j=1. Thanks to the invertibility of
√
ρ, {|ξij〉}j=1,...,nB

i=1,...,nA
is a

basis of HAB and thus the states ρi are linearly independent and span HAB. ✷

Before going into the proof of the proposition, let us discuss the state discrimination problems when ρ is
pure or A-classical. Of course, the values of DA(ρ) are already known in these cases, being given by (12.26)
and by DA(ρ) = 0, respectively, but it is instructive to recover that from Proposition 12.2.3. If ρ = ρΨ is pure

then all states ρi with ηi > 0 are identical and equal to ρΨ, so that P opt v.N.
S,a = max{Πi}{

∑
i ηi〈Ψ|Πi|Ψ〉} =

ηmax. One gets F (ρΨ, CA) = µmax by optimization over the basis {|ϕi〉}. If ρ is an A-classical state, i.e., if it
can be decomposed as in (11.13), then the optimal basis {|ϕopt

i 〉} coincides with the basis appearing in this
decomposition. With this choice one obtains ηi = qi and ρi = |ϕi〉〈ϕi| ⊗ σB|i for all i such that qi > 0. The
states ρi are orthogonal and can thus be perfectly discriminated by von Neumann measurements. This yields
F (ρ, CA) = 1 and DA(ρ) = 0 as it should be. Reciprocally, if F (ρ, CA) = 1 then P opt v.N.

S,a ({ρi, ηi}) = 1 for some
basis {|ϕi〉} and the corresponding ρi must be orthogonal (chapter 6). Hence one can find an orthonormal
family {Πi} of projectors with rank nB such that ρi = ΠiρiΠi for any i with ηi > 0. It is an easy exercise to
show that this implies that Πi = |ϕi〉〈ϕi|⊗1 if ρ|ΠiH is invertible. Thus ρ =

∑
i ηiρi is A-classical, in agreement

with the fact (following directly from the definition) that DA(ρ) = 0 if and only if ρ is A-classical.
The above discussion provides a clear interpretation of the result of Proposition 12.2.3: the states ρ with non-

zero discord are characterized by ensembles {ρi, ηi} of non-orthogonal states, which thereby are not perfectly
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distinguishable, for any orthonormal basis {|ϕi〉} of HA. The less distinguishable are the ρi’s, the most distant
is ρ from the set of zero-discord states.

We will establish Proposition 12.2.3 by relying on the slightly more general statement summarized in the
following lemma.

Lemma 12.2.5. For a fixed family {σA|i}ni=1 of states σA|i ∈ E(HA) having orthogonal supports and spanning
HA, with 1 ≤ n ≤ nA, let us define

CA({σA|i}) =
{
σ =

n∑

i=1

qiσA|i ⊗ σB|i ; {qi, σB|i}ni=1 is a state ensemble on HB

}
. (12.34)

Then

F
(
ρ, CA({σA|i})

)
= max
σ∈CA({σA|i})

{
F (ρ, σ)

}
= max

U

{ n∑

i=1

‖Wi(U)‖22
}
, (12.35)

where the last maximum is over all unitaries U on HAB and

Wi(U) = trA
(√
σA|i ⊗ 1

√
ρU

)
. (12.36)

Moreover, there exists a unitary Uopt achieving the maximum in (12.35) which is such that Wi(Uopt) ≥ 0. The
states σopt satisfying F (ρ, σopt) = F (ρ, CA({σA|i})) are given in terms of this unitary by

σopt =
1

F (ρ, CA({σA|i}))

n∑

i=1

σA|i ⊗Wi(Uopt)
2 . (12.37)

Proof. Using the spectral decompositions of the states σB|i, any σ ∈ CA({σA|i}) can be written as

σ =

n∑

i=1

nB∑

j=1

qijσA|i ⊗ |χj|i〉〈χj|i| with qij ≥ 0 ,
∑

ij

qij = 1 , (12.38)

where {|χj|i〉}nB

j=1 is an orthonormal basis of HB for any i (compare with (11.20)). By assumption, if i 6= i′ then

ranσA|i⊥ ranσA|i′ , so that
√
σ =

∑
i,j

√
qij

√
σA|i ⊗ |χj|i〉〈χj|i|. We start by evaluating the trace norm in the

definition (8.9) of the fidelity by means of the formula ‖O‖1 = maxU | tr(UO)| to obtain

F
(
ρ, CA({σA|i})

)
= max

σ∈CA({σA|i})
max
U

{∣∣tr(U∗√ρ√σ)
∣∣2
}

= max
U

{
max

{qij},{|χj|i〉}

∣∣∣∣
∑

i,j

√
qij〈χj|i|Wi(U)∗|χj|i〉

∣∣∣∣
2}

. (12.39)

The square modulus can be bounded by invoking twice the Cauchy-Schwarz inequality and
∑
ij qij = 1,

∣∣∣∣
∑

i,j

√
qij〈χj|i|Wi(U)∗|χj|i〉

∣∣∣∣
2

≤
∑

i,j

∣∣〈χj|i|Wi(U)∗|χj|i〉
∣∣2

≤
∑

i,j

∥∥Wi(U)|χj|i〉
∥∥2 =

∑

i

‖Wi(U)‖22 . (12.40)

The foregoing inequalities are equalities if the following conditions are satisfied:

(1) Wi(U) =Wi(U)∗ ≥ 0;

(2) qij = 〈χj|i|Wi(U)|χj|i〉2/(
∑

i,j〈χj|i|Wi(U)|χj|i〉2);

(3) {|χj|i〉}nB

j=1 is an eigenbasis of Wi(U) for any i.
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Therefore, (12.35) holds true provided that there is a unitary U on HAB satisfying (1). For a given U , let
us define Uopt = U

∑
i π

A
i ⊗ V ∗

i , where π
A
i is the projector onto ranσA|i and Vi a unitary on HB such that

Wi(U) = |Wi(U)∗|Vi (polar decomposition). Then Uopt is unitary since by hypothesis πA
i π

A
i′ = δii′π

A
i and∑

i π
A
i = 1, and one readily shows that Wi(Uopt) = Wi(U)V ∗

i ≥ 0. As
∑

i ‖Wi(U)‖22 =
∑
i ‖Wi(Uopt)‖22, the

identity (12.35) follows from (12.39) and (12.40). From condition (3) one has Wi(Uopt)|χopt
j|i 〉 = wji|χopt

j|i 〉 with∑
i,j w

2
ji = F (ρ, CA({σA|i})), see (12.40). Condition (2) entails

σopt
B|i =

∑

j

qoptij |χopt
j|i 〉〈χ

opt
j|i | =

Wi(Uopt)
2

F (ρ, CA({σA|i}))
, (12.41)

which together with (12.38) leads to (12.37). ✷

Proof of Proposition 12.2.3. Let {|ϕi〉}nA

i=1 be an orthonormal basis of HA. Applying Lemma 12.2.5 with
σA|i = |ϕi〉〈ϕi| one gets

F
(
ρ, CA({|ϕi〉})

)
= max

U

{
nA∑

i=1

tr
[
U |ϕi〉〈ϕi| ⊗ 1U∗√ρ |ϕi〉〈ϕi| ⊗ 1

√
ρ
]
}
,

= max
{Πi}

{
nA∑

i=1

tr
[
Πi

√
ρ|ϕi〉〈ϕi| ⊗ 1

√
ρ
]
}

= P opt v.N.
S,a ({ρi, ηi}) . (12.42)

The last maximum is over all orthonormal families {Πi}nA

i=1 of projectors of rank nB and the success probability

P opt v.N.
S,a ({ρi, ηi}) is given by (6.32). Since the fidelity F (ρ, CA) is the maximum of F (ρ, CA({|ϕi〉})) over all

bases {|ϕi〉}, this leads to (12.31) and (12.33). ✷

12.2.4 The qubit case

It has been emphasized in chapter 6 that the optimal success probability and measurement for discriminating
ambiguously more than two states are not known explicitly in general. Nonetheless, if the subsystem A is a
qubit, the ensemble {ρi, ηi} in Proposition 12.2.3 contains only nA = 2 states and the optimal probability and
measurement are easily determined. Following the steps yielding to (6.6) we find

P opt v.N.
S,a ({ρi, ηi}) =

1

2

(
1− tr Λ

)
+

nB∑

l=1

λl , (12.43)

where λ1 ≥ · · · ≥ λnB
are the nB largest eigenvalues of Λ = η0ρ0 − η1ρ1. The optimal von Neumann

measurement is formed by the spectral projector Πopt
0 of Λ for these nB eigenvalues and its complement

Πopt
1 = 1 − Πopt

0 . For the states ρi associated to the orthonormal basis {|ϕi〉}1i=0 of C2 via formula (12.32),
one has Λ =

√
ρ (|ϕ0〉〈ϕ0| − |ϕ1〉〈ϕ1|) ⊗ 1

√
ρ. The operator inside the parenthesis in the last identity is equal

to σu ≡ ∑3
m=1 umσm for some unit vector u ∈ R3 depending on {|ϕi〉} (here σ1, σ2, and σ3 are the Pauli

matrices). Conversely, one can associate to any unit vector u ∈ R3 the eigenbasis {|ϕi〉}1i=0 of σu. According
to Proposition 12.2.3, F (ρ, CA) is obtained by maximizing the right-hand side of (12.43) over all Hermitian
matrices

Λ(u) =
√
ρ σu ⊗ 1

√
ρ (12.44)

with u ∈ R3, |u| = 1. The following corollary of Proposition 12.2.3 is a refinement of a result in [227].

Corollary 12.2.6. Let A be a qubit, i.e., nA = 2. The fidelity between ρ and the set of A-classical states is
given by

F (ρ, CA) =
1

2
max
‖u‖=1

{
1 + ‖Λ(u)‖1

}
, (12.45)

where Λ(u) is the 2nB × 2nB matrix (12.44). The closest A-classical states to ρ are given by (12.33) where
Πopt

0 is the spectral projector associated to the nB largest eigenvalues of Λ(uopt) and uopt ∈ R3 is a unit vector
achieving the maximum in (12.45).
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Proof. Let λl(u) be the eigenvalues of Λ(u) in non-increasing order. We claim that

−1

2
tr(Λ(u)) +

nB∑

l=1

λl(u) =
1

2

nB∑

l=1

λl(u)−
1

2

2nB∑

l=nB+1

λl(u) =
1

2
tr |Λ(u)| . (12.46)

To prove this claim it suffices to show that Λ(u) has at most nB positive eigenvalues λl(u) > 0 and at most nB

negative eigenvalues λl(u) < 0, counting multiplicities. As ker ρ ⊂ kerΛ(u) one may without loss of generality
restrict Λ(u) to the subspace ΠHAB, with Π the projector onto ran(ρ). A standard linear algebra argument
shows that if S is a finite invertible matrix and Σ a self-adjoint matrix, then the number of positive (respectively
negative) eigenvalues of Σ is equal to the number of positive (respectively negative) eigenvalues of S∗ΣS. Let
P±
Σ be the spectral projectors of Σ = Πσu ⊗ 1Π on R± \ {0}. Since

√
ρ : ΠHAB → ΠHAB is invertible, in

order to prove (12.46) it is thus enough to verify that rank(P±
Σ ) ≤ nB. This is evident if rank(Π) ≤ nB. If

rank(Π) > nB, then ±〈Ψ|σu ⊗ 1|Ψ〉 = ±〈Ψ|Σ|Ψ〉 > 0 for any |Ψ〉 ∈ P±
Σ HAB ⊂ ΠHAB. This implies that

rank(P±
Σ ) ≤ rank(P±

σu⊗1) = nB, as otherwise one could find a non-vanishing vector |Ψ〉 ∈ P±
Σ HAB belonging to

the nB-dimensional eigenspace of σu ⊗ 1 with eigenvalue ∓1, in contraction with the foregoing inequality. This
establishes (12.46). Then (12.45) follows from (12.43) and Proposition 12.2.3. ✷

12.2.5 States with the highest geometric discord

The geometric discord DA, as the quantum discord δA, quantifies the degree of quantumness of a state. Let us
recall from Sec. 11.3.2 that when the space dimensions of A and B are such that nA ≤ nB, the “most quantum”
states ρ having the highest discord δA(ρ) are the maximally entangled states, i.e., the states with the highest
entanglement of formation EEoF(ρ) = lnnA. It is comforting that a similar result holds for the geometric
discord.

Corollary 12.2.7. If nA ≤ nB, the highest value of DA(ρ) on E(HAB) is equal to 2− 2/
√
nA. The most distant

states ρ from the set of A-classical states, which are such that DA(ρ) = 2− 2/
√
nA, are the maximally entangled

states given by Proposition 10.5.1.

Comparing with the results of Sec. 12.1.2, we see that when nA ≤ nB the most distant states from CA are
also the most distant from the set of separable states SAB. If nA ≤ nB < 2nA, these most distant states are
maximally entangled pure states, as illustrated in Fig. 11.1.

Proof. This is again a corollary of Proposition 12.2.3. The success probability P opt v.N.
S,a is clearly larger or equal

to the highest prior probability5 ηmax = maxi{ηi}. In view of Proposition 12.2.3 and ηmax ≥ 1/nA, we get

F (ρ, CA) ≥
1

nA

(12.47)

for any state ρ. When n = nA ≤ nB this bound is optimal, the value 1/n being achieved for the maximally
entangled pure states (Sec. 12.2.2). This proves the first statement. Let ρ be a state such that F (ρ, CA) = 1/n.

According to (12.31) and since it has been argued above that P opt v.N.
S,a ≥ ηmax ≥ 1/n, this implies that

P opt v.N.
S,a ({ρi, ηi}) = 1/n whatever the orthonormal basis {|ϕi〉}. It is intuitively clear6 that this can happen

only if the receiver gets a collection of identical states ρi with equal prior probabilities ηi = 1/n. From (12.32)
and ρ =

∑
ηiρi one obtains ρA = 1/n and ρi = ρ for any i and {|ϕi〉}. Plugging the spectral decomposition

ρ =
∑

k pk|k〉〈k| into (12.32), the second equality yields Dkl = trB(|k〉〈l|) = n−1δkl for all k and l such that
pkpl 6= 0. One concludes that ρ has maximal entanglement of formation by following the same steps as in the
proof of Proposition 10.5.1. ✷

One may wonder if Corollary 12.2.7 could also hold for nA > nB (modulo the exchange nA ↔ nB), as what
happens for the geometric measure of entanglement (see Sec. 12.1.2). However, unlike EBu(ρ) the geometric
discord is not symmetric under the exchange of the two subsystems. The problem of determining its highest
value and the corresponding “most quantum” states is still open for nA > nB. For such space dimensions the
bound (12.47) is still correct but it is not optimal, that is, there are no states ρ with fidelity F (ρ, CA) = 1/nA.

5A receiver would obtain PS,a = ηmax by simply guessing that his state is ρimax , with ηimax = ηmax, whatever the measure-
ment outcomes. A better strategy is of course to perform the von Neumann measurement {Πi} such that Πimax projects onto a
nB-dimensional subspace containing ran(ρimax ). This range has a dimension rank(ρimax ) ≤ nB by a similar reasoning as in the
proof of Corollary 12.2.4.

6An explicit proof of this fact can be found in [226].
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Entanglement of
formation

Quantum discord
Geometric

entanglement
Geometric discord

AB in a pure state EEoF(|Ψ〉) = δA(|Ψ〉) = H({µi}) EBu(|Ψ〉) = DA(|Ψ〉) = 2(1 −√
µmax)

AB in a mixed state

EEoF(ρ) = min
{∑

i ηiEEoF(|Ψi〉)
}

(convex roof)

δA(ρ) = IA:B(ρ)−
max{IA:B(MA ⊗ 1(ρ))}
︸ ︷︷ ︸

classical correlations

EBu(ρ) = 2(1−
max{

√

F (ρ, σsep)}
︸ ︷︷ ︸

= convex roof

)

DA(ρ) = 2(1−
max{

√

F (ρ, σA−cl)})
︸ ︷︷ ︸

= max. success proba.
in state discrimination

Vanishes iff ρ is separable ρ is A-classical ρ is separable ρ is A-classical

Maximal iff
with maximal value

ρ is max. entangled
lnn

}
EEoF: true ∀ nA,B

δA: true if nA ≤ nB

ρ is max. entangled
2(1 − 1/

√
n)

}
EBu: true ∀ nA,B

DA: true if nA ≤ nB

Local unit. invariance X X X X

Monotonicity w.r.t. LOCCs operations on B LOCCs operations on B

Convexity X no X no

Ordering no EBu(ρ) ≤ DA(ρ)

ABC in a pure state EEoF(ρBC) = δA(ρAB) + S(ρAB)− S(ρA) ?

Table 12.1: Summary of the definitions and properties of the entanglement of formation (chapter 10), quantum
discord (chapter 11), geometric measure of entanglement (Sec. 12.1), and geometric discord (Sec. 12.2). Here
nA and nB are the space dimensions of the subsystems A and B, n = min{nA, nB}, and µi are the Schmidt
coefficients in (4.9).

Indeed, one can show as in the proof above that if F (ρ, CA) = 1/nA then the eigenvectors |k〉 of ρ with eigenvalues
pk > 0 have maximally mixed marginals Dkk = (|k〉〈k|)A = 1/nA. But this is impossible since rank(Dkk) ≤ nB

by (4.9).

Remark 12.2.8. One can place a lower bound on F (ρ, CA) for nA > nB by invoking the inequality [226]

F (ρ, CA) ≥
‖ρ‖
nB

+
1− ‖ρ‖
nA

nB − δρ
nB

(12.48)

where δρ = 0 if rank(ρ) ≤ nB and 1 otherwise.

Table 12.1 presents a comparison of the properties of the entanglement of formation, the quantum discord,
and their geometrical analogs based on the Bures distance.

12.2.6 Geometric discord and least square measurements

The ensemble {ρi, ηi} in the discrimination task associated to the geometric discord in Proposition 12.2.3 turns
out to be related to the transpose operation of the von Neumann measurement in the basis {|ϕi〉}. In fact, let
us denote by MA the measurement on A with rank-one orthonormal projectors πA

i = |ϕi〉〈ϕi|. Let

ηi = 〈ϕi|ρA|ϕi〉 , ρAB|i = η−1
i |ϕi〉〈ϕi| ⊗ 〈ϕi|ρ|ϕi〉 (12.49)

be the corresponding probabilities and post-measurement conditional states when the initial state is ρ. The
transpose operation of MA for ρ is (see (5.24))

RMA,ρ(σ) =

nA∑

i=1

√
ρ|ϕi〉〈ϕi| ⊗ 〈ϕi|ρ|ϕi〉−

1
2 〈ϕi|σ|ϕi〉〈ϕi|ρ|ϕi〉−

1
2
√
ρ . (12.50)

We observe that
ρi = RMA,ρ(ρAB|i) , i = 1, . . . , nA . (12.51)

Comparing (5.23) and (12.51), one expects from the discussion in Sec. 5.5.3 that the least square measure-
ment {M lsm

i } for the state ensemble {ρi, ηi} is associated to the transpose operation of RMA,ρ for MA(ρ) =∑
i ηiρAB|i. But this two-fold transpose operation coincides with MA, hence {M lsm

i } is nothing but the von
Neumann measurement on A in the basis {|ϕi〉}. This can be readily checked: since {ρi, ηi} is a convex decom-
position of ρ, (5.36) leads to

M lsm
i = ηiρ

−1/2ρiρ
−1/2 = πA

i ⊗ 1 . (12.52)
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MA RMA,ρMA(ρ)

Figure 12.1: State changes under the von Neumann measurement MA with rank-one projectors πA
i = |ϕi〉〈ϕi|

followed by its transpose operation RMA,ρ. The upper line corresponds to a measurement without readout and
the other lines to the different measurement outcomes.

One can bound P opt v.N.
S,a ({ρi, ηi}) from below by the success probability obtained by discriminating the ρi with

{M lsm
i }, and from above by the square root of this probability, see (6.21). By Proposition 12.2.3, this yields

max
{|ϕi〉}

{ nA∑

i=1

trB
[
〈ϕi|

√
ρ|ϕi〉2

]}
≤ F (ρ, CA) ≤ max

{|ϕi〉}

{ nA∑

i=1

trB
[
〈ϕi|

√
ρ|ϕi〉2

]} 1
2

. (12.53)

The left- and right-hand sides become nearly equal when F (ρ, CA) is almost one, that is, if ρ is close to CA. Other
inequalities on F (ρ, CA) can be obtained in terms of the fidelities F (ρi, ρj) with the help of Proposition 6.5.1.

The aforementioned observations are summarized by Fig. 12.1.
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Perspectives
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PERSPECTIVES FROM PART I: DYNAMICS

La question ne se pose pas. Elle en est absolument incapable : il y a trop de vent (B. Vian).

1) Quantum measurement processes

A deeper understanding of the implications of the recent results of Allahverdyan, Balian, and Nieuwen-
huizen [6] discussed in chapter 1 is desirable. Revisiting the principles of quantum mechanics is fascinating
and I plan to keep thinking in the next years about these fundamental issues, in parallel with solving more
concrete problems. The model presented in chapter 1 describes ideal von Neumann projective measure-
ments. Non-ideal measurements are also discussed in [6]. In quantum information theory, one is interested
in extracting as much information as possible from a system with some given experimental constraints.
The work presented in chapter 1 could be pursued in the following directions:

(a) Weak measurements.

Weak measurements are measurements in which the system weakly interacts with the measuring
apparatus, so that the eigenvalues of the measured observable are not fully correlated with the
pointer values at the end of the measurement. This means that the system-apparatus interaction
time tint is smaller than the system-apparatus entanglement time τent (see Sec. 1.3.4), as opposed
to the strong measurement case considered in chapter 1. Weak measurements combined with an
appropriate post-selection of the measurement outcomes may be used to amplify small signals thanks
to the weak value amplification protocol of Y. Aharonov, D.Z. Albert, and L. Vaidman [Phys. Rev.
Lett. 60, 1351 (1988)]. It would be of interest to change the model of Sec. 1.3 in such a way that
the apparatus performs a weak measurement, and to determine the corresponding time scales. A
related issue, which is also connected to chapter 3, is the use of weak measurements in parameter
estimation (such as quantum interferometry). The practical advantage of such measurements has
been pointed out, and a protocol to saturate the quantum Cramér-Rao bound (Sec. 9.2.2) with
weak measurements has been proposed recently [G. Bié Alves et al., Weak value amplification as an
optimal metrological protocol, arXiv:1410.7415].

(b) Time-evolution of correlations during a measurement process.

It would be interesting to determine the time evolution of entanglement and quantum discord between
the system and pointer during the measurement process of Sec. 1.3. As far as classical correlations
are concerned, Cornelio et al. argue that they are either time-independent or reach a constant value
after a finite time [Phys. Rev. Lett. 109, 190402 (2012)].

2) Evolution of entanglement for quantum trajectories

The results presented in chapter 2 on the average entanglement of quantum trajectories is limited to
two-qubit systems and Markovian dynamics. Relevant extensions of this work are thus:

(a) Entanglement decay in bipartite systems with space dimensions higher than four.

In the case of two subsystems coupled to independent baths with local jump operators, the general
argument based on the no-jump trajectory (Sec. 2.4.1) tells us that the average entanglement can
only vanish asymptotically. It would still be nice to find how fast this entanglement decays for
higher-dimensional subsystems than qubits. For good choices of the entanglement measure (see the
discussion in Sec. 2.4.2), a strategy would be to try to bound this measure by an exponential in time
and to calculate the corresponding decay rate κ.

(b) Non-Markovian quantum trajectories.

It is natural to ask whether our results with S. Vogelsberger extend to the non-Markovian case.
Non-Markovian quantum trajectories have been studied in Refs. [47, 80, 267, 267].
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3) Macroscopic superpositions in Bose-Josephson junctions

As stated in chapter 3, the tuning of the interaction energies that we have proposed for protecting the
superposition of coherent states from decoherence does not apply directly to the experiments performed
in Basel. P. Treutlein has developed in the last years a quantum tomography protocol to characterize
fully the state in the junction at a given time. He is now interested in observing a superposition of
coherent states. Some theoretical efforts are needed to study the experimentally realizable ways to reduce
decoherence on the superposition. The main source of decoherence is atom losses. Two-body losses could
be suppressed by using initial coherent states with a small number of atoms in the upper internal state (as
stressed in Sec. 3.5.1, the two-body losses are negligible in the lower state; moreover, the mean number of
lost atoms at time t is roughly Γ2−bodyN0t for two-body losses, whereas it is of the order of Γ1−bodyt for
one body losses, with Γ1−body ≫ Γ2−body). An idea would be to find an optimal time-dependent potential
for the upper mode (splitting of the two condensates) so as to reduce the effects of one-body losses as well
(see Sec. 3.6).

PERSPECTIVES FROM PART II: QUANTUM CORRELATIONS AND

DISTINGUISHABILITY OF QUANTUM STATES

Une sortie, c’est une entrée qu’on prend dans l’autre sens (B. Vian).

Our results on the Bures geometric discord (Sec. 12.2) indicate that contractive distances on the set of
quantum states provide useful tools to describe quantum correlations in composite quantum systems. They show
that the geometric approach has clear links with other quantum information problems such as the discrimination
of non-orthogonal states. This approach should be developed in the future. Several related papers have appeared
in the last years, with in particular the use of other contractive distances like the trace distance [63] and the
quantum Hellinger distance [L. Chang and S. Luo, Phys. Rev. A 87, 062303 (2013)], the determination
of classical correlations instead of quantum correlations [T.R. Bromley et al., J. Phys. A: Math. Theor. 47,
405302 (2014)], the study of the geometric discord for Gaussian states in continuous variable systems [P. Marian
and T.A. Marian, Hellinger distance as a measure of Gaussian discord, arXiv:1408.4477]. Further investigations
could go in the following directions.

1) Concrete physical systems

(a) Time evolution of quantum correlations and decoherence.

One should investigate the time evolution of the geometric discord in specific models of dissipative
dynamics for optical or atomic systems. The main advantage of the geometric approach with respect
to the entropy approach is that it provides additional information, namely, the closest classical
state(s) to a given state ρ of the bipartite system. The general form of the closest A-classical
states σρ for the Bures distance has been given in Proposition 12.2.3 in the general case and in
Proposition 12.2.6 when subsystem A is a qubit. We have determined σρ explicitly for two-qubit
states ρ with maximally mixed marginals (see (4b) in the publication list). The information on ρ
provided by its closest classical state(s) would certainly be relevant for a deeper understanding of
the way quantum correlations decrease with time when the system is subject to decoherence. For
instance, in order to maintain longer the quantum correlations in the system, the trajectory t 7→ ρ(t)
should be as orthogonal as possible to the geodesics linking the time-evolved state to its closest
classical state. We are not aware of any work in the literature in this direction.

(b) Ground state properties and quantum phase transitions.

In the last decade it has been pointed out that one may see the signature of a quantum phase transition
by looking at the entanglement properties of the ground state of the system in the thermodynamic
limit. In particular, right at the transition one sometimes observes a degeneracy of the highest
eigenvalue of the reduced density matrix of the ground state for given bipartitions of the system.
Furthermore, it has been shown in some spin models that the gap between the first and second
eigenvalues exhibits a scaling behavior near the transition with the critical exponent of the universality
class of the model [G. De Chiara, L. Lepori, M. Lewenstein, and A. Sanpera, Phys. Rev. Lett. 109,
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237208 (2012)] and that the derivative of the concurrence between two spins diverges logarithmically
[A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature 416, 608 (2002)]. Proposition 12.2.2 above
shows that the aforementioned degeneracy is related to the existence of a symmetry characterized
by infinitely many closest classical states to the ground state. It is also suggested in the literature
that the phase transition can be singled out by operational properties on the ground state (such as
local convertibility using LOCC operations and an ancilla system acting as a catalyst, see the remark
of Sec. 10.2), but this has been criticized by H. Bragança et al. [Nonuniversality of entanglement
convertibility, arXiv:1312.0619].

2) Multipartite systems, systems with continuous variables

(a) Measures of quantum correlations in systems with a large number of particles.

In chapter 3 we have used the quantum Fisher information to quantify quantum correlations between
the atoms. It has been argued that this Fisher information gives the amount of quantum correla-
tions useful for phase estimation in interferometry. Moreover, k-producible states, i.e., states admit-
ting pure state decompositions involving tensor products of states of at most k particles, have Fisher
informations bounded from above by a known increasing function of k [135, 236]. This shows that
states with high Fisher informations present some truly multipartite entanglement. However, the
very notion of particle entanglement is still a subject of controversy for indistinguishable particles
[G.C. Ghirardi and L. Marinatto, Phys. Rev. A 70, 012109 (2004); N. Killoran, M. Cramer, and
M.B. Plenio, Phys. Rev. Lett. 112, 150501 (2014)]. Since the quantum Fisher information coincides
up to a numerical factor with the Bures metric, it has a geometrical interpretation in terms of the
Bures distance (in fact, it gives the speed at which the state separates from its time-evolved state, see
Sec. 8.5). It has been argued recently that the Fisher information optimized over all Hamiltonians
H generating the time evolution is a measure of quantum correlations satisfying the three axioms of
Definition 12.2.1 [D. Girolami et al., Phys. Rev. Lett. 112, 210401 (2014)]. It would be interesting
to find its relation with the Bures geometric discord, or at least to establish some bounds of one
measure in terms of the other.

(b) Monogamy relation between the geometric discord and geometric entanglement?

A natural question is whether in three-partite systems the geometric measure of entanglement and the
geometric discord satisfy a monogamy bound similar to that given in Sec. 11.4 for the entanglement
of formation and the entropy-based quantum discord.

(c) Geometric discord for systems with continuous variables.

In some experiments like those performed at the LKB in Paris, the quantum information is encoded
in optical modes of the electromagnetic field. These modes are harmonic oscillators with infinite
dimensional Hilbert spaces (continuous variables). When two modes are in a Gaussian state, the
quantum correlations between them can be characterized by the Gaussian discord introduced by
Adesso and Datta and by Giorda and Paris, which has been shown recently to coincide with the
usual quantum discord for a large family of Gaussian states [Pirandola et al., Optimality of Gaussian
discord, arXiv:1309.2215]. The generalization of the results presented in Sec. 12.2 to bipartite systems
with continuous variables is an interesting open problem.

3) Relations between the Bures geometric discord and other measures of quantum
correlations

(a) “Local” geometric measures of quantum correlations.

Although we have defined geometric measures of quantum correlations as distances of a given quan-
tum state ρ to the set of separable or classical states, one could also think of measuring them locally
(in a geometrical meaning). An attempt in this direction has been given in Sec. 10.1 by substituting
the usual correlator between two local observables by the Bures metric. From a physical viewpoint
it is quite natural to characterize quantum correlations (in particular entanglement) as correlations
between local observables, but the maximization procedure over all such observables proposed in
Sec. 10.1 is artificial and somehow arbitrary. Further work is required to obtain a more natural
definition, even for pure states. Up to our knowledge, our definition of the concurrence (10.5) is new
for bipartite systems with subsystems of space dimensions larger than two, albeit there have been
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other generalizations in the literature. A different idea would be to see if quantum correlations could
be related to the Gauss curvature of the Bures metric.

(b) The choice of the distance.

At this stage there is no clear reason for choosing the Bures distance within the family of all contrac-
tive Riemannian distances for quantifying quantum correlations. This family has been fully charac-
terized by Petz (Sec. 8.6). I am currently working with W. Roga and F. Illuminati on the geometric
discord obtained from the quantum Hellinger distance. The latter is defined as the Hilbert-Schmidt
distance of the square roots of the two states; it is contractive thanks to Lieb’s concavity theorem
(Sec. 8.3). We have found that the corresponding measure of quantum correlations has similar prop-
erties than the Bures geometric discord, and have obtained bounds of one measure in terms of the
other. It turns out that the quantum Hellinger discord is particularly easy to compute. In fact,
it is simply related to the Hilbert-Schmidt geometric discord defined in Ref. [67], evaluated for the
square root of the state instead of the state itself. The Hilbert-Schmidt discord is known to be easily
computable, especially if subsystem A is a qubit and subsystem B has arbitrary dimensions [67],
but it is not a bona fide measure of quantum correlations because of the lack of monotonicity of the
Hilbert-Schmidt distance (see Sec. 12.2). The geometric discord with quantum Hellinger distance
does not suffer from this drawback. It is a promising measure of quantum correlations satisfying all
the axioms of Definition 12.2.1, while being at the same time an easily computable quantity.

(c) Measurement-induced geometric discord and discord of response.

Apart from the geometric discord, two related measures of quantum correlations have attracted a
lot of attention in recent years: (1) the distance of the state ρ to the set of states obtained from ρ
by the action of local von Neumann measurements on subsystem A (measurement-induced geometric
discord) [162], and (2) the distance of ρ to the set of states obtained from ρ by the action of local
unitary operations on A with a given non-degenerate spectrum (discord of response) [203]. Since the
output of a local von Neumann measurement on A is always A-classical, the measure defined in (1)
cannot be smaller than the geometric discord. The two measures are equal for the Hilbert-Schmidt
distance, but differ for the Bures and quantum Hellinger distances. It is highly desirable to compare
these different measures of quantum correlations defined in the literature. Together with W. Roga
and F. Illuminati, we aim to obtain explicit relations or bounds of one measure in terms of the other.
One can also compare the measures obtained from different contractive distances. An unpleasant
fact is that a state can be more quantum correlated than a given state for one distance and less
quantum correlated for another distance.

4) Other open problems

(a) Dissipative evolutions which do not decrease quantum correlations in bipartite systems.

Let us beg the following question: given a pair of quantum states (ρ, σ) on a finite-dimensional
Hilbert space, what are the quantum operations M such that the distance between the transformed
states M(ρ) and M(σ) is the same as the distance between ρ and σ? A sufficient condition is that
M admits an approximate reversal, as in Petz’s theorem on the monotonicity of the relative entropy
(Theorem 7.2.1). In fact, the equality d(ρ, σ) = d(M(ρ),M(σ)) then follows from the contractivity of
the distance. One may wonder if this condition is actually necessary for any contractive Riemannian
distances d, as it is for the relative von Neumann entropy. As a preliminary step, one could try
to generalize the proof of Petz’s theorem given in Sec. 7.2 to the quantum relative Rényi entropies
defined in Sec. 7.3, which contain both the von Neumann entropy and the Bures distance as special
cases. The characterization of the quantum operations which do not decrease the distance between
two given states would enable to obtain the operations which do not decrease quantum correlations in
a given state. One may hope that such operations will not depend on the contractive distance chosen
to define the measure of quantum correlations, or at least that one may be able to identify subclasses
of distances for which the operations are the same. Results in this direction have been obtained
recently by M. Cianciaruso, T.R. Bromley, W. Roga, R. Lo Franco, and G. Adesso [Universality of
the freezing of geometric quantum correlations, arXiv:1411.2978].

(b) Quantum relative Réyni entropies.

The relative α-entropies Sα defined by M. Müller-Lennert et al. [175] and by M. Wilde, A. Winter,
and D. Yang [260] (Sec. 7.3) are likely to find many applications in quantum information theory.
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Since they are simply related for α = 1/2 to the Bures distance, one may wonder if an analog of
Proposition 8.3.1 could be true also for Sα with α different from 1/2, that is, if Sα(ρ, σ) could be
obtained as a supremum of the classical Rényi divergence for the set of outcome probabilities p and
q corresponding to measurements on ρ and σ.

(c) Properties of the state ensemble {ρi, ηi} in Proposition 12.2.3.

Our main result in chapter 12 is a link between the geometric discord and the minimal error prob-
ability in the discrimination of the states from the ensemble {ρi, ηi} specified in Proposition 12.2.3.
We have shown that this state ensemble is given in terms of the conditional states of a von Neu-
mann measurement, as summarized in Fig. 12.1. This suggests that the ensemble {ρi, ηi} has special
properties from a quantum information perspective, which should be investigated.

RELATED PROJECTS

La science est surtout une prise de conscience de plus en plus complète de ce qui peut et doit être découvert.

(B. Vian)

1) Dynamics of open quantum systems: rigorous derivation of non-Markovian
master equations

Starting with the pioneering works of V. Jakšić and C.-A. Pillet [Ann. Inst. H. Poincaré Phys. Théor.
62, 47 (1995); Comm. Math. Phys. 176, 619 (1996)], the mathematical analysis of open quantum
systems has mainly focused in the last decades on large time behaviors, in particular the relaxation
to equilibrium or evolution towards stationary states. However, physicists are more often interested
by intermediate times. For instance, as stressed in chapters 1-3, decoherence effects are studied with
the help of master equations giving the time evolution of the system state. In the weak coupling limit
(van Hove limit), which consists in letting the system-environment coupling constant λ go to zero
while rescaling the time like t = λ−2τ with τ fixed, one obtains a Markovian master equation of the
Lindblad type [159]. This limit was put on a rigorous footing by E.B. Davies in the seventies [73].
However, it is well known that the weak coupling limit does not exist if the system Hamiltonian HS

has dense or continuous spectrum, because it is based on a spectral averaging. For small nonzero
coupling constants λ, one obtains a good approximation of the exact dynamics provided that the
spectral gaps between neighboring eigenvalues of HS are much larger than the damping constant γ
appearing in the Lindblad equation. To describe the dynamics of open systems with small energy
gaps, which are common in condensed matter, physicists often rely on the time-dependent Bloch-
Redfield master equation [46], which is perturbative in λ but does not involve any spectral averaging.
This equation also includes some small-time non-Markovian effects. I have a long-standing project to
justify rigorously this time-dependent Bloch-Redfield equation, by showing that the trace norm of the
difference between the solution of this equation and the exact reduced density matrix ρS(t) is small for
small coupling constants λ and fixed times t. More precisely, according to unpublished calculations I
have made some years ago, the error should be of the order of λ4t+ λ6t2. I would like to show that
this bound is optimal, that is, to find a specific example of system coupled to a bath which does not
return to a stationary state and for which the error grows with time like λ4t. An intriguing fact is
that I discovered another master equation, slightly different from the Bloch-Redfield equation, which
leads to comparable errors. I suspect that there exists a whole family of such equations. In order to
find which one is better to use, it would be of interest to compare the corresponding stationary states.
Although in principle the master equation approximates badly the exact dynamics at large times, in
many situations one may expect firstly that this equation has a stationary state ρS(∞) coinciding
with the exact stationary state up to fourth order in λ, and secondly that its solution is already close
to ρS(∞) at intermediate times. Another interesting problem is to derive master equations including
higher order terms in the coupling constant λ.
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2) Rigorous derivation of the Bose-Hubbard model for bosons trapped in a double
well potential

A lot of progress has been made in the last decade in the mathematical physics community on the
rigorous treatment of interacting bosons. The starting issue has been the justification of the mean-
field approximation, which consists in assuming that the atoms are independent but each atom feels an
effective mean-field potential created by the other atoms. The linear many-body problem is turned in
the mean-field limit into a non-linear one-body problem. For trapped neutral atoms, the interactions
are short range and are usually replaced by a contact interaction, leading to the celebrated Gross-
Pitaevskii equation. This equation has been justified rigorously from the many-body problem in a
seminal series of works by E.H. Lieb, R. Seiringer, and J. Yngvason [Phys. Rev. A. 61, 043602
(2000); Phys. Rev. Lett. 94, 080401 (2005)], E.H. Lieb, R. Seiringer, J.P. Solovej, and J. Yngvason
[Oberwolfach Seminar Series 34 (Birkhäuser, Boston, 2005)], and E.H. Lieb and R. Seiringer [Comm.
Math. Phys. 264, 505-537 (2006)]. In these works, it was shown that the ground state energy of the
N -body Hamiltonian converges to the minimal energy of the Gross-Pitaevskii energy functional in
the limit of a large number of atoms N . More recently, a rigorous treatment of Bogoliubov’s theory
has been obtained (see [J. Derezinski and M. Napiórkowski, Excitation spectrum of interacting bosons
in the mean-field infinite-volume limit, arXiv:1305.3641], [P. Grech and R. Seiringer, Comm. Math.
Phys. 322, 559 (2013)], [M. Lewin, P.T. Nam, S. Serfaty, and J.P. Solovej, Bogoliubov spectrum of
interacting Bose gases, arXiv:1211.2778]). The Bogoliubov theory gives the sub-leading correction
(beyond the mean-field) to the ground state energy and predicts the excitation spectrum, which is
of crucial importance for the description of superfluid properties of Bose gases.

I started recently to work with N. Rougerie on the many-body problem for interacting bosons trapped
in a symmetric double-well potential. The main goal is to justify rigorously in the limit N → ∞
the two-mode Bose-Hubbard Hamiltonian (3.1) used in chapter 3 to describe the dynamics of Bose-
Josephson junctions. In a first stage, one can obtain the correct ground state when the tunneling
between the two wells is much smaller than the atomic interactions and in the opposite regime where
tunneling dominates interactions. In the first limit it is energetically favorable to have half of the
atoms in each well, so that the ground state is the Fock state |N/2, N/2〉, whereas in the second
limit the ground state is the spin coherent state (3.7), i.e., all atoms are in the same one-body state
delocalized in the two wells. For a periodic trapping potential with infinitely many wells, these
localized and delocalized states characterize the Mott insulator and superfluid phases, respectively.
The energy difference per atom between the localized and delocalized states is the sum of a term
of the order of 1/N and of the tunneling amplitude between the two wells (which is exponentially
small in the inter-well distance). Therefore, to determine the ground state energy one has to include
the sub-leading terms in N given by Bogoliubov’s theory. Note that a possibly better Hamiltonian
for describing the dynamics of the atoms trapped in the double-well potential could be obtained as
follows. One first determines the minimizer of the Gross-Pitaevskii energy functional with a fixed
number of atoms in each well, then replaces these atom numbers by the number operators n1 and n2

in each mode, and finally adds the tunneling term K(a†1a2 + a†2a1). This Hamiltonian differs from
the Bose-Hubbard Hamiltonian (3.1) by additional terms involving powers of n1 and n2 higher than
two.
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Appendix A

Operator monotone and operator

convex functions

We recall in this appendix some basic facts about operator monotone and operator convex functions. We refer
the reader to the lecture notes [50] and the book [38] for more complete presentations of these notions.

We denote by B(H)+ the set of non-negative operators on H, with dim(H) = n <∞. A function f : R+ → R

is operator convex if for any n × n matrices A,B ∈ B(H)+ and any 0 ≤ η ≤ 1, it holds f((1 − η)A + ηB) ≤
(1 − η)f(A) + ηf(B). It is strictly operator convex if the inequality holds with equality if and only if η ∈ 0, 1
or A = B. It is operator concave if −f is operator convex. It is operator monotone-increasing if for any
A,B ∈ B(H)+, A ≤ B ⇒ f(A) ≤ f(B), and operator monotone-decreasing if the reverse equality holds.

It is not hard to show (see e.g. [50]) that f(x) = x−1 is operator monotone-decreasing and strictly operator
convex. Clearly, this is then also true for f(x) = (x+t)−1 for any t ≥ 0. According to the integral representation

Aα =
sin(απ)

π

∫ ∞

0

dt tα
(1
t
− 1

t+A

)
, (1)

it follows that fα(x) = xα is operator monotone-increasing and strictly operator concave for 0 < α < 1.
Similarly, one shows that fα is operator monotone-decreasing and operator convex for α ∈ [−1, 0] and operator
convex for α ∈ [1, 2]. However, for instance the square function f2 is not operator monotone and the cube
function f3 is not operator convex. One can establish that g(x) = lnx and f(x) = x lnx are operator concave
and operator convex, respectively, thanks to the identities

lnA = lim
α→0

α−1(Aα − 1) , A lnA = lim
α→1

Aα −A

α− 1
. (2)

Another example of monotone-increasing function is f(x) = (x− 1)/ lnx =
∫ 1

0 dαxα.
Operator monotonicity is much stronger than usual monotonicity of real functions. This is clear from

Löwner’s theorem, which states that if f : (−1, 1) → R is operator monotone and non-constant, then f admits
the integral representation

f(x) = f(0) + f ′(0)

∫ 1

−1

dµ(t)
x

1− xt
, (3)

where µ is a probability measure on [−1, 1] (see [38], Corollary V.4.5). Furthermore, if f : R+ → R+ is
continuous, then f is operator monotone if and only if it is operator concave ([38], Theorem V.2.5). The fact
that concavity implies monotonicity is easily obtained by noting that if 0 ≤ A ≤ B, C = B − A ≥ 0, and
0 ≤ η < 1, then f(ηB) ≥ ηf(A) + (1 − η)f(η(1 − η)−1C) (by concavity). As f(x) ≥ 0 the second term in the
right-hand side is non-negative and thus f(ηB) ≥ ηf(A). Letting η → 1 we get f(B) ≥ f(A). The converse
implication can be shown by similar arguments as those used to establish (4) below and by invoking the fact
that if (4) is satisfied for any contraction C then f is operator convex (see [38] for more detail).

Another remarkable result valid for continuous functions f : [0, a) → R is that f is operator convex and
f(0) ≤ 0 if and only if g(x) = x−1f(x) is operator monotone on (0, a) ([38], Theorem V.2.9). Similarly, for
functions f : (−1, 1) → R of class C2, if f is operator convex and f(0) = 0 then g(x) is operator monotone
([38], Corollary V.3.11). An integral representation for non-linear operator convex functions f can be obtained
with the help of the last property, by applying (3) to g(x).
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If f : R+ → R is operator convex and f(0) ≤ 0, then

f(C∗AC) ≤ C∗f(A)C (4)

for any contraction C ∈ B(H), ‖C‖ ≤ 1, and any A ∈ B(H)+. This inequality can be shown as follows [112].
Let us consider the matrices

Â =

(
A 0
0 0

)
, Û± =

(
C ±D
E ∓C∗

)
(5)

with D =
√
1− CC∗ and E =

√
1− C∗C (the latter operators are well defined since ‖C‖ ≤ 1). An explicit

calculation shows that Û± is unitary and

(
C∗AC 0

0 DAD

)
=

1

2

∑

ǫ=±
Û∗
ǫ Â Ûǫ . (6)

If f is operator convex and f(0) ≤ 0, then

(
f(C∗AC) 0

0 f(DAD)

)
= f

(
C∗AC 0

0 DAD

)

≤ 1

2

∑

ǫ=±
f(Û∗

ǫ Â Ûǫ)

≤ 1

2

∑

ǫ=±
Û∗
ǫ

(
f(A) 0
0 0

)
Ûǫ =

(
C∗f(A)C 0

0 Df(A)D

)
. (7)

This implies in particular the bound (4). Conversely, it is shown in [112] that if this bound is satisfied for any
orthogonal projection C and any A ∈ B(H)+, then f is operator convex and f(0) ≤ 0.

Let M be a quantum operation on B(H) and f : R+ → R be operator convex. Then the following Jensen-
type inequality holds [75]:

f(M∗(A)) ≤ M∗(f(A)) , A ∈ B(H)+ . (8)

A simple justification of this inequality is as follows. Since M∗(c 1) = c 1 for any constant c ∈ R, one may
assume without loss of generality that f(0) = 0. Let A ∈ B(H)+. According to Stinespring’s theorem (Sec. 5)
one can find a unitary operator U on an enlarged space H ⊗ HE and a vector |ǫ0〉 ∈ HE such that M∗(A) =
〈ǫ0|U∗A⊗ 1U |ǫ0〉. Let us set P0 = |ǫ0〉〈ǫ0|. Applying (4) with C = 1⊗ P0, one gets

f(M∗(A))⊗ P0 = f(1⊗ P0 U
∗A⊗ 1U 1⊗ P0)

≤ 1⊗ P0f(U
∗A⊗ 1U)1⊗ P0 = M∗(f(A)) ⊗ P0 . (9)
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Appendix B

Trace inequalities

In this appendix some inequalities involving the ‖ · ‖p-norms are stated or derived.

1) Let us first recall the triangle and “inverse triangle” inequalities: for any matrices A and B one has

‖A+ B‖p
{

≤ ‖A‖p + ‖B‖p if p ≥ 1

≥ ‖A‖p + ‖B‖p if 0 < p < 1.
(1)

This shows that the map A 7→ ‖A‖p defined by (4.2) is a norm for p ≥ 1, but this is not the case for p < 1.
One deduces the bound

tr[
√
|A|2 + |B|2] ≤ tr |A|+ tr |B| (2)

by applying (1) for p = 1 to the matrices

Â =

(
A 0
0 0

)
, B̂ =

(
0 0
B 0

)
.

2) Another standard result is the Lieb-Thirring inequality [155]. We quote here without proof a generalization
of this inequality derived by Araki [14]. Let k > 0 and A and B be non-negative operators. If α ≥ 1 then

∥∥B 1
2AB

1
2

∥∥α
αk

≤
∥∥B α

2 AαB
α
2

∥∥
k
. (3)

Taking α → α−1 and k → k/α, one can deduce that the reverse inequality holds true if 0 ≤ α ≤ 1.

3) Next, let us show that for any square matrices A, B, C, and D of the same size, the following bound
generalizing the Cauchy-Schwarz inequality ‖AB‖1 ≤ ‖A‖2‖B‖2 holds true [173]

‖AB + CD‖21 ≤
(
‖A‖22 + ‖D‖22

)(
‖B‖22 + ‖C‖22

)
. (4)

Actually, let us form the 2× 2 block matrices

Ê =

(
A∗ 0
C∗ 0

)
, F̂ =

(
B 0
D 0

)
.

Then
‖AB + CD‖21 =

∥∥Ê∗F̂
∥∥2
1
≤ ‖Ê‖22‖F̂‖22 =

(
‖A‖22 + ‖C‖22

)(
‖B‖22 + ‖D‖22

)
.

But CD = UD∗C∗U with U unitary by the polar decomposition. Applying the above inequality with C
and D replaced by UD∗ and C∗U and using the unitary invariance of ‖ · ‖2, one gets the desired result
(4).

4) Let B = (Bij)
m
i,j=1 be a non-negativem×m operator-valued matrix, whose entries Bij are given by pi×pj

matrices. Denote by A =
√
B = (Aij)

m
i,j=1 the square root of B. Then for any j = 1, . . . ,m, one has [29]

∑

i,i6=j

∥∥Aij
∥∥2
2
≤ 1

2

∑

i,i6=j

∥∥Bij
∥∥
1
. (5)
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Let us first establish (5) form = 2. Thanks to the singular value decomposition and the unitary invariance
of the ‖ · ‖p-norms, we may assume without loss of generality that A12 is a diagonal p1 × p2 matrix,
i.e.A12 =

∑p
k=1

√
νk|k〉〈k| with p = min{p1, p2}. By a standard argument, the non-negativity of A implies

|〈ϕ1|A12|ϕ2〉|2 ≤ 〈ϕ1|A11|ϕ1〉〈ϕ2|A22|ϕ2〉

for any vectors |ϕ1〉 ∈ Cp1 and |ϕ2〉 ∈ Cp2 . Using this bound and the relation B12 = A11A12 + A12A22,
we find

‖A12‖22 =

p∑

k=1

νk ≤
p∑

k=1

√
νk〈k|A11|k〉〈k|A22|k〉 ≤

1

2

p∑

k=1

√
νk
(
〈k|A11|k〉+ 〈k|A22|k〉

)
=

1

2
‖B12‖1 .

Consider now the general case m ≥ 2. The idea is to write B as a 2 × 2 block matrix such that the
upper left and lower right blocks are the (m− 1)× (m− 1) matrix (Bij)

m−1
i,j=1 and the single entry Bmm,

respectively, whereas the upper right (lower left) block forms a column (line) vector with entries Bim
(Bmi). A similar block decomposition can be made for A. Applying the foregoing result for m = 2, one
gets

∑

i,i6=m

∥∥Aim
∥∥2
2
=

∥∥∥∥∥∥∥




A1m

...
A(m−1)m




∥∥∥∥∥∥∥

2

2

≤ 1

2

∥∥∥∥∥∥∥




B1m

...
B(m−1)m




∥∥∥∥∥∥∥
1

=
1

2

∥∥∥∥
√ ∑

i,i6=m
|Bim|2

∥∥∥∥
1

≤ 1

2

∑

i,i6=m
‖Bim‖1 ,

where we have used (2) in the last bound. This proves (5) for j = m. By an appropriate unitary
conjugation, one deduces that the bound holds for any j.

5) The following trace inequality plays a central role in the derivation of the quantum Chernoff bound [19]:
for any positive square matrices A > 0 and B > 0 and any 0 ≤ s ≤ 1,

1

2

(
tr(A) + tr(B)− tr |A−B|

)
≤ tr(A1−sBs) . (6)

This inequality was first shown in [19], but the proof in this reference is not very transparent. We present
here a much simpler proof due to Ozawa, which has been first reported in [140]. Denoting by O± = (|O|±
O)/2 ≥ 0 the positive and negative parts of O, one may express tr |A−B| as 2 tr(A−B)+− tr(A)+tr(B).
Thus (6) is equivalent to

tr
(
(As −Bs)A1−s) ≤ tr(A−B)+ .

Since f(x) = xs is operator monotone (see Appendix A) and A ≤ A + (A − B)− = B + (A − B)+, one
has As ≤ (B + (A−B)+)

s. Hence

tr
(
(As −Bs)A1−s) ≤ tr

([
(B + (A−B)+)

s −Bs
]
A1−s)

≤ tr
([
(B + (A−B)+)

s −Bs
]
(B + (A−B)+)

1−s) ,

where the second inequality relies on the similar bound Bs ≤ (B+(A−B)+)
s. By rearranging the product

in the last trace and using the latter bound with s↔ (1 − s), one gets

tr
(
(As −Bs)A1−s) ≤ tr(B) + tr(A−B)+ − tr

(
Bs(B + (A−B)+)

1−s) ≤ tr(A−B)+ .

This concludes the justification of (6).
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Appendix C

List of publications

(1a) D. Spehner, F. Haake, Quantum measurements without macroscopic superpositions,
Phys. Rev. A 77 (2008), 052114

(1b) D. Spehner, F. Haake, Decoherence bypass of macroscopic superpositions in quantum measurement, J.
Phys. A: Math. Theor. 41 (2008), 072002

(1c) D. Spehner, F. Haake, Quantum measurements without Schrödinger cat states,
J. Phys.: Conf. Series 84 (2007), 012018 (conference proceedings)

(2a) S. Vogelsberger, D. Spehner, Average entanglement for Markovian quantum trajectories, Phys. Rev. A 82
(2010), 052327

(2b) S. Vogelsberger et D. Spehner, Entanglement evolution for quantum trajectories, J. Phys.: Conf. Series
306 (2011), 012029 (conference proceedings)

(3a) D. Spehner, K. Pawlowski, G. Ferrini, A. Minguzzi, Effect of one-, two-, and three-body atom loss processes
on superpositions of phase states in Bose-Josephson junctions, Eur. Phys. J. B 87 (2014), 157

(3b) K. Pawlowski, D. Spehner, A. Minguzzi, G. Ferrini, Macroscopic superpositions in Bose-Josephson junc-
tions: Controlling decoherence due to atom losses, Phys. Rev. A 88 (2013), 013606

(3c) G. Ferrini, D. Spehner, A. Minguzzi, F.W.J. Hekking, Effect of phase noise on quantum correlations in
Bose-Josephson junctions, Phys. Rev. A 84 (2011), 043628

(3d) G. Ferrini, D. Spehner, A. Minguzzi, F.W.J. Hekking, Noise in Bose-Josephson junctions:
Decoherence and phase relaxation, Phys. Rev. A 82 (2010), 033621

(4a) D. Spehner, Quantum correlations and Distinguishability of quantum states,
J. Math. Phys. 55 (2014), 075211 (review article)

(4b) D. Spehner, M. Orszag, Geometric quantum discord with Bures distance: the qubit case,
J. Phys. A: Math. Theor. 47 (2014), 035302

(4c) D. Spehner, M. Orszag, Geometric quantum discord with Bures distance,
New J. of Phys. 15 (2013), 103001

Other publications since 2006 not described in the present manuscript:

• S.A. Reyes, L. Morales-Molina, M. Orszag, D. Spehner, Harnessing gauge fields for maximally entangled
state generation, Eur. Phys. Lett. 108 (2014), 20010

• W. De Roeck, D. Spehner, Derivation of some translation-invariant Lindblad equations for a quantum
Brownian particle, J. Stat. Phys. 150 (2013), 320

• A. Faggionato, H. Schulz-Baldes, D. Spehner, Mott law as lower bound for a random walk in a random
environment, Comm. Math. Phys. 263 (2006), 21-64

161





Bibliography

[1] B. Aaronson, R.L. Franco, and G. Adesso, Comparative investigation of the freezing phenomena for quantum
correlations under nondissipative decoherence, Phys. Rev. A 88, 012120 (2013)

[2] P.M. Alberti, A note on the transition-probability over C∗-algebras, Lett. Math. Phys. 7, 25-32 (1983)

[3] M. Ali, A.R.P. Rau, and G. Alber, Quantum discord for two-qubit X states, Phys. Rev. A 81, 042105
(2010)

[4] A.E. Allahverdyan, R. Balian, and T.M. Nieuwenhuizen, Quantum measurement as a driven phase transi-
tion: An exactly solvable model, Phys. Rev. A 64, 032108 (2001)

[5] A.E. Allahverdyan, R. Balian, and T.M. Nieuwenhuizen, Curie-Weiss model of the quantum measurement
process, Europhys. Lett. 61, 452-458 (2003)

[6] A.E. Allahverdyan, R. Balian, and T.M. Nieuwenhuizen, Understanding quantum measurement from the
solution of dynamical models, Phys. Rep. 525, 1-166 (2013)

[7] A.E. Allahverdyan, R. Balian, and T.M. Nieuwenhuizen, Statistical theory of ideal quantum measurement
processes, preprint arXiv:1303.7257

[8] M.P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S.P. Walborn, P.H. Souto Ribeiro, and L. Davidovich,
Environment-Induced Sudden Death of Entanglement, Science 316, 579-582 (2007)

[9] T. Ando, Convexity of certain maps on positive definite matrices and applications to Hadamard products,
Lin. Alg. and Appl. 26, 203-241 (1979)

[10] J. Anglin, Cold, dilute, trapped bosons as an open quantum system, Phys. Rev. Lett. 79, 6-9 (1997)

[11] H. Araki, A remark on Bures distance function for normal states, Publ. RIMS Kyoto Univ. 6, 477-482
(1970)

[12] H. Araki, Relative entropy for states of von Neumann algebras, Publ. RIMS Kyoto Univ. 11, 809-833 (1976)

[13] H. Araki and T. Masudai, Positive cones and Lp-spaces for von Neumann algebras, Publ. RIMS Kyoto
Univ. 18, 339-411 (1982)

[14] H. Araki, On an Inequality of Lieb and Thirring, Lett. Math. Phys. 19, 167-170 (1990)

[15] A. Aspect, J. Dalibard, and G. Roger, Experimental Test of Bell’s Inequalities Using Time-Varying Ana-
lyzers, Phys. Rev. Lett. 49, 1804 (1982)

[16] S. Attal and Y. Pautrat, From repeated to continuous quantum interactions, Ann. H. Poincaré Phys. Théor.
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[31] I. Bengtsson and K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement
(Cambridge University Press, Cambridge, 2006)

[32] C.H. Bennett, Quantum Cryptography Using Any Two Nonorthogonal States, Phys. Rev. Lett. 68, 3121
(1992)

[33] C.H. Bennett, H.J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local
operations, Phys. Rev. A 53, 2046 (1996)

[34] C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Wootters, Mixed-state entanglement and quantum
error correction, Phys. Rev. A 54, 3824 (1996)

[35] C.H. Bennett, D.P. DiVincenzo, C.A. Fuchs, T. Mor, E. Rains, P.W. Shor, J.A. Smolin, andW.K. Wootters,
Quantum nonlocality without entanglement, Phys. Rev. A 59, 1070 (1999)

[36] J.A. Bergou, Discrimination of quantum states, J. Mod. Opt. 57(3), 160-180 (2010)

[37] J.A. Bergou, U. Herzog, and M. Hillery, Discrimination of quantum states in: Quantum State Estimation,
(Lecture Notes in Physics vol 649), M. Paris and J. Rehacek Eds. (Springer, Berlin, 2004), pp. 417-465

[38] R. Bhatia, Matrix Analysis (Springer, 1991)
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