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Abstract

We discuss two physical models (see [1], [2], [3], and [4]) involving a small quantum
system coupled to a macroscopic apparatus. These models are simple enough to allow for
explicit calculations of the joint dynamics of the measured system and the macroscopic
variable of the apparatus used for readout (pointer). We study the two fundamental
dynamical processes: (i) the entanglement of the measured system with the apparatus
and (ii) decoherence of distinct pointer readouts, in some situations where these two
processes proceed simultaneously.

1 Introduction

Since the birth of quantum mechanics, physicists and mathematicians have devoted a lot of
works to the theoretical description of measurement processes on quantum systems (see e.g. [5,
6, 7, 8, 9, 10, 11]). Quantum measurements play a major role in quantum theory since they give
us access to the quantum word. The primary motivation of these works was to investigate the
foundation of the quantum theory and its interpretation problems, a subject still under debate.
A renewal of interest for measurement processes came in the last decades from experiments
which achieved to store, manipulate and study single quantum systems (one atom in a magnetic
trap, few photons in a single mode of an optical cavity, charge or phase qubits in a Josephson
junction,..., see e.g. the lectures of S. Seidelin, L. Lévy and L. Faoro). It has been realized
that measurements can be used to manipulate such systems, by means of the quantum Zeno
effect or with quantum trajectories (see the lecture of P. Degiovanni). These recent wonderful
experiments have open the route to (and are now being stimulated by) applications to quantum
information. Quantum measurements play an important role in this rapidly growing field.
For instance, a measurement has to be performed to extract classical information out of the
transmitted quantum information in quantum cryptography, or to get the result at the end of
a quantum computation.

The aim of these lectures is neither to give an overview of the various theories proposed in
the literature in order to explain the reduction of the wavepacket nor to discuss what could
be a consistent interpretation of the quantum theory. Our goal is to discuss some specific
concrete models describing a quantum measurement (QM). These models will be studied within
the framework of modern quantum theory and its so-called “Copenhagen” interpretation. A
measurement is viewed here as a quantum dynamical process originating from a unitary evolution
on the microscopic scale.
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2 Lecture 1: what is a good model for a QM?

2.1 Macroscopic measuring apparatus

In order to measure the value of an observable S of a quantum or of a classical system S,
this system must interact (during a definite period of time) with a measuring apparatus A, in
such a way that some information on the state of S be transfered to A. If the object S is a
classical macroscopic system, the perturbation of its state resulting from this interaction can
be neglected, at least for a good enough measuring apparatus (such an apparatus can always
be obtained in principle via technical improvements). On the contrary, it is never possible to
neglect the perturbation made on the state of a small quantum object S during its interaction
with A (excepted if S is initially in an eigenstate of S). For instance, if one sheds light on
a small particle to measure its position, the photons will give small momentum kicks to the
particle in arbitrary directions; the resulting uncertainty ∆p in the momentum of the particle
satisfies ∆p∆x & ~, where ∆x is the precision of the position measurement [12].

Let us specify the properties that an ideal measuring apparatus A must necessarily have.

1. A must be macroscopic and possesses a “pointer” variable X capable of a quasi-classical
behaviour. This variable is used as readout of the measurement results (e.g. X can be
the position of the centre-of-mass of an ammeter needle). The initial value x0 of X is
precisely known and its fluctuations remain negligible on the macroscopic scale during
the whole measurement.

2. At the end of the measurement, there must be a one-to-one correspondence between the
eigenvalues s of the measured observable S and the values xs of X. These values must
moreover be macroscopically distinguishable for distinct s (e.g., the positions xs of the
ammeter needle associated to different s are separated by macroscopic distances).

3. There is initially no correlations between A and S when they are put in contact and start
to interact.

Thanks to the first requirement, the classical pointer will not be perturbed noticeably by
an observer looking at the result of the measurement (see above). This observer does not
need to perform a new QM to obtain the result. The second requirement means that the
interaction between S and A provokes a macroscopic change in the state of A. Since S is a
small system, it can only perturb A weakly and this small perturbation must be subsequently
amplified, so as to lead to macroscopic changes in the pointer variable X. Such amplifications
of small signals are used e.g. in photo-detectors. Many measurements actually involve a chain
{An}n=1,...,N of apparatus (cascade): only the first apparatus A1 in the chain (which is not
necessarily macroscopic) is in contact with S; each apparatus An measures one after the other
the observable Xn−1 of the previous apparatus; finally, the observer reads the result on the
pointer variable XN of the last apparatus AN (which satisfies the above requirements 1 and 2).
In what follows, we will not deal with the complications included in such chains of apparatus,
but will restrict ourselves to the case of a single apparatus A. In view of the requirements 1-3,
we assume that A is initially in a metastable state. In the model discussed in Sec. 3, this state
is a quasi-bound state of a one-dimensional scattering problem; in the model of Sec. 4, it is an
unstable state which may relax into one among several equilibria of the apparatus, the latter
being in the critical regime of a phase transition.

Because the apparatus is made of atoms, it is appropriate to assume that:

4. A can be described quantum-mechanically.
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Figure 1: Model for a QM: the quantum object S is coupled to a macroscopic measuring appa-
ratus A having a macro-observable X; the apparatus A is coupled to a bath B with infinitely
many degrees of freedom. All relevant Hamiltonians are shown.

Since A is macroscopic, its precise microscopic state will be unknown; A must then be
described with the help of quantum statistical mechanics. The initial state of A is a given by a
density matrix ρ

(0)
A (mixed state). To each eigenvalue s of the measured observable corresponds

a specific apparatus state with density matrix ρ
(s)
A (which does not depend on the initial state

of S):

Object S Apparatus A

eigenprojector Ps of the meas. observ. S ↔ ρ
(s)
A

eigenvalue s of S ↔ pointer variable xs = tr(ρ
(s)
A X)

fluctuations ∆xs = (tr(ρ
(s)
A X2) − x2

s)
1/2,

∆xs ≪ min
s 6=s′

|xs − xs′ | .

2.2 Coupling the apparatus with a bath

It is well known that macroscopic bodies cannot be considered as isolated from their environ-
ment (the typical energy difference between their nearest levels being extremely small, any
small interaction with the environment may induce transitions between these levels). Hence
statistical physics does not only enters in a QM because the initial state of A is a mixed state,
but also because one must take into account the coupling of A with its environment or with
some uncontrollable microscopic degrees of freedom of the apparatus itself (which we separate
from A and call altogether the “bath B” in what follows). As a result of the coupling between
A and B, the combined system S + A undergo an irreversible evolution (see the lectures of
C.-A. Pillet and S. Attal). A good model for a QM therefore necessarily includes all three
subsystems S, A and B (see Figure 1); both the S-A and the A-B couplings play an important
role. The total system S + A + B can be assumed to be isolated and its dynamics is given by
Schrödinger’s equation. The density matrix of S +A+B at time t is given in terms of its value
at t = 0 by

ρSAB(t) = e−it(HS+HA+HB+HSA+HAB)ρ
(0)
SAB e

it(HS+HA+HB+HSA+HAB) (1)

whereHS, HA andHB are the Hamiltonians of the object, apparatus and bath andHSA andHAB

are the object-apparatus and apparatus-bath interaction Hamiltonians. The direct coupling
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between S and B does not play an important role in the measurement 1 and has been neglected.
We shall assume that we have no access to bath observables and define the object-apparatus
density matrix by tracing out the bath degrees of freedom in the density matrix of S +A+B,

ρSA(t) = tr
B
ρSAB(t) (2)

(here trB denotes the partial trace over the bath B).

2.3 The von Neumann measurement postulate

As one learns during the first lectures in quantum mechanics, only probabilities of the possible
measurement results can be predicted, even if the initial wavefunction |ψ0〉 of the quantum
object S is perfectly known (i.e., S is in a pure state). Probabilities are introduced as a
fundamental aspect of the theory, unlike in classical statistical physics where they result from
the impossibility to know in practise the positions and velocities of all particles. According
to the requirement 3 of Sec. 2.1, the initial object-apparatus state is a product state ρ

(0)
SA =

|ψ0〉〈ψ0| ⊗ ρ
(0)
A . Let cs = 〈s|ψ0〉 be the component of |ψ0〉 in the eigenbasis {|s〉} of S. We shall

assume here for simplicity that S has a discrete and non-degenerate spectrum. The state ρ
(0)
SA

is transformed during the measurement as follows:

ρ
(0)
SA =

∑

s,s′

csc
∗
s′|s〉〈s′| ⊗ ρ

(0)
A −→ ρpost meas.

SA =
∑

s

|cs|2 |s〉〈s| ⊗ ρ
(s)
A . (3)

To the expense that the density matrix ρpost meas.
SA has the same interpretation as an ensemble

as one gives to density matrices in statistical physics, (3) is the mathematical formulation of:

• Born rules: the value of the pointer variable X after the measurement is xs = tr(ρ
(s)
A X)

with probability |cs|2.

• von Neumann postulate: given that X has value xs0
, the state of the object S imme-

diately after the measurement is |s0〉.

The meaning of Born rules is that, if one repeats many times the measurement on identical
objects initially in the same state |ψ0〉, the fraction of results “X = xs” will be |cs|2. The von
Neumann postulate (= reduction of the wavepacket), on the contrary, concerns a single run of
the measurement. It can be interpreted in various ways: is the collapse

∑

s

|cs|2|s〉〈s| ⊗ ρ
(s)
A −→ |s0〉〈s0| ⊗ ρ

(s0)
A given that the result is “X = xs0

” (4)

a real or an apparent collapse? We prefer the second terminology and share the point of view
of D. Bohm in his 1951 book (from which the following citation is taken, see [7], Sec. 22.10):
“The sudden replacement of the statistical ensemble of wavefunctions by a single wavefunction
represents absolutely no change in the state [of the object], but is analogous to the sudden
changes in classical probability functions which accompany an improvement of the observer’s
information”. In other words, transformation (4) is simply due to the gain of information

1Actually, it turns out that for a small quantum object S strongly coupled to the pointer P , decoherence
processes caused by a direct S-B coupling have a much smaller effect than the decoherence resulting from the
quantum correlations between S and B which develop in time thanks to the S-P and P-B couplings, i.e., thanks
to the indirect coupling of S with B via the pointer P .
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obtained from the knowledge of what the actual value of X is (in mathematical terms one
should speak of conditional probabilities); the measurement problem is not to understand this
“collapse” but to explain what kind of physical process can lead to the state transformation (3).
The main problem is that it is not always obvious to give to the density matrix in the r.h.s. of
(3) the necessary interpretation as an ensemble, in particular if this density matrix is obtained
as a result of a partial tracing over the bath degrees of freedom of an object-apparatus-bath
state as in (2). In Sec. 3 and 4, we will show on concrete models that the reduced object-
apparatus density matrix ρSA(t) is very close to the r.h.s. of (3) at times t larger than the
measurement time tmeas, but we will not address the above-mentioned delicate problem of the
interpretation of ρSA(t) as an ensemble 2.

It is worth noting that (3) implies in particular that an object initially in an eigenstate |s〉
of the measured observable remains unchanged during the measurement,

|s〉〈s| ⊗ ρ
(0)
A −→ |s〉〈s| ⊗ ρ

(s)
A . (5)

Let us assume that one can find a unitary operator U acting on the Hilbert space of S +
A which implements the transformation (3), i.e., such that ρpost meas.

SA = U ρ
(0)
SA U

†. Writing

ρ
(0)
A =

∑
i pi|χ(0)

i 〉〈χ(0)
i | with pi > 0, it follows from (5) that U |s〉 ⊗ |χ(0)

i 〉 = |s〉 ⊗ |χ(s)
i 〉 and

ρ
(s)
A =

∑
i pi|χ(s)

i 〉〈χ(s)
i |. By virtue of the linearity U , one gets for the initial state considered

in (3):

ρent
SA = Uρ

(0)
SA U

† =
∑

s,s′

csc
∗
s′|s〉〈s′| ⊗ ρ

(s,s′)
A (6)

2The lack of information in the reduced density matrix ρSA(t) defined in (2) concerns the entanglement
with the bath. To simplify the discussion, let us assume that A and B are initially uncorrelated and in pure
states |χ(0)〉 and |Φ(0)〉, respectively. At time t, the total system S + A + B has wavefunction |ΨSAB(t)〉 =∑

s cs|s〉 ⊗ |χ(s)(t)〉 ⊗ |Φ(s)(t)〉. Let us imagine that the bath wavefunctions |Φ(s)(t)〉 are nearly orthogonal for
different s. (This orthogonality is indeed produced by the dynamics after a short decoherence time tdec when a
macroscopic system like A is coupled to a bath, with e.g. a coupling proportional to X). In this situation, the
reduced object-apparatus density matrix (2) is indeed almost equal to the density matrix ρp. meas.

SA in the r.h.s.

of (3), with ρ
(s)
A = |χ(s)(t)〉〈χ(s)(t)|. If we increase the amount of information at our disposal, we will not find

that S +A is in state |s0〉〈s0| ⊗ ρ
(s0)
A for a given s0, but that it is entangled with the bath B and that S +A+B

is in a linear superposition of the states |Ψ(s)
SAB(t)〉 = |s〉 ⊗ |χ(s)(t)〉 ⊗ |Φ(s)(t)〉. It may be impossible in practise

to distinguish (via an appropriate measurement) the entangled state |ΨSAB(t)〉〈ΨSAB(t)| from (a member of) a

statistical ensemble of systems S+A+B prepared in states |Ψ(s)
SAB(t)〉 with probability ps = |cs|2. Actually, one

can show in many models of system-bath interaction that 〈Φ(s′)(t)|O|Φ(s)(t)〉 ≃ 0 for s 6= s′ and times t≫ tdec

and for any local observable O of S + A + B. It follows that measurements on such local observables give no

information about the coherences csc
∗
s′ |Ψ(s)

SAB(t)〉〈Ψ(s′)
SAB(t)| for s 6= s′, which are present in the entangled state

|ΨSAB(t)〉〈ΨSAB(t)| but absent in the statistical mixture. Therefore one cannot make a distinction between the
two states. Nevertheless, even if one realizes that measuring other (nonlocal) observables is an impossible task,
so that the aforementioned coherences pertain to some set of “unavailable information”, it seems difficult to

say that S +A is really in one of the states |s〉〈s| ⊗ ρ
(s)
A . One should keep in mind that the identification of the

object-apparatus state with the reduced density matrix ρAS(t) amounts to identify a linear superposition with a
statistical ensemble, i.e., to ignore some quantum correlations which cannot be measured but exist nevertheless.
We have to face a much more subtle situation than in classical statistical physics, where one usually ignores some
microscopic degree of freedom without being obliged to ignore at the same time some fundamental correlations.
Let us quote D. Zeh ([9], chapter 2): “Identifying the [system-apparatus] superposition with an ensemble of
states (represented by a statistical operator ρ) which merely leads to the same expectation values 〈O〉 = tr(Oρ)
for an axiomatically limited set of observables O (such as local ones) would obviously beg the question. This
insufficient argument is nonetheless found widely in the literature (cf Haag 1992). It would be equivalent to a
quantum mechanical state space smaller than required by a general superposition principle.”.
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with ρ
(s,s′)
A =

∑
i pi|χ(s)

i 〉〈χ(s′)
i |. The superposition principle (= THE postulate of quantum

mechanics) thus makes it impossible that ρpost meas.
SA = U ρ

(0)
SA U

† for all object initial wavefunction
|ψ〉. In other words, (3) cannot be a unitary transformation. If that bothers you, remember
that irreversibility (and thus non-unitary dynamics) was to be expected from the very fact that
A is macroscopic and its coupling with its environment cannot be neglected (subsection 2.2).
The dynamics of A cannot be governed by the Schrödinger equation as for closed systems. It
is also worth noting that the two states in the r.h.s. of (3) and (6) do not have the same von

Neumann entropy: for instance, if the apparatus states ρ
(0)
A and ρ

(s)
A have all the same entropy 3,

ρpost meas.
SA has a higher entropy than ρ

(0)
SA by the amount −∑

s |cs|2 ln |cs|2. Hence the dynamical
process leading to (3) produces entropy if |ψ0〉 is not an eigenstate of S.

Another important difference between the two states in the r.h.s. of (3) and (6) is that the
former is a separable state, i.e., they are no quantum correlations between S and A, whereas the
latter is an object-apparatus entangled state. Let us recall that the apparatus wavefunctions
|χ(s)

i 〉 correspond to quasi-classical states with expectation values xs,i = 〈χ(s)
i |X|χ(s)

i 〉 ≈ xs

differing from each other on a macroscopic scale for distinct s (requirements 1 and 2 in Sec. 2.1).
Hence the state in the r.h.s. of (6) is a superposition of macroscopically distinguishable states
(a so-called “Schödinger cat state”).

A second implication of (5) concerns the object-apparatus interaction Hamiltonian HSA. In
order that all eigenstates |s〉 of S be left invariant by the object-apparatus interaction, HSA

must commute with the measured observable S. In all models studied below, we will consider
Hamiltonians of the form HSA = S ⊗ P where P is a macro-observable of the apparatus (e.g.
P = X). Finally, the object Hamiltonian HS does not play a significant role in an (ideal) QM:
if S is not a constant of motion for the free dynamics of the object, i.e., if [S,HS] 6= 0, in order
to fulfil (5) one must assume that the typical time TS of evolution of S under the dynamics
implemented by HS is much larger than the time duration tmeas of the measurement.

2.4 A simple example of apparatus: the Stern-Gerlach experiment

2.4.1 The three-partite system:

• Quantum object: spin 1/2 of an atom; the z-component of the spin S = σz is measured.

• Pointer variable: position X of the atom.

• Environment: screen (or fluctuations of the magnetic field in the magnet, or molecules in
the air between the magnet and the screen scattering the atomic beam).

The magnetic field inside the magnet can be approximated at the vicinity of the line y = z =
0 (along which the atoms move, see Fig. 2) by ~B(x, y, z) ≃ (Bz(0)+∂zBz(0)z)~ez (we ignore the
y-component of the inhomogeneous field). The object-pointer interaction Hamiltonian reads

HSA = µB∂zBz(0)Zσz

where Z is the position operator of the atom along the z-direction and µB the Bohr magneton.
The constant part in ~B contributes to the object Hamiltonian HS = µBBz(0)σz. Since we
ignore the component of the magnetic field in the x and y directions, σz is a constant of

3It seems necessary that all the possible final states ρ
(s)
A have the same entropy in order to avoid any bias in

the measurement produced by the apparatus.
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Figure 2: Stern-Gerlach apparatus for measuring the spin of an atom.

motion, [HS, σz] = 0. The atom moves freely in a perfect vacuum, so that HA = 0. The time
spent by the atom in the magnet is tint = lmat/kx (l is the length of the magnet, mat the atomic
mass, and ~ = 1).

2.4.2 Initial state

We assume that spin-orbit coupling is negligible, so that spin and position are uncorrelated
before the atom enters the magnet (requirement 3 of Sec. 2.1). Before it enters the magnet,
the spin of the atom is in an arbitrary linear superposition |ψ0〉 = c+| ↑〉+ c−| ↓〉 of eigenstates

of σz and the atom is in a wavepacket |χ(0)〉 with a sharply defined momentum ~k(0) = k
(0)
x ~ex

along x and momentum uncertainties ∆k
(0)
x ,∆k

(0)
x and ∆k

(0)
z .

2.4.3 Dynamics

The crossing of the magnet entangles the spin and position degrees of freedom of the atom,

(c+| ↑〉 + c−| ↓〉) ⊗ |χ(0)〉 → c+| ↑〉 ⊗ |χ(+)(tint)〉 + c−| ↓〉 ⊗ |χ(−)(tint)〉

where |χ(±)(tint)〉 = e∓iµB∂zBz(0)tintZ |χ(0)〉 is a wavepacket with a sharply defined momentum
~k± = k

(0)
x ~ex±µB∂zBz(0)tint ~ez (recall that Z is the generator of translations in the kz-momentum

space). After the exit of the magnet, the two wavepacket |χ(±)〉 separate from each other as
they propagate freely. The object-apparatus density matrix ρent

SA just before the atom hits the
screen (at time tmeas) is given by

(i) Premeasurement:
∑

s,s′=±

csc
∗
s′|s〉〈s′| ⊗ |χ(0)〉〈χ(0)| → ρent

SA =
∑

s,s′=±

csc
∗
s′|s〉〈s′| ⊗ |χ(s)〉〈χ(s′)|

where |χ(±)〉 are two wavepackets centred in position at z± ≃ ±µB∂zBz(0)tinttmeas/mat. By
requirements 1 and 2 in Sec. 2.2, the distance d ≈ 2µB∂zBz(0)tinttmeas/mat between the two

centres of these wavepackets should be macroscopic, i.e., the distance L ≃ k
(0)
x tmeas/mat be-

tween the magnet and the screen must be large. Moreover, the position uncertainty ∆z of the
two wavepackets should be much smaller than d. Taking into account the spreading of each
wavepacket, it is easy to show that this is the case if [7]

∆k(0)
z ≪ µB∂zBz(0)tint .
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This condition means that the peaks in momentum of the two wavepackets can be resolved at
the exit the magnet. The motion of the centres of the two wavepackets after the exit of the
magnet is well described by the laws of classical mechanics.

If the atom was in state ρent
SA at the end of the measurement this measurement would not

give a definite answer. The last stage of the measurement is the decoherence process. The
interaction of the atom with the molecules of the screen (or with any device measuring the
position of the atom) will destroy the coherence between the two wavepackets. All information
about the coherences in ρent

SA is “transfered” during this interaction to the environment degrees
of freedom and is irremediably lost:

(ii) Decoherence: ρent
SA =

∑

s,s′=±

csc
∗
s′ |s〉〈s′| ⊗ |χ(s)〉〈χ(s′)| .

→ ρpost meas.
SA =

∑

s=±

|cs|2|s〉〈s| ⊗ |χ(s)〉〈χ(s)|
(7)

Again, let us stress that the two atomic states ρent
SA and ρpost meas.

SA are quite different! For an
atom in state ρent

SA, one could in principle reconstruct a localised wavepacket and the spin state
c+| ↑〉+ c−| ↓〉 by recombining the two beams. For instance if c+ = c− = 1/

√
2, this would lead

to an eigenstate of σx with eigenvalue 1. However, for an atom in state ρpost meas.
SA one would

obtain the same mixed spin state |c+|2| ↑〉〈↑ | + |c−|2| ↓〉〈↓ | after having recombined the two
beam as when they were separated. For any value of c±, this state has a vanishing mean value
of σx.
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3 Lecture 2: Quantum object coupled to a pointer posi-

tion

We discuss in this lecture the model studied in Ref [3, 4]. The quantum object is coupled to
a single macroscopic variable of the measuring apparatus, e.g. its centre-of-mass position. A
distinct pointer position is tied to each eigenvalue of the measured observable S of the object.
The pointer is coupled to an infinite bath. The main novel features of the model are:
(i) initial correlations between pointer and bath are taken into account by considering a pointer
and a bath initially in a metastable local thermal equilibrium;
(ii) unlike in the Stern-Gerlach apparatus of Sec. 2.4, object-pointer entanglement and decoher-
ence of distinct pointer readouts proceed simultaneously; mixtures of macroscopically distinct
object-pointer states may then arise without intervening macroscopic superpositions.
Our main goal is to determine the object-pointer dynamics; in particular, we shall give a quan-
titative treatment of decoherence which goes beyond the Markovian approximation.

3.1 The model

3.1.1 The three-partite system

• Quantum object S: any microscopic system S; the measured observable S has a discrete
spectrum. We denote by HS its Hamiltonian.

• Pointer P: it has one degree of freedom; the pointer variable is the position X. The
Hilbert space is HP = L2(R). The pointer Hamiltonian is

HP =
P 2

2M
+ V (X) , (8)

where P is the momentum conjugate to X and M the mass. We assume that the potential
V (x) is even and has a local minimum at x = 0, i.e., V ′(0) = 0 and V ′′(0) > 0. The height
of the two potential barriers surrounding this minimum is supposed to be much larger
than the thermal energy kBT (see Fig. 3). This is necessary in order that the pointer has
a well-defined rest state at x = 0 (even if this may not be a global minimum of V ), see
below. The object-pointer coupling Hamiltonian,

HSP = ǫS ⊗ P , (9)

is chosen so as to (i) not change the measured observable S (i.e., [HSP , S] = 0, see
Lecture 1, Sec. 2.3); (ii) be capable of shifting the pointer position by an amount pro-
portional to S, such that each eigenvalue s of S becomes tied up with a specific pointer
reading; (iii) involve a large coupling constant ǫ, so that different eigenvalues s 6= s′ end
up associated with pointer readings separated by large distances.

• Environment (bath B): it includes all the other degrees of freedom ν = 1, . . . ,N of the
apparatus. Its Hilbert space is HB = ⊗N

ν=1Hν , where Hν is the Hilbert space of the νth
degree of freedom. We assume N ≫ 1; all formulae below are meant to be valid in this
limit 4. The pointer-bath coupling Hamiltonian is

4This means that we take N → ∞ before all other limits, in particular, before the large time limit in
Sec 3.5.2.
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Figure 3: Left: the QM model of Ref [3, 4]. Right: the pointer potential V (x) (plain line) and
effective potential Veff(x) (broken lines) in arbitrary units. Given (16), the respective heights V0

and V0,eff of the potential barriers of V (x) and Veff(x) are roughly of the same order of magnitude,
and so are the widths W ≈ (V0/V

′′(0))1/2 and Weff ≈ (V0,eff/V
′′
eff(0))1/2 of the potential walls.

We assume that V0 ≫ kBT , i.e., W ≫ ∆th = (βV ′′(0))−1/2. The density 〈x|ρP (0)|x〉 of pointer
position is represented in green; it has a width ∆eff ≈ ∆th ≪ Weff .

HPB = B ⊗X , B = N−1/2
N∑

ν=1

Bν , (10)

where the operators Bν act on the Hilbert space Hν . More general Hamiltonians HPB =
B ⊗ f(X) with f a smooth function can be considered 5. The additivity of B in contri-
butions Bν acting on single bath degree of freedom will allow us to invoke the quantum
central limit theorem (QCLT) [16, 17]. We make no specific assumption on the bath
Hamiltonian HB excepted that there should be no long-range correlations in the free
bath Gibbs state ρeq

B = Z−1
B e−βHB at the inverse temperature β = (kBT )−1 (more pre-

cisely, tr(BµBνρ
eq
B ) should decay to zero faster than 1/|µ− ν| for |µ− ν| ≫ 1 [17]). Such

strong correlations would invalidate the QCLT. The QCLT implies Gaussian statistics
(Wick theorem) for the time-correlation functions associated to B w.r.t. the free bath
Gibbs state.

3.1.2 Separation of time scales

What are the different time scales in the model ?

• The characteristic time TP for the motion of the pointer under its Hamiltonian HP is
defined as the period TP = 2π(M/V ′′(0))1/2 of oscillations around the minimum of the
potential V (x).

• The characteristic time TS for the evolution of the measured observable S under the object
Hamiltonian HS: by definition, this is the largest time TS such that 〈ψ|S̃0(t1) · · · S̃0(tn)|ψ〉

5For a pointer in a homogeneous medium it would be more physical to choose a translation-invariant pointer-
bath Hamiltonian, e.g. HPB = N−1/2

∑
q(Bq + B†

−q) ⊗ eiqX (with q the momentum of the q-th bath mode

and Bq → Bqe
iqa under a space translation by a distance a). For small enough separations between the pointer

positions, such an Hamiltonian can be approximated by the Hamiltonian (10), which is not translation invariant
but has the advantage of simplifying the calculation. The generalisation of the foregoing results to the case
f(x) = xα, α ∈ N⋆, does not present any major difficulty, see [4].
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≃ 〈ψ|Sn|ψ〉 for |t1|, · · · , |tn| ≪ TS, where S̃0(t) = eiHStSe−iHSt and |ψ〉 is the initial
wavefunction of S.

• The object-pointer interaction time tint.

• The decoherence time tdec associated with the decay of the coherences of the object-pointer
density matrix, i.e., the characteristic time of the dynamical process (7) in Lecture 1.

Finally, there are 3 (not necessarily independent) times scales are associated with the bath.

• The time tB is defined in analogy with TS in terms of the correlation function K(t) of the
bath coupling agent B w.r.t. the free bath thermal state,

K(t) = tr
(
B̃(t)Bρ

(eq)
B

)
= K(−t)∗ , B̃(t) = eiHBtBe−iHBt , ρeq

B = Z−1
B e−βHB . (11)

Here and in what follows we assume tr(Bρ
(eq)
B ) = 0. Then tB is the largest time such

that K(t) ≃ K(0) for |t| ≪ tB. By Wick theorem (see Sec. 3.3), higher-order correla-

tion functions tr(B̃(t1) · · · B̃(tn)ρ
(eq)
B ) can also be approximated by their values at times

t1, · · · , tn = 0 for |t1|, · · · , |tn| ≪ tB.

• The thermal time β = (kBT )−1.

• The bath correlation time TB is the smallest time such that K(t) ≃ 0 for t ≫ TB.
Note that for an infinite bath (N → ∞), K(t) indeed decays to zero at large times and
thus TB < ∞. For a bath in thermal equilibrium, the thermal time figures among the
decay rates of K(t) and thus tB ≤ β ≤ TB. The equality TB = β holds at low enough
temperature.

As we already mentioned in Sec. 2.3, in an ideal measurement one must have tint, tdec ≪ TS,
i.e., the free dynamics of S remains ineffective on S during the measurement. Moreover, the
pointer time scale TP is a classical time which is much larger than all the other (quantum)
time scales in the model. In particular, TP is much larger than the thermal time β. In an ideal
measurement we thus have the following important separation of time scales

tdec, tint ≪ TS , tdec, tint, β ≪ TP . (12)

3.2 Initial state

In view of the requirement 3 of Sec. 2.1, we consider an initial state having no correlation
between S and P + B. Assuming that S is in a pure state |ψ〉 with components cs in the
eigenbasis {|s〉} of S, the object-pointer-bath initial state is

ρSPB(0) = |ψ〉〈ψ| ⊗ ρPB(0) , |ψ〉 =
∑

s

cs|s〉 . (13)

Here, ρPB(0) is a metastable local pointer-bath thermal equilibrium at inverse temperature β. In
this local equilibrium the pointer is localised near x = 0. With an abuse of notation, ρPB(0) =
Z−1

PBe
−β(HP +HB+HPB). Note that in such a state P and B are correlated. By invoking the high-

temperature limit β ≪ TP and the Gaussian statistics of B (as implied by the QCLT) and by

11



tracing out the bath we find (see below) the reduced initial density matrix ρP (0) = trB(ρPB(0))
of the pointer in the position representation,

〈x|ρP (0)|x′〉 ∝ e−β(Veff (x)+Veff (x′))/2 e−2π2(x−x′)2/λ2
th (14)

where λth = 2π(β/M)1/2 is the thermal de Broglie wavelength. The pointer potential appears
renormalised by the pointer-bath interaction as

Veff(x) = V (x) − γ0x
2 , γ0 =

∫ 0

−∞

dtℑK(t) ≥ 0 . (15)

For local stability of the whole apparatus, the pointer-bath coupling must be weak enough
so that V ′′

eff(0) > 0; we even bound the latter curvature finitely away from zero by, say, V ′′
eff(0) >

V ′′(0)/2, i.e.,
γ0 < V ′′(0)/4 . (16)

This makes sure that the initial density of pointer positions has a single peak at x = 0 with
a renormalised width ∆eff = [β(V ′′(0) − 2γ0)]

−1/2 of the order of the bare thermal fluctuation
∆th = (βV ′′(0))−1/2,

〈x|ρP (0)|x〉 ∝ e−βVeff (x) ≃ exp
(
− x2

2∆2
eff

)
for |x| . ∆eff . (17)

Condition (16) is fulfilled for a pointer-bath coupling satisfying

∆2
thβ

2〈B2〉 < 1/2 , 〈B2〉 = tr(B2ρ
(eq)
B ) = K(0) . (18)

This is a consequence of the inequality γ0 ≤ β〈B2〉/2 which follows from general properties of
bath correlation functions [4].

If V (x) = o(x2) at large distances |x| & W , the effective potential Veff(x) is unstable.
The matrix elements (14) then correspond to (the reduced pointer state of) a metastable local
thermal equilibrium. That local equilibrium for the apparatus can be achieved by preparing
P in some state localised near x = 0 at time t = −ti and then letting it interact with B
between t = −ti and t = 0. If the thermalization time is small compared with the tunnelling
escape time, one may choose ti larger than the former but much smaller than the latter time,
so that P is still within the effective potential well when the measurement starts at t = 0. In
order to be able to prepare the apparatus in such a local equilibrium, the height V0,eff of the
two potential barriers surrounding the local minimum of the effective potential at x = 0 must
be large compared with the thermal energy β−1. Thanks to (16), this is the case provided
that the bare potential V (x) satisfies the same requirement, i.e., V0 ≫ β−1 (see Fig. 3) 6.
Interestingly, V (x) can be chosen such that the two potential barriers of Veff(x) are separated
by a mesoscopic distance Weff ≈ (V0,eff/V

′′
eff(0))1/2 ≫ ∆eff (so that V0,eff ≫ β−1) which is small

compared with the macroscopic read-out scale ∆class. The object-pointer interaction then just
has to get the pointer out of the well, leaving the subsequent displacement growth to the action

6For a pointer-bath coupling Hamiltonian of the form HPB = B ⊗ Xα with α > 1, the instability can
be entirely due to the coupling. Actually, one can show [4] that Veff(x) = V (x) − γ0 x

2α. Thus Veff(x) is
unstable even in the case of a bare potential V (x) ∝ x2 for all x. In order to have a local equilibrium, one
must then replace condition (18) by the stronger condition η2 = ∆2α

th β
2〈B2〉 ≪ 1 (this insures that V0,eff ≈

(V ′′(0)α/γ0)
1/(α−1) ≫ β−1). Moreover, Weff ≈ (V ′′(0)/(2αγ0))

1/(2α−2) met the criterion (19) for sufficiently
large pointer-bath coupling. If (β〈B2〉/γ0)(V0β)1−α ≪ η2 ≪ 1, then the width Weff of the effective potential is
much smaller than that of the bare potential, Weff ≪W .
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of the effective potential. The instability of the effective potential (15) hence provides the
amplification mechanism necessary to fulfil the requirement 1 of Sec. 2.1. For a macroscopic
pointer at high temperature (β ≪ TP ), the different length scales are ordered as

λth ≪ ∆th ≈ ∆eff ≪Weff ≪ ∆class . (19)

The first limit is equivalent to β ≪ TP . To fix ideas, for TP = 1 s, M = 1 g and a temperature
of 1 K, one has λth ≈ 10−21 m and ∆th ≈ 10−10 m.

3.3 Dynamics

We outline in this section the main steps in the calculation of the object-pointer density matrix.
We skip some technical details related to the Quantum Central Limit Theorem (QCLT) and
to general properties of the bath correlation function (11). A more complete derivation can be
found in Ref.[4].

The object-pointer density matrix at time t is obtained by tracing out the bath degrees of
freedom in the time-evolved density matrix of S + P + B (see Lecture 1, Sec. 2.2), i.e.,

ρPS(t) = tr
B

(
e−iHtρSPB(0)eiHt

)
, H = HS +HP +HB +HSP +HPB . (20)

We first simplify the time evolution operator at time t ≪ TP , TS as e−iHt ≃ U(t) e−i(HS+HP )t,
with

U(t) = e−i(HB+HSP +HPB)t = e−iHBte−iǫS⊗PtT e−i
R t
0

dτ(X+ǫSτ) eB(τ) . (21)

In the last identity in (21), T denotes time ordering; this identity is a simple consequence
of the relation eiǫS⊗PtXe−iǫS⊗Pt = X + ǫSt (the momentum P being the generator of pointer
displacements in position). Similarly, we invoke 〈s, x|e−iǫS⊗Pt = 〈s, x − ǫst|, the cyclicity of
the trace and the product initial state (13) to get the matrix elements of ρPS(t) in the joint
eigenbasis {|s, x〉} of S and X,

〈s, x|ρPS(t)|s′, x′〉 ≃ 〈s|ψ0(t)〉〈ψ0(t)|s′〉 〈x|ρ(ss′)
P (t)|x′〉 , t≪ TS, TP , (22)

with
|ψ0(t)〉 = e−iHSt |ψ〉 (23)

evolving as for the free object, while the pointer matrix elements

〈x|ρ(ss′)
P (t)|x′〉 = 〈xs(t)| tr

B

(
Ũsx(t)e

−iHP tρPB(0)eiHP tŨs′x′(t)†|x′s′(t)〉
)

(24)

involve the bath evolution operator and shifted positions

Ũsx(t) = T exp

{
−i

∫ t

0

dτ xs(t− τ)B̃(τ)

}
, xs(t) = x− ǫst , x′s′(t) = x′ − ǫs′t . (25)

To evaluate the matrix elements (24) we use the high-temperature approximation

ρPB(0) ≃ Z−1
PB e−βHP /2 e−β(HB+HPB)e−βHP /2 , β ≪ TP (26)

for the pointer-bath Gibbs state. Given the weak-coupling condition, the error incurred is
O(β2/T 2

P ), as easily seen from the Baker-Campbell-Haussdorf formula. One can also show [4]
that e−iHP tρPB(0) eiHP t ≃ ρPB(0) for t≪ TP , i.e., the pointer Hamiltonian HP can be neglected
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in (24). The situation is different for the object Hamiltonian HS. This Hamiltonian cannot be
neglected in (23) even for t≪ TS. However, one has 7 for such times |〈s|ψ0(t)〉| ≃ |cs| for all s.
Thus

〈x|ρ(ss′)
P (t)|x′〉 = Z−1

PB

∫ ∞

−∞

dy 〈xs(t)|e−βHP /2|y〉〈y|e−βHP/2|x′s′(t)〉ZB,y

〈
Ũs′x′(t)†Ũsx(t)

〉
y

(27)

where 〈·〉y is the bath average w.r.t. a y-dependent renormalised bath state,

〈·〉y = tr( · ρB,y) , ρB,y = Z−1
B,y e−β(HB+yB) . (28)

Let us determine the normalisation factor

ZB,y = tr
B

(e−β(HB+yB)) = ZB,0

〈
T exp

{
−y

∫ β

0

dz B̃(−iz)

}〉

0

, B̃(−iz) = ezHBBe−zHB . (29)

By virtue of the QCLT and the additivity of the bath coupling agent B in contributions Bν

acting on single degree of freedom, see (10), the n-point correlation functions associated to

B satisfy the bosonic Wick theorem in the limit N → ∞ [16]. That is, 〈B̃(t1) . . . B̃(tn)〉0
vanishes for odd n (since we have assumed 〈B〉0 = 0) and is given for even n by the sum over
all pairings {(i1, j1), . . . , (in/2, jn/2)} of {1, . . . , n} of products K(ti1 − tj1) . . .K(tin/2

− tjn/2
) of

2-point correlators. One can show [4] that Wick theorem is equivalent to the identity

〈[
T exp

{
−i

∫ t

0

dτ k(τ) B̃(τ)

}]†

T exp

{
−i

∫ t

0

dτ l(τ) B̃(τ)

}〉

0

= exp

{
−

∫ t

0

dτ1

∫ τ1

0

dτ2
(
k(τ1) − l(τ1)

)(
k(τ2)K(τ1 − τ2)

∗ − l(τ2)K(τ1 − τ2)
)}

, (30)

where k(τ) and l(τ) are two arbitrary real-valued functions. By applying (30) with t = −iβ,
k(τ) = 0 and l(τ) = y, one gets

ZB,y = eβγ0y2

ZB,0 , γ0 =
1

β

∫ β

0

dz1

∫ z1

0

dz2 K(−iz2) . (31)

The fact that γ0 is also given by the r.h.s. of the second formula in (15) can be established by
using the analyticity and KMS properties of the bath correlator K(τ) [4]. We shall, however,
only need later on that γ0 ≥ 0.

At this point we momentarily pause with dynamics and show that at t = 0, when Ũs′x′ =
Ũsx = 1, xs = x and x′s′ = x′, (27) yields the initial pointer state announced in (14). To that
end we invoke the high temperature limit β ≪ TP again to approximate the matrix element
〈x|e−βHP /2|y〉 by

〈x|e−βHP /2|y〉 ≃ e−β(V (x)+V (y))/4e−4π2(x−y)2/λ2
th . (32)

The reader may recognise in this expression the short-time behaviour of the quantum propa-
gator 〈x|e−itHP |x′〉 for t = −iβ/2 (see e.g. [19]). Replacing V (y) by V ′′(0)y2/2 in (27), using
(31) and doing the Gaussian y-integral, we arrive at the initial state (14) by neglecting terms
O(λ2

th/∆
2
th, λ

2
th/∆

2
eff).

7For indeed, for all positive integer n, 〈ψ|S̃0(t)n|ψ〉 =
∑

s |〈s|ψ0(t)〉|2sn is almost equal at time t ≪ TS to
its value

∑
s |cs|2sn at time t = 0. This follows from the definition of TS, see Sec. 3.1.2.
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Let us return to the time-evolved pointer matrix (27). The QCLT implies that the bath
coupling agent B has also a Gaussian statistics for the modified average (28), with a variance
independent of y [4],

〈B̃(t)B̃(t′)〉y − 〈B̃(t)〉y〈B̃(t′)〉y = K(t− t′) . (33)

If one replaces the average 〈·〉0 by 〈·〉y and B̃(τ) by B̃(τ) − 〈B̃(t)〉y in (30), the l.h.s. then
remains unchanged: it is equal to the r.h.s. with an unmodified bath correlator K(τ). Setting
k(τ) = x′s′(t− τ) and l(τ) = xs(t− τ) in this r.h.s., this yields

〈Ũs′x′(t)†Ũsx(t)〉y = exp
{
−Dt

(
xs(t), x

′
s′(t); s, s

′
)
− iφt(x, x

′; s, s′)
}

× exp
{

i

∫ t

0

dτ〈B̃(t− τ)〉y(x′s′(τ) − xs(τ))
}

(34)

with a non negative decoherence exponent Dt given by

Dt(x, x
′; s, s′) =

∫ t

0

dτ1

∫ τ1

0

dτ2 ℜK(τ1−τ2)
(
x′s′(−τ1)−xs(−τ1)

)(
x′s′(−τ2)−xs(−τ2)

)
(35)

and an (y-independent) real phase φt irrelevant for decoherence. The non-negativity of Dt is a
consequence of the fact that K(τ) and its real part ℜK(τ) are of positive type, i.e., they have

nonnegative Fourier transforms K̂(ω) and (̂ℜK)(ω). Actually, by using the parity property
ℜK(τ) = ℜK(−τ) of the bath correlator, one may rewrite (35) as

Dt(x, x
′; s, s′) =

1

2

∫ ∞

−∞

dω

2π
(ℜ̂K)(ω)

∣∣∣∣
∫ t

0

dτ
(
x′s′(−τ) − xs(−τ)

)
e−iωτ

∣∣∣∣
2

≥ 0 . (36)

It turns out that the phase factor 〈Ũs′x′(t)†Ũsx(t)〉y/〈Ũs′x′(t)†Ũsx(t)〉0 (factor in the second
line of (34)) entails nothing but a correction of relative order (λth/∆eff)2 to the decoherence
exponent Dt under the stability condition (16) [4]. Dropping that correction, the y-integral in
(27) reduces to the initial pointer density matrix (14), albeit with additional decoherence and
phase factors e−Dte−iφt reflecting the action of the pointer-bath coupling. The action of the
object-pointer coupling manifests itself in the shifted pointer positions x → xs(t) = x− ǫst and
x′ → x′s′(t) = x′ − ǫs′t. Thanks to (22), our final result for the object-pointer state at time
t≪ TS, TP is

〈s, x|ρPS(t)|s′, x′〉 = 〈s|ψ0(t)〉〈ψ0(t)|s′〉 〈xs(t)|ρP (0)|x′s′(t)〉 e−Dt(xs(t),x′

s′
(t);s,s′)e−iφt (37)

with the notations specified in (14), (23), (25) and (35). Entanglement and decoherence con-
tribute separately in that remarkably simple “final state”; they lead respectively to the third
and fourth factors in (37).

Let us stress that the aforementioned results (in particular (35)) are exact (not lowest order
in the pointer-bath coupling). They are consequences of Wick theorem as implied by the QCLT,
the additivity (10) of the bath coupling agent B and the infinite bath limit N ≫ 1. Direct
proofs of (31), (33) and (35) are easy in the particular case of a bath composed of harmonic
oscillators linearly coupled to P.
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Figure 4: Wigner function WP(x, p; t) of the pointer reduced state (38) at times (a) t = 0 and
(b) t ≈ tent; S is a spin one-half with two eigenvalues ±δs/2. We have set the pointer-bath
coupling to zero, so that Dt = 0 in (39). In the horizontal axis, position and momentum
are measured in units of ∆ and 2∆p; in the vertical axis, units are such that WP(x, p; t) has
maximum value 1.

3.4 Entanglement and decoherence times

Let us first look at the reduced pointer state. In view of (37), it is given at time t≪ TS, TP by
(recall that |〈s|ψ0(t)〉| ≃ |cs| for t≪ TS)

ρP (t) = tr
S
(ρSP (t)) ≃

∑

s

|cs|2ρ(s)
P (t) (38)

where the pointer matrix elements

〈x|ρ(s)
P (t)|x′〉 = 〈x− ǫst|ρP (0)|x′ − ǫst〉 e−Dt(xs(t),x′

s(t);s,s)−iφt (39)

correspond to the initial pointer state ρP (0) shifted by ǫst in position (i.e., e−iǫstPρP (0)eiǫstP ),
up to an additional phase factor and a decoherence factor

e−Dt(xs(t),x′

s(t);s,s) = exp

{
−(x− x′)2

2

∫ t

0

dτ1

∫ t

0

dτ2 ℜK(τ1 − τ2)

}
. (40)

For a fixed s, 〈x|ρ(s)
P (t)|x〉 = 〈xs(t)|ρP (0)|xs(t)〉 has a narrow peak of width ∆eff centred around

x = ǫts. The probability density 〈x|ρP (t)|x〉 in pointer position has thus a peak centred at
x = ǫts for each eigenvalue s present in the (decomposition in the |s〉-basis of the) object initial
state |ψ〉. In the case of an observable S with two eigenvalues s = ±δs/2, the pointer state ρP (t)
has the shape represented in Fig. 4. Two peaks in the pointer density 〈x|ρP (t)|x〉 associated to
distinct eigenvalues s and s′ begin to be resolved at the entanglement time

tent(s, s
′) =

∆eff

ǫ|s− s′| . (41)

Recalling that S has a discrete spectrum, we denote by δs the minimum of |s − s′| over all
pairs (s, s′) of eigenvalues present in the object initial state (i.e., such that cs = 〈s|ψ〉 6= 0 and
cs′ 6= 0) 8. At time t > tent = ∆eff(ǫδs)−1, neighbouring peaks of the pointer densities can be

8We suppose that cs = 0 if s belongs to a part of the spectrum containing arbitrarily close eigenvalues, near
an accumulation point, so that δs > 0.
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resolved. Each eigenvalue s of the measured observable S is then uniquely tied up with “its”
pointer position ǫst.

The object-pointer entanglement in the state ρPS(t) comes from the off-diagonal (s 6= s′)
contributions in (37). Given the narrow peaks at x = x′ = 0 (of width ∆eff) of the initial
pointer density matrix (14), 〈xs(t)|ρP (0)|x′s′(t)〉 and thus 〈s, x|ρPS(t)|s′, x′〉 almost vanish when
|xs(t)| ≥ ∆eff or |x′s′(t)| ≥ ∆eff . One can thus appreciate the fate of the s 6= s′ coherences in
the final state (37) by setting xs(t) = x′s′(t) = 0 there. The decoherence factor then reads

e−Dpeak
t (s,s′) = exp

{
−ǫ

2(s− s′)2

2

∫ t

0

dτ1

∫ t

0

dτ2 τ1τ2 ℜK(τ1 − τ2)

}
(42)

and reveals irreversible decay as soon as the time t much exceeds the decoherence time tdec(s, s
′).

We may define that time implicitly as Dpeak
tdec

(s, s′) = 1. We will show in the next paragraph that

Dpeak
t (s, s′) is a positive increasing convex function of time if s 6= s′ (see the inset in Fig. 5).

The decoherence and entanglement times are related by

(
tent(s, s

′)

η

)2

=
1

β2

∫ tdec(s,s
′)

0

dτ1

∫ τ1

0

dτ2 τ1τ2
ℜK(τ1 − τ2)

〈B2〉 (43)

where 〈B2〉 = tr(B2ρ
(eq)
B ) and

η = 〈B2〉1/2∆effβ (44)

is a dimensionless measure of the strength of the pointer-bath coupling 9. Note that η . 1 by
condition (18). It follows from the increasing property of Dpeak

t that the largest decoherence
time tdec(s, s

′) for all pairs (s, s′) of eigenvalues present in the object initial state |ψ〉 is tdec =
tdec(s, s + δs), i.e., tdec is given by replacing tent(s, s

′) by tent = tent(s, s + δs) = ∆eff(ǫδs)−1 in
(43). We also set Dpeak

t = Dpeak
t (s, s + δs) and write the subsequent formulae for tdec and tent;

all these formulae remain valid upon substitution of tdec and tent by tdec(s, s
′) and tent(s, s

′), for
arbitrary s 6= s′.

We now prove that Dpeak
t is an increasing convex function of t. We take x = x′ = 0 in (36),

differentiate both sides with respect to t, and do the time integral by parts to get

∂

∂t
Dpeak

t = ǫ2δs2 t

∫ ∞

−∞

dω

2π

(ℜ̂K)(ω)

ω2

(
1 − cos(ωt)

)
. (45)

Bearing in mind that (̂ℜh)(ω) ≥ 0, this establishes that ∂Dpeak
t /∂t > 0 for t > 0. Hence Dpeak

t

is an increasing function of t. By a similar argument, ∂2Dpeak
t /∂t2 > 0 and thus Dpeak

t is convex.

Let us recall that the results (35)-(43) are valid provided that t and tdec remain much smaller
than both TS and TP , a condition that must be checked a posteriori. The left part of Fig. 5 shows
tdec/β as a function of tent/(βη). We choose here a specific bath correlator K(t)/〈B2〉 given

by ℜ̂K(ω) = i coth(βω/2)ℑ̂K(ω) (KMS relation) and ℑ̂K(ω) = −iγ̂ ωm exp{−(ω/ωD)2} with
ωD = 5/β. The larger decay time of K(t) is then the thermal time TB = β > ω−1

D . This choice
corresponds to a bath of harmonic oscillators linearly coupled to the pointer position X (i.e.,
HB =

∑
ν ωνb

†
νbν and B =

∑
ν(κνb

†
ν +κ∗νbν)/

√
N , where ων is the frequency and κν the coupling

constant of the νth oscillator) with a power spectrum function J(ω) = γ̂ ωm exp{−(ω/ωD)2}
9More precisely, η is the fluctuation of the pointer-bath coupling energy in state ρP (0) ⊗ ρ

(eq)
B , in units of

β−1 = kBT .
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Figure 5: Left: Solid curves: Decoherence time τdec = tdec/TB in units of TB against tent/(η TB)
in a log-log scale. The bath correlator is chosen as indicated in the text with ωD = 5/β and
m = 5, 3, 1 (from left to right). Broken curves: approximate expressions (47) and (51) for
τdec ≪ 1 (dashed lines) and τdec ≫ 1 (dotted lines). Inset (left): Decoherence exponent
Dpeak

t against τ = t/TB (m = 3). Right: Decoherence against entanglement times in units
of tB = ω−1

D at low temperature β ≫ tB; the bath correlator is chosen as on the left part and
ηD = 1 (see text). Solid curves: m = 5, 3, 1 (from top to bottom). The approximations (47)
and (53) for tdec ≪ tB and tB ≪ tdec ≪ β are shown in dashed and dotted lines, respectively.

and a fixed cut-off frequency ωD = 5/β (see e.g. [13]). The 3 plain curves are obtained by
solving numerically the implicit equation (43).

It is worthwhile to stress that without pointer-bath coupling (i.e, for η = 0), the object-
pointer coherences do not decay with time for x = ǫst and x′ = ǫs′t. Actually, by (37),

〈s, x = ǫts|ρPS(t)|s′, x′ = ǫts′〉 = 〈s|ψ0(t)〉〈ψ0(t)|s′〉 〈0|ρP |0〉 if η = 0. (46)

In the model under study, when η = 0 all coherences between different eigenstates of S present
in the initial state of S are still alive, no matter how large the time t is. At times t & tclass =
∆clas(ǫδs)

−1, object and pointer are then in a “Schrödinger cat state” characterised by nonzero
matrix elements between macroscopically distinguishable pointer position eigenstates. For S
and P in such a Schrödinger cat state at the end of the measurement, no classical probabilistic
interpretation of the QM is possible 10. We see here again (see Lecture 1) that the pointer-bath
coupling plays a central role in the QM. As we shall see in Sec. 3.6.1, the decoherence process
due to this coupling suppresses all (s 6= s′)-coherences (37) at time t≫ tdec.

3.5 Limiting regimes

Formula (43) explicitly yields the decoherence time in several interesting limits.

3.5.1 Interaction-dominated regime

In the time regime t≪ tB, the dynamics is dominated by the interactions HSP and HPB. One
may approximate the bath correlator K(τ) by K(0) = 〈B2〉 in (42) and (43). We conclude

10In fact, one cannot assign a probability to the pointer being located in the vicinity of x = ǫts, henceforth
implying that S has the value s. This would invalidate the Born rules.
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e−Dpeak
t = e−(t/tdec)

4

,
tdec

β
= 23/4

(
tent

β η

)1/2

(47)

for t, tdec ≪ tB, TS, TP . The decoherence time depends on the bath through the pointer-bath
coupling strength η only. One has tent ≪ tdec. This follows from the consistency condition
tdec ≪ tB and the inequality tB ≤ β, which imply tdec ≪ β and thus tent ≪ β by (47), and from
the stability condition η . 1.

Invoking (42) and (̂ℜh)(ω) ≥ 0, it is easy to show that Dpeak
t ≤ (t/t int

dec)
4 for all times t ≥ 0,

where t int
dec/β is given by the r.h.s. of the second formula in (47). Since tdec is defined by

Dpeak
tdec

= 1, this implies that t int
dec gives a lower bound on the decoherence time, even when tdec

is larger than tB. This is indeed what is observed on Fig. 5.

3.5.2 Markovian regime

The opposite regime tdec ≫ TB defines the so-called singular coupling limit [18] (Markovian
regime) 11. Decoherence is governed in this regime by the small-frequency behaviours of the

Fourier transforms (ℜ̂K)(ω) and (ℑ̂K)(ω) of the real and imaginary parts of the bath correlator
(11). We shall make use of a few properties of these Fourier transforms. We assume that

(ℑ̂K)(ω) ∼ −i γ̂ ωm for ω ≪ T−1
B (γ̂ is a positive constant). Bearing in mind that (ℑ̂K)(ω)

is an odd function of ω and must admit differentials of sufficiently high orders (in such a way
that ℑK(t) decays rapidly to zero as t → ±∞), we take m to be a positive odd integer. By
analogy with the case of a bath of harmonic oscillators linearly coupled to P, we speak of
Ohmic damping when m = 1 and of super-Ohmic damping when m > 1 [13]. The behaviour

of (ℜ̂K)(ω) at small frequencies can be deduced from that of (ℑ̂K)(ω) thanks to the KMS
relation

(ℜ̂K)(ω) = i
(ℑ̂K)(ω)

tanh(βω/2)
. (48)

The KMS relation holds for all frequencies; it relies on the fact that the average in the bath
correlator (11) is taken w.r.t. a Gibbs state ρ

(eq)
B (see [14]). It gives (ℜ̂K)(ω) ∼ 2 γ̂ ωm−1/β for

ω ≪ T−1
B .

Let us first discuss the super-Ohmic case m ≥ 3. In the limit t≫ TB we can neglect in (45)
the oscillatory integral. This yields

∂

∂t
Dpeak

t ≃ ǫ2δs2 t

∫ ∞

−∞

dω

2π

(ℜ̂K)(ω)

ω2
= −∆2

eff t

t2ent

∫ ∞

0

dτ τ ℜK(τ) . (49)

For an Ohmic bath (m = 1) the frequency integral in (49) diverges. We shall show that one

can in this case replace (ℜ̂K)(ω) by (ℜ̂K)(0) = 2γ̂/β in the r.h.s. of (45), which becomes in
the limit t≫ TB

∂

∂t
Dpeak

t ≃ 2ǫ2δs2 t (ℜ̂K)(0)

∫ ∞

−∞

dω

2π

sin2(ωt/2)

ω2
=

∆2
eff t

2

t2ent

∫ ∞

0

dτ ℜK(τ) . (50)

Note that this amounts to replace ℜK(t) by a white-noise correlator (2γ̂/β)δ(t) in (42). To
estimate the error, let us determine the difference between the l.h.s. and the r.h.s. of (50). Since

11Note that a rotating-wave approximation is inappropriate here due to our restriction (12)! The Markovian
regime studied here is different from the one obtained in the van Hove (or weak-coupling) limit.
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the integral
∫ ∞

−∞
dω((ℜ̂K)(ω)− (ℜ̂K)(0))ω−2 converges (and is equals to −2π

∫ ∞

0
dτ τ ℜK(τ)),

this difference is given in the limit t ≫ TB by (49) modulo the replacement of (ℜ̂K)(ω) by

(ℜ̂K)(ω) − (ℜ̂K)(0). One thus finds that the relative error made by approximating the l.h.s.
of (50) by its r.h.s. is small, of the order of TB/t. We conclude, by integrating (49) and (50)
w.r.t. time, that in the limit TB ≪ tdec ≪ TS, TP it holds

e−Dpeak
t =





exp
{
−

( t

tdec

)3}

exp
{
−

( t

tdec

)2} ,
tdec

β
=





c
1/3
1

(
tent

β η

)2/3

if m = 1

c1/2
m

tent

β η
if m ≥ 3.

(51)

The constant cm is independent of the strengths of the couplings,

c1 =
3β〈B2〉∫ ∞

0
dτℜK(τ)

, cm≥3 =
2β2〈B2〉

|
∫ ∞

0
dτ τ ℜK(τ)| . (52)

Qualitatively different results are obtained for Ohmic and super-Ohmic baths. Ohmic baths
win in efficiency for decoherence over super-Ohmic baths. Actually, (tm=1

dec /tm≥3
dec )3 is equal to

the product of c1β/(TBcm≥3) by (TB/t
m≥3
dec ). Since the last factor must be small compared with

1 for consistency and the first one is . 1, it follows that tm=1
dec ≪ tm≥3

dec . This result should be
compared with the known saturation of the decoherence factor of a single system coupled to
a super-Ohmic bath in the singular coupling limit (see Sec. 3.6.2 and [20]). We see here that,
as a result of the indirect coupling via the pointer of the object S to the super-Ohmic bath,
the decoherence factor does not saturate to a positive value but decays to zero, although more
slowly than for a Ohmic bath.

One sees on the left part of Fig. 5 a remarkably good agreement between the exact and
asymptotic behaviours of tdec as soon as tdec ≥ TB = β. The plain curves representing tdec

split by increasing tent into distinct branches corresponding to distinct m’s, as predicted by
(51). This splitting occurs when tdec is in the transition region tB . tdec . TB = β. After
this splitting tdec is larger for larger m. In particular, a Ohmic bath (m = 1) has a smaller
decoherence time than a super-Ohmic bath (m = 3, 5 . . .), as stated above.

3.5.3 Bath at low temperature

Let us briefly discuss the case of a bath initially in thermal equilibrium at low temperature.
Strictly speaking, extremely low temperatures have to be proscribed because of our hypothesis
~β ≪ TP . However, taking e.g. TP = 1 s, this separation of time scales holds even for T of the
order of 10−8-10−9 degree Kelvin! Furthermore, the stability condition (18) has a better chance
to be met at low temperature T since ∆th decreases with T . By “low temperature” we mean here
β = (kBT )−1 ≫ tB, tB being the inverse of a cut-off frequency ωD. In the interaction-dominated
regime tdec ≪ tB, the decoherence time is still given by (47) (note that β can be eliminated
from both sides of (47), so that temperature only enters in this eq. through the variance 〈B2〉
of B, which has a finite limit when β ≫ tB). The opposite limit tB ≪ tdec ≪ β can be treated
in a similar way as in Sec. 3.5.2 if one assumes that the correlator K(τ) has only 2 timescales
tB and TB, the latter being equal to the thermal time TB = β ≫ tB = ω−1

D . For instance, if

one takes a temperature-independent (ℑ̂K)(ω) = −iJ(ω) = −i γ̂ ωm exp{−(ω/ωD)2}, ω ≥ 0

(see Sec. 3.4), one finds thanks to the KMS relation (48) that (ℜ̂K)(ω) can be replaced by
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J(|ω|) in the second integral in (49) when tB ≪ t ≪ β. For a super-Ohmic bath (m ≥ 3),
the approximation (49) is thus valid in this regime modulo this replacement. Similarly, one

has 〈B2〉 =
∫ ∞

−∞
dω(ℜ̂K)(ω)/(2π) ∼

∫ ∞

−∞
dωJ(|ω|)/(2π). For an Ohmic bath (m = 1) one can

clearly not use (50). One finds [4]

tent ≃





ηDtdec

{
ln

(tdec

tB

)
− 0.2114)

} 1
2

if m = 1 (Ohmic)

ηDtdec/
√
c̃m if m ≥ 3 (super-Ohmic),

(53)

where ηD = 〈B2〉1/2∆eff tB is the pointer-bath coupling strength in units of 1/tB and c̃m≥3 =
2t2B

∫ ∞

0
dω J(ω)/

∫ ∞

0
dω J(ω)ω−2 = m− 1. For a given tent, the ratio between the decoherence

times for Ohmic and super-Ohmic baths is logarithmically small in the dimensionless time
tdec/tB. Hence a Ohmic bath is not dramatically more efficient than a super-Ohmic bath at
very low temperature, in contrast with our previous findings at “high” temperatures. The right
part of Fig. 5 shows tdec as a function of tent in the low temperature limit tB ≪ β (obtained

by solving numerically (43) in this limit), for the aforementioned choice of (ℑ̂K)(ω). A good
agreement with (53) is found in the regimes tB ≪ tdec ≪ β (dotted lines) and tdec ≪ tB (dashed
line).

3.6 Decay of the object-pointer coherences

In this section we will show (at least in the two limiting regimes studied in Secs. 3.5.1 and 3.5.2)
that the 2 following statements are true:

1. For s 6= s′, the object-pointer matrix element 〈s, x|ρPS(t)|s′, x′〉 is vanishingly small at
time t≫ tdec for all values of (x, x′).

2. The decoherence factor e−Dt(xs(t),x′

s(t);s,s) for the pointer matrix elements 〈x|ρ(s)
P |x′〉 in (39)

remains close to unity at time t ≈ tdec if |xs(t)| and |x′s(t)| are smaller than ∆eff .

We may conclude from the first statement that the reduction of the wavepacket (i.e., the
disappearance of all the object-pointer coherences (37) for s 6= s′) is entirely governed in our
model by the two timescales tent and tdec. Let us recall that tdec has been defined in Sec. 3.4 as
the decay time of 〈s, x|ρPS(t)|s′, x′〉 for a specific value of (x, x′) (namely, (x, x′) = (ǫts, ǫts′)).
The second statement means that decoherence does away with the “off-diagonal” (s 6= s′)
object-pointer matrix elements before the “diagonal” ones change noticeably.

The justifications of the 2 statements are somehow technical; the reader is advised to skip
them in a first reading and proceed directly to Sec. 3.7.

3.6.1 Justification of statement 1

We first show that statement 1 holds true if one assumes tdec ≥ tent. We have seen above that
the (s 6= s′)-coherences (37) almost vanish when |xs(t)| ≥ ∆eff or |x′s′(t)| ≥ ∆eff . We may
therefore restrict our attention to values of (x, x′) satisfying |xs(t)|, |x′s′(t)| < ∆eff . By using
(35), (41) and (42), one obtains

Dt(xs(t), x
′
s′(t); s, s

′ = s+ δs) = Dpeak
t

(
1 + 4tent

I0,1,t

I1,1,t
+ 4t2ent

I0,0,t

I1,1,t

)
(54)
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where Ia,b,t =
∫ t

0
dτ1

∫ t

0
dτ2 τ

a
1 τ

b
2 ℜK(τ1−τ2) = Ib,a,t satisfies supt≥0 t

2−a−bIa,b,t/I1,1,t <∞ for any

a, b = 0, 1)12. As a result, the r.h.s. of (54) equals Dpeak
t (1 + O(tent/t)). If t is large compared

with both tdec and tent then Dpeak
t ≫ 1, O(tent/t)) ≪ 1 and thus Dt(xs(t), x

′
s′(t); s, s

′ = s+δs) ≫
1 for all (x, x′) such that |xs(t)| and |x′s′(t)| are smaller than ∆eff . Therefore, the product of
the two last factors in the r.h.s. of (37) is vanishingly small for all values of (x, x′).

We now argue that tdec ≥ tent for pointer-bath coupling strength η . β/TB, excepted for
Ohmic baths at large values of tent (i.e., for weak object-pointer couplings). In the interaction-
dominated regime, one has even tdec ≫ tent, see Sec. 3.5.1. Let us study the Markov regime
tdec ≫ TB. By using |K(τ)| ≤ 〈B2〉 (Cauchy-Schwarz inequality) and ℜK(τ) ≃ 0 for τ ≫ TB
(Sec. 3.1.2), one finds that the integrals

∫ ∞

0
dτ ℜK(τ) and |

∫ ∞

0
dτ τ ℜK(τ)| are at most of the

order of 〈B2〉TB and 〈B2〉T 2
B, respectively. Hence the coefficient cm≥3 in (52) is of the order

of (β/TB)2 or larger. By virtue of (51), the condition tent ≤ tdec holds for super-Ohmic baths
provided that η . β/TB. Note that the latter condition is necessarily fulfilled by virtue of the
stability condition (18) when the temperature is not too large (so that TB = β). The situation
is different for Ohmic baths: then tdec ≤ tent even for small η if

tent

β
&

〈B2〉β
η2

∫ ∞

0
dτ ℜK(τ)

. (55)

Assuming that η . β/TB and that tdec can be “smoothly interpolated” between the regimes
tdec ≪ tB and tdec ≫ TB (see Fig. 5), it seems reasonable to conclude that the condition
tdec ≥ tent is fulfilled save for Ohmic baths when tent satisfies (55).

The existence of the above-mentioned exceptional situation for Ohmic bath leads us to ask
us the following question. When the condition tdec ≥ tent is not fulfilled, can the object-pointer
coherences (37) be still ≈ 1 at time t ≈ tdec? To answer this question, we shall determine the
decay of the maximum decoherence factor obtained by minimising Dt(x, x

′; s, s′) over all values
of (x, x′) in R2. We transform (36) with the help of the change of variable τ → τ − t/2 into

Dt(x, x
′; s, s′) =

∫ ∞

−∞

dω

4π
(ℜ̂K)(ω)

{(
x′ − x+ tǫ(s′ − s)/2

)2
(∫ t/2

−t/2

dτ cos(ωτ)

)2

+ǫ2(s′ − s)2

(∫ t/2

−t/2

dτ τ sin(ωτ)

)2}
. (56)

Fixing (s, s′) and t and letting (x, x′) vary, Dt(x, x
′, s, s′) reaches its minimum value when

x′ − x = −tǫ (s′ − s)/2. This minimum reads

Dmin
t (s, s′) = min

x,x′

{
Dt(x, x

′, s, s′)
}

=
ǫ2(s′ − s)2

2

∫ t/2

−t/2

dτ1

∫ t/2

−t/2

dτ2 τ1τ2ℜK(τ1 − τ2) . (57)

Therefore, the decoherence factor exp{−Dt(xs(t), x
′
s′(t); s, s

′)} in the object-pointer state (37)
is maximum when x′ − x = tǫ (s′ − s)/2, i.e., when the distance |x′ − x| is half the distance

between the peaks of the shifted pointer densities ρ
(s)
P . We may now compare the decay of

exp{−Dmin
t (s, s′)} with that of the decoherence factor exp{−Dpeak

t (s, s′)} associated with the
object-pointer coherences for (x, x′) = (ǫts, ǫts′). We first do that in the interaction-dominated
regime t≪ tB. To obtain the expression of (57) in that regime, an expansion of K(τ1 − τ2) up

12It is clear that Ia,b,t ∼ 4ta+b−2I1,1,t(a + 1)−1(b + 1)−1 as t ≪ tB. The large time limit t ≫ TB can be
handled by a similar approach as in Sec. 3.5.2.
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to second order in τ1 − τ2 is required (the zeroth and odd derivatives do not contribute due to
the symmetry τ1 ↔ τ2, τ1 ↔ −τ1 and τ2 ↔ −τ2 of the range of integration in (57)). One gets

Dmin
t (s, s′ = s+ δs) =

(
t

tmax
dec

)6

,
tmax
dec

β
=

(
288〈B2〉
β2|K ′′(0)|

)1/6 (
tent

ηβ

)1/3

(58)

As before, the conditions tmax
dec ≪ tB, TS, TP must be checked for consistency. The modulus

of the second time derivative K ′′(0) of K(τ) at τ = 0 is at most of the order of 〈B2〉(tB)−2.
Comparing (47) and (58), one sees that the maximum decoherence factor exp{−Dmin

t } decays
more slowly than exp{−Dpeak

t } at small time t≪ tB (the ratio between tmax
dec and tdec is large, of

the order of (tB/tdec)
1/3). In contrast, in the opposite Markov regime t≫ TB the object-pointer

coherences 〈s, x|ρPS(t)|s′, x′〉 for fixed s 6= s′ decay in the same way for all values of (x, x′),
apart from irrelevant numerical factors. Actually, a similar calculation as in Sec. 4.2.5 shows

Dmin
t ≃




Dpeak

t /4 if m = 1 (Ohmic)

Dpeak
t /2 if m ≥ 3 (super-Ohmic)

, t≫ TB . (59)

In particular, Dmin
t ≃ 1/4 when t = tdec ≫ TB for a Ohmic bath. More generally, in the Markov

regime tdec ≫ TB, the decoherence factor e−Dt(xs(t),x′

s′
(t);s,s′) in (37) is vanishingly small at time

t ≫ tdec(s, s
′) for all values of (x, x′). Since we have seen above that in the regime tdec . TB

the object-pointer coherence are vanishingly small for all (x, x′) thanks to the smallness of the
second factor in (37), we conclude that the statement 1 at the beginning of this Section is
correct in all cases.

3.6.2 Justification of statement 2

It is appropriate to demonstrate that the decay of the pointer matrix elements (39) remains
negligible for times t until well after the disappearance of the off-diagonal (s 6= s′) terms in
ρPS(t). Due to the factor 〈xs(t)|ρP (0)|x′s(t)〉 in (39) and the form (14) of the pointer initial
state, the relevant values of (x, x′) satisfy |x− x′| . λth.

Let us first discuss the interaction-dominated regime t≪ tB. Replacing K(τ1 − τ2) by 〈B2〉
in (40), one obtains

e−Dt(xs(t),x′

s(t);s,s) ≃ exp

{
−1

2
〈B2〉t2(x− x′)2

}
, t≪ tB . (60)

Given |x−x′| ≤ λth, it follows from tent ≪ tdec and λth ≪ ∆eff that |x−x′| is much smaller than
the inter-peak distance tdecǫδs relevant for the decay of the (s, s′ = s + δs) matrix elements of
ρPS(t). Hence |x−x′| ≤ λth entails Dt(xs(t), x

′
s(t); s, s) ≪ η2t2β−2 ≪ 1 (recall that t≪ tB ≤ β

and η . 1 by the stability condition (18)). The formula (47) can deduced heuristically from (60)
in the following way. Recalling that the distance between neighbouring peaks in the pointer
density ρP (t) grows proportionally with time, one replaces x′ − x in (60) by the inter-peak
distance ǫtδs and recovers (47) apart from a numerical factor.

In the Markov regime t≫ TB, one can use a similar method as in Sec. 3.5.2 to deduce from
(39) that

e−Dt(xs(t),x′

s(t);s,s) =





exp

{
−3t2ent

t3dec

t
(x′ − x)2

∆2
eff

}
if m = 1 (Ohmic)

exp

{
−2η2

cm

(x− x′)2

∆2
eff

}
if m ≥ 3 (super-Ohmic)

, t≫ TB (61)
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where tdec and cm≥3 are given by the upper line in (51) and by (52), respectively. For an Ohmic
bath, the (s = s′) object-pointer matrix elements 〈s, x|ρPS(t)|s, x′〉 decay exponentially with
time when x 6= x′. Such an exponential decay is familiar to quantum systems coupled to an
Ohmic bath in the Markov regime. Note the difference with the decay like exp{−(t/tdec)

3}
of the decoherence factor (51) for the (s 6= s′) object-pointer matrix elements. There, the
superposition of distinct eigenvectors |s〉 and |s′〉 decohere through the entanglement with the
pointer, which is coupled to the bath (indirect decoherence). For a super-Ohmic bath, the
decoherence factor (61) saturates to a finite value as t goes to infinity. This means that there
is no complete damping of the (s = s′) object-pointer matrix elements, even for large finite
distances |x − x′|. Such a saturation was already mentioned in Sec. 3.5.2. It is in striking
contrast with what happens for s 6= s′ in (51). The formula (51) can deduced heuristically
from (61) (for both m = 1 and m ≥ 3) by the same argument as used above in the interaction-
dominated regime: replacing x′ − x in (61) by the inter-peak distance ǫtδs, one recovers (51)
apart from numerical factors. For an Ohmic bath, if tdec is not in the time regime indicated in
(55) so that tent ≤ tdec, then (19) entails Dt(xs(t), x

′
s(t); s, s) ≪ 1 for |x−x′| ≤ λth and t . tdec.

For a super-Ohmic bath one has even Dt(xs(t), x
′
s(t); s, s) ≪ 1 for |x− x′| ≤ λth at all times t.

In conclusion, the decoherence caused by the pointer-bath coupling has a small effect on
the pointer states ρ

(s)
P (t) up to times t . tdec. Actually, at those times (39) reduces to

〈x|ρ(s)
P (t)|x′〉 ≃ 〈xs(t)|ρP (0)|x′s(t)〉e−iφt , t . tdec . (62)

3.7 Conclusion

If t is much larger than the maximum decoherence time tdec = tdec(s, s±δs) (t being still smaller
than TS and TP ), the matrix elements (37) are vanishingly small for all values of s 6= s′ and all
values of (x, x′) (see Sec.3.6). Assuming moreover that the spectrum of S is non-degenerate,
we conclude that object and pointer are in a separable mixed state

ρPS(t) ≃
∑

s

ps|s〉〈s| ⊗ ρ
(s)
P (t) , t≫ tdec , (63)

with ps = |cs|2. Hence, with probability ps the object is in the eigenstate |s〉 of the measured

observable S and the pointer is in a state ρ
(s)
P (t) localised in position near x = ǫst. The

state in (63) looks like the post-measurement state (3) of the von Neumann postulate. The

only difference between (3) and (63) is that the pointer states ρ
(s)
P (t) are not macroscopically

distinguishable expected at very large times t & tclass. One can, however, use the instability
induced by the pointer-bath coupling as an amplification mechanism (see Sec. 3.2). Let the
coupling HSP be switched off at time

tint ≈Weff(ǫδs)−1 ≫ tent . (64)

Then all pointer states ρ
(s)
P (t) are outside the effective potential well save for possibly one

eigenvalue s ≃ 0. The “mesoscopic” inter-peak distance Weff at time t = tint is amplified
at time t > tint by the effective pointer dynamics, till it reaches a macroscopically resolvable
magnitude ∆class. Then a pointer reading, while still a physical process in principle perturbing
P, surely cannot blur the distinction of the peaks.

The result (63) shows that our apparatus with a single-degree-of-freedom macroscopic
pointer coupled via the Hamiltonians (9) and (10) to the object and bath performs a mea-
surement of the object observable S. The object-pointer state is transformed at time t ≫ tdec
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into a statistical mixture of eigenstates of S, in agreement with the von Neumann postulate
(3). Let us stress that, in contrast to the description of measurement processes presented in
von Neumann’s and other old quantum mechanics textbooks [6], it has not been necessary to
postulate the existence of a new kind of dynamics - different from that given by Schrödinger’s
equation and even non-unitary. We have only used “conventional” quantum theory, namely,
the superposition principle and Schrödinger’s equation. Unfortunately, the fundamental issue
of interpreting the object-pointer reduced density matrix (20) as a true statistical ensemble of
object-pointer states has not been elucidated at all! (see the discussion in Sec.2.3). Despite
of this major difficulty, the “object+pointer+bath” approach used here (which is, after two
decades of active work, by now widely spread in the physics community) is a step forward
in the theory of QM. This approach gives us some hope that measurement processes could be
understood without introducing a new dynamical equation generalising Schrödinger’s equation.

However, the main interest of the model studied in this lecture is not that it explains (with
the limitations mentioned above) the von Neumann’s postulate. Many other models in the
literature based on the “object+pointer+bath” approach do so, see e.g. [9]. The interesting
point is that our model, like the model of Ref. [1] that will be studied in the next lecture, allows
for explicit calculations of the measurement times. Two fundamental times characterising the
measurement have been introduced. The entanglement time tent is the time after which pointer
positions corresponding to distinct eigenvalues s of S begin to be resolved. It is given by
tent = ∆eff(ǫδs)−1, where ǫ is the object-pointer coupling constant, δs the separation between
neighbouring eigenvalues and ∆eff ≈ ∆th the uncertainty in the initial pointer position. Object
and apparatus must interact during a time tint much larger than tent, see (64). Accordingly, tent

provides a good measure of the efficiency of the object-pointer interaction (the smaller tent, the
more efficient the coupling). The second fundamental time of the measurement is the time tdec

associated to the decoherence process. This is the time after which the object-pointer density
matrix gets close to the statistical mixture (63). In an ideal measurement, both tent and tdec

must be much smaller than the times TS and TP associated with the dynamics of the isolated
object and pointer. Under this hypothesis, we have shown that

τdec = cγ,m
1/γ

(
τent

η

)2/γ

, γ =





4 if tdec . tB (interaction-dominated regime)

3 if tdec & TB for an Ohmic bath (Markov)

2 if tdec & TB for a super-Ohmic bath (Markov)

(65)

where τdec = tdec/β and τent = tent/β are the decoherence and entanglement times in units of the
thermal time β, η = 〈B2〉1/2∆effβ . 1 is the pointer-bath coupling energy in units of kBT and
cγ,m are constants independent of the strength of the couplings. Two distinct regimes ought to
be identified in (65): in the interaction-dominated regime, tdec is shorter than the characteristic
time tB after which the bath correlation function K(t) differs significantly from its value 〈B2〉
at t = 0; in the opposite Markov regime, one must wait more than the bath correlation time
TB, i.e., the largest decay time of K(t), to obtain the required statistical mixture. While tdec

presents a universal behaviour in the interaction-dominated regime (it depends on the bath
through the single parameter η, i.e., c4,m = 8 is independent on the details of the pointer-bath
coupling), in the Markov regime it is determined by the small-frequency behaviour of ℑK(t),

(ℑ̂K)(ω) ∼ −i γ̂ ωm. Larger values of tdec are found for larger m’s, with a significant change of
behaviour between m = 1 (Ohmic bath) and m > 1 (super-Ohmic bath). For a bath at very low
temperature, β ≫ tB, (65) still holds with τdec and η replaced by tdec/tB and ηD = 〈B2〉1/2∆eff tB,
save for the Ohmic case where ηDtdec/tent becomes logarithmically small in tdec/tB.
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The entanglement and decoherence times are ordered as follows:
(1) tent ≪ tdec . tB in the interaction-dominated regime;
(2) in the Markov regime (tdec & TB), tent ≤ tdec for a super-Ohmic bath with a small enough
pointer-bath coupling (η . β/TB), whereas for an Ohmic bath this inequality holds for strong
object-pointer coupling only (more precisely, for tent . c3,1 η

−2β).
Therefore, the only regime with a decoherence faster than resolution of pointer peaks is the
Markov regime with m = 1 (Ohmic bath).

It is worthwhile to note that for reasonably strong pointer-bath coupling and not too strong
object-pointer coupling, the decoherence time can be so small that the whole measurement is
performed without producing a Schrödinger cat state as an intermediate step. More precisely,
one can deduce from (64) and (65) that tdec ≤ tint if η ≥ c

1/2
γ,m∆eff/Weff (γ = 2, 3, 4) and

τent ≥ ∆eff/Weff , with the object-pointer interaction time given by (64) and Weff ≫ ∆eff the
width of the effective pointer potential (15). In such a case, due to the simultaneous action
of the object-pointer and pointer-bath couplings, mesoscopic superpositions decay to mixtures
faster than entanglement can create them.
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4 Lecture 3: Curie-Weiss model

In this third lecture, we study a model for a QM due to Allahverdyan, Balian and Nieuwen-
huizen [1, 2] and compare the results for the entanglement and decoherence times to those
obtained in the second lecture. The measurement apparatus is an interacting spin chain. The
object is a spin 1/2 coupled identically to all spin of the apparatus. The latter spins are coupled
to independent thermal baths at the same temperature (Fig. 6). One assumes that there are
initially no apparatus-bath correlations. The main advantages of this model are:
(i) it displays interesting statistical physics phenomena such as phase transition and spin-spin
long-range correlations in the apparatus;
(ii) like in the model discussed in the previous lecture, object-apparatus entanglement and
environment-induced decoherence proceed simultaneously and mixtures of macroscopically dis-
tinct object-pointer product states arise without intervening macroscopic superpositions;
(iii) by relying on a mean-field approximation and treating the apparatus-bath coupling per-
turbatively, explicit results for the object-apparatus density matrix can be obtained in the
non-Markovian as well as in the Markovian regime.
Let us mention that another model in the same spirit, which involves an ideal Bose gas and
Bose-Einstein condensation, has been worked out by the aforementioned authors [21].

4.1 The model

4.1.1 The three-partite system

• Quantum object: spin 1/2; the z-component Ŝ = σ̂
(0)
z of the spin is measured (here and

in what follows the upper index 0 refers to the object).
We ignore the Hamiltonian of the object, ĤS = 0 (this is justified provided the time
scale TS for the dynamics of the isolated object is much larger than the decoherence and
object-apparatus interaction times, i.e. tdec, tint ≪ TS, see Sec. 3.1.2).

• Apparatus: N spin 1/2, labelled by the index n, n = 1, . . . , N (Hilbert space HA = C2N).

The pointer variable is the total magnetisation M̂z = Nµ m̂z in the z-direction. Here µ
is the magnetic moment of one spin and

m̂z =
1

N

N∑

n=1

σ̂(n)
z , (66)

σ̂
(n)
z being the z-component of spin n. The apparatus and object-apparatus Hamiltonians

are

ĤA = −1

4
JNm̂4

z , ĤSA = −gNσ̂(0)
z ⊗ m̂z . (67)

ĤA describes e.g. super-exchange spin interactions. The exchange integral J > 0 is
identical for all spin pairs; it is positive and thus favours spin alignment. Unlike in the
model discussed in Sec. 3, where the object was coupled to a single degree of freedom of
the apparatus, ĤSA couples S identically to all spins of A, with the same coupling energy
g > 0.
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Independent baths (harmonic oscillators)

Object
(spin 1/2)

Apparatus
(spin chain)

Figure 6: The QM model of Allahverdyan et al. [1, 2].

The N spins of the apparatus are initially in a paramagnetic state with mz = 0. In
order to fulfil the requirements 1 and 2 of Sec. 2.1, we assume N ≫ 1. Moreover, we
are interested in values of g large enough (or temperatures T small enough) so that the
equilibrium state of A coupled via ĤSA to the magnetic moment of S is a ferromagnetic
state with magnetisation Mz ≃ ±µN if the object is initially in an eigenstate |s = ±1〉
of σ̂

(0)
z (critical regime of the phase transition).

• Environment: Ohmic bath of harmonic oscillators coupled independently to the 3 spin
components σ̂

(n)
a (a = 1, 2, 3) of the N spins (n = 1, . . . , N).

The coupling with the apparatus is linear in the creation and annihilation operators b
(n)
ν,a

†

and b
(n)
ν,a in the mode (ν, a, n) (here ν = 1, . . . ,N counts the distinct modes coupled to

the same spin component σ̂
(n)
a ),

ĤAB =
N∑

n=1

3∑

a=1

σ̂(n)
a ⊗ B̂(n)

a , B̂(n)
a = N−1/2

N∑

ν=1

(
κνb

(n)
ν,a

†
+ κ∗νb

(n)
ν,a

)
. (68)

The coupling constant κν between the (ν, a, n)-mode and the a-component of spin n is
independent of a and n. The same is true for the mode frequency ων . Hence all spin of
A are coupled to identical independent baths. The Hamiltonian of the latter is

ĤB =

N∑

n=1

3∑

a=1

N∑

ν=1

ωνb
(n)
ν,a

†
b(n)
ν,a . (69)

In absence of spin-bath coupling, the object-apparatus comes back to its initial state
at the recurrence times t

(j)
rec = πg−1j, j = 1, 2, . . . (see below). Between t = 0 and

t
(1)
rec, the information on the object coherences spreads out among the N spins of the

apparatus. The role of the spin-bath coupling is twofold: firstly, it introduces some
irreversibility in the dynamics, which prevents S and A to come back to the initial state
at times t

(j)
rec and allows for an irretrievable loss of information on the initial coherences of

S (this information, after being stored in the N -spin state, can “escape” to the baths) 13.

13Let us recall that in the model of Sec. 3, the information about the object coherences had first to be
“transmitted” to the pointer before being spread out among the infinitely many degrees of freedom of the bath
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Figure 7: (a) tanh(κ(m3 + α)) as a function of m for κ = 3 and α = 0.09, 0.077, 0.06 and 0
(solid curves, from top to bottom) . The abscissa of the vertical dashed lines give the solutions
of (73). (b) Free energy per spin of the apparatus, F/N , as a function of m for s = 1 and for
the sames values of κ and α as in (a). Energy is measured in unit of kBT . The curve with
the higher maximum near m = 1 corresponds to α = 0, the other ones having a lower maxima
correspond to α = 0.06, 0.077 and 0.09. (Insets: same for m varying between 0.98 and 1).

Secondly, it allows for a symmetry breaking, leading to a spontaneous magnetisation of
A depending on the initial value s = ±1 of the spin S.

4.1.2 Initial state

Unlike in the model discussed in Sec. 3, we assume that A and B are not initially correlated.
In view also of the requirement 1-3 of Sec. 2.1, we consider the object-apparatus-bath initial
state

ρ̂SAB(0) = |ψ〉〈ψ| ⊗ ρ̂A(0) ⊗ ρ̂ eq
B with |ψ〉 = c+| ↑〉 + c−| ↓〉 (70)

and

ρ̂A(0) = 2−N , ρ̂ eq
B = Z−1

B e−βĤB . (71)

The object is initially in a pure state given by a linear superposition of spin up and down. The
apparatus is initially in a metastable state with a vanishing magnetisation mz = tr(ρ̂A(0)m̂z) =
0. Its density matrix ρ̂A(0) is proportional to the identity operator on C2N . The bath is initially
in thermal equilibrium at temperature T = (kBβ)−1.

4.1.3 Equilibrium states of the apparatus

As we will see below, the initial state of A evolves under the couplings ĤSA and ĤAB to an
equilibrium state. What are the apparatus equilibria in absence of coupling with the bath ?

and therefore irretrievably lost. In the present model, this information first spreads out among the N spins of
A, thanks to the direct coupling of S with these N spins. For finite N this information could still be accessible

if the spins were not coupled to B: one could then reconstruct the object initial state at times t
(j)
rec. As far as

decoherence is concerned, B only plays the role of preventing this reconstruction by introducing irreversibility
in the dynamics. The choice of a bath of harmonic oscillators with linear couplings should therefore not matter
much on the decoherence process if the apparatus-bath coupling strength is small enough or N is large enough.
This fact will be confirmed in Sec. 4.2.
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Such equilibria minimise the apparatus free energy F = E − TS. Replacing the z-component
σ̂

(0)
z of the spin S by its eigenvalue s = ±1 in (67) and using the entropy of N independent

spins (as will be justified in the next section by invoking the mean-field approximation), we
obtain

F = −1

4
JNm4 − gNsm+NkBT

{1 +m

2
ln

(1 +m

2

)
+

1 −m

2
ln

(1 −m

2

)}
. (72)

The extrema of F are given by the implicit equation

m = tanh
(
βµh(m)

)
, h(m) = µ−1(Jm3 + gs) . (73)

Let us first consider the case s = 1. We set κ = βJ and α = g/J . For fixed κ and α, the
approximate solutions of (73) can be easily obtained graphically, see Fig. 7(a). It not difficult
to prove that, for a fixed κ, there exists some αc > 0 with the following property:

(1) for α < αc, the function fκ,α(m) = tanh(κ(m3 + α)) −m has three roots m0, m∗ and m1

on [0, 1]; for g = α = 0, the first root is m0 = 0.

(2) for α > αc it has only one root m1 on [0, 1];

(3) for α = αc, it has two roots m0,c and m1,c on [0, 1].

The critical value αc can be obtained from the condition fκ,α
′(m0,c) = fκ,α(m0,c) = 0 for some

m0,c ∈ [0, 1]. This gives cosh(κ(m3
0,c + α)) =

√
3κm0,c and m2

0,c =
√

1/4 + (3κ)−1 − 1/2. One
finds

αc =
1

κ
argth

((√
1/4 + (3κ)−1 − 1/2

)1/2)
−

(√
1/4 + (3κ)−1 − 1/2

)3/2

. (74)

In Fig. 7(b), F is shown as a function of m for κ = 3 and for three values of α smaller, equal
and larger than αc ≃ 0.0777.

(1) For α < αc, the smallest positive solution m0 of (73) corresponds to a local minimum of
F . In fact, (∂2F/∂m2)(m0) = Nβ−1(−3κm2

0 + (1 −m2
0)

−1) is positive since m2
0 < m2

0,c =√
1/4 + (3κ)−1 − 1/2 < 1/2 −

√
1/4 − (3κ)−1. The largest solution m1 ∈ [m0, 1] of (73)

has also (∂2F/∂m2)(m1) > 0 and has a lower free energy than m0. It corresponds to a
ferromagnetic equilibrium state, with magnetisation Mz = µNm1 ≃ µN for large κ. The
smallest solution m−1 of (73) in the interval [−1, 0] gives another local minimum of F
which is higher than m1 when g > 0. Note that for g = 0, the paramagnetic state with
mz = m0 = 0 is a metastable equilibrium. The free energy is the then an even function
of m and one has two equilibria with magnetisation m±1 (see Fig. 7(b)).

(2) For α > αc, the only states for which F has a local minimum are the ferromagnetic states
m = m±1 ≃ ±1. The equilibrium state corresponds to the largest solution m1 ∈ [m0, 1].
Hence, when g > gc = Jαc the object-apparatus interaction is sufficient to suppress the
barrier in the free energy (Fig. 7(b)), in much the same way as for the pointer potential
in the model of lecture 2.

The case s = −1 can be deduced from s = 1 by reverting the sign of m (the free energy (72) is
then left unchanged).
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In presence of a small amount of dissipation, the apparatus relaxes to the metastable or
equilibrium state closest to its initial paramagnetic state. For s = ±1, this state has a mag-
netisation

Mz =

{
±µN m0 if g < gc(J, β) = Jαc

±µN m1 if g > gc(J, β).
(75)

The pointer variable Mz ends up in macroscopically distinct values according to the spin S
eigenvalue s, up to small fluctuations. This is in agreement with the requirement 2 of Sec. 2.1.

Let the object-apparatus interaction be switched-off gradually after the aforementioned
relaxation has taken place, say after time tint. The magnetisation then evolves adiabatically at
times t > tint to the solution of (73) for g = 0.

(1) If the object-apparatus coupling constant g in the time interval [0, tint] is smaller than the
critical value gc(J, β), the pointer variable Mz thus returns to its initial value Mz = 0
after the S-A coupling has been switched off.

(2) On the contrary, if g > gc(J, β) the apparatus remains in a ferromagnetic state, with
magnetisation Mz ≃ ±µN if κ ≫ 1. In this case the pointer variable Mz acts has a
permanent register of the measurement result.

4.1.4 Bath correlation function

Denoting by 〈·〉eq the average w.r.t. the bath equilibrium state ρ̂ eq
B , we remark that 〈B̂(n)

a 〉eq = 0
and, by virtue of the independence of the bath modes (ν, a, n) and (ν ′, a′, n′) for a 6= a′ or n 6= n′,

K
(n,n′)
a,a′ (t) = 〈eitĤBB̂(n)

a e−itĤB B̂
(n′)
a′ 〉eq = δa,a′δn,n′K(t) . (76)

It is well known that for a bath of harmonic oscillators with a linear coupling as in (68),
the imaginary part of K(t) is temperature-independent, its Fourier transform being given by

(̂ℑK)(ω) = −(̂ℑK)(−ω) = −iJ(ω), ω ≥ 0, where

J(ω) =
π

N
N∑

ν=1

|κν |2δ(ω − ων) (77)

is the so-called power spectrum function [13]. Moreover, the real part of K(t) is temperature-
dependent, its Fourier transform is given by the KMS relation (48). For a Ohmic bath, J(ω)
behaves linearly with ω at low frequencies. We take here:

J(ω) =
1

8
γ̂ ω e−ω/ωD , ω ≥ 0

where ωD a cutoff frequency (Debye frequency) 14. We conclude that the bath correlation
function K(t) appearing in (76) is given by

ℜK(t) = γ̂

∫ ∞

0

dω

8π
cos(ωt)ω coth

(βω
2

)
e−ω/ωD , ℑK(t) = −γ̂

∫ ∞

0

dω

8π
sin(ωt)ωe−ω/ωD .

(78)
At low temperature kBT ≤ ωD, the bath correlation time after which K(t) ≃ 0 is equal to
TB = β = (kBT )−1 (see Sec.3.1.2).

14Note that a slightly different power spectrum function was taken in lecture 2.
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4.1.5 Separation of time scales

We assume in what follows the following separation of time scales

tB = ω−1
D ≪ TB = β , J−1, g−1 . (79)

The first limit means that one considers baths at very low temperatures, see Sec. 3.5.3. In
addition, TB, J−1 and g−1 must be much smaller than the time scale TS for the free evolution
of the object (in order to justify that one can neglect HS, see the discussion in Sec. 2.3). Unlike
in the model of lecture 2, we may take the object-apparatus interaction time tint to be of the
same order as the time scales J−1 and g−1 for the evolution of the pointer variable Mz under
the apparatus Hamiltonian HA. We shall see below that J−1 and g−1 are much larger than the
decoherence time for N ≫ 1, although it is not necessary to make such an assumption at this
point.

4.2 Dynamics

4.2.1 Redfield equation

In the weak coupling limit K(0)2T 3
Bt ≪ 1, the reduced object-apparatus density matrix (2)

satisfies the time-dependent Bloch-Redfield equation [15]

dρ̂SA

dt
= −i

[
ĤA + ĤSA , ρ̂SA(t)

]
+

N∑

n=1

3∑

a=1

∫ t

0

dτ
{
K(τ)

[
σ̃(n)

a (−τ)ρ̂SA(t) , σ̂(n)
a

]
+ h.c.

}
(80)

where σ̃
(n)
a (τ) is the a-component of the nth spin in the interaction picture,

σ̃(n)
a (τ) = eiτ(ĤA+ĤSA)σ̂(n)

a e−iτ(ĤA+ĤSA) . (81)

It is convenient to introduce for each pair (s, s′) of spin S values the corresponding “apparatus
density matrix” ρ̂A,ss′(t) defined by

ρ̂A,ss′(t)csc
∗
s′ = 〈s|ρ̂SA(t)|s′〉 . (82)

Note that ρ̂A,↑↓(t) = ρ̂A,↓↑(t)
† is not necessarily hermitian. The “diagonal” contributions ρ̂A,↑↑(t)

and ρ̂A,↓↓(t) are hermitian and satisfy

|c↑|2 tr ρ̂A,↑↑(t) + |c↓|2 tr ρ̂A,↓↓(t) = 1 . (83)

One may associate to each spin sector (s, s′) its dimensionless magnetisation per spin at time
t,

mss′(t) = 〈m̂z〉ss′(t) =
tr(|ρ̂A,ss′(t)|m̂z)

tr(|ρ̂A,ss′(t)|)
. (84)

In general |ρ̂A,ss′(t)| = (ρ̂A,ss′(t)
†ρ̂A,ss′(t))

1/2 may differ from |ρ̂A,s′s(t)| for s 6= s′ and thus
mss′(t) 6= ms′s(t).

The Redfield equation (80) can be rewritten as four differential equations in each spin sector
(s, s′),

dρ̂A,ss′

dt
= −i

[
ĤA , ρ̂A,ss′(t)

]
+ igNs

(
δs,s′

[
m̂z , ρ̂A,ss′(t)

]
+ δs,−s′

{
m̂z , ρ̂A,ss′(t)

})

+
N∑

n=1

3∑

a=1

∫ t

0

dτ
{
K(τ)

[
σ̃(n)

a (s;−τ)ρA,ss′(t) , σ̂
(n)
a

]
+

(
h.c., s↔ s′

)}
(85)

with σ̃
(n)
a (s; τ) = 〈s|σ̃(n)

a (τ)|s〉.
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4.2.2 Dynamical Mean-Field Approximation

The interactions among the spins of A will be described with the help of a Dynamical Mean-
Field Approximation (DMFA). One neglects in this approximation the spin fluctuations 〈(m̂z −
mss′(t))

k〉ss′(t) with k = 2, 3, 4, where 〈·〉ss′(t) denotes the average w.r.t. |ρss′(t)|, see (84). This
amounts to substitute the apparatus Hamiltonian (67) by

ĤA −→ ĤM.F.
A (s, s′; t) = −JNmss′(t)

3
(
m̂z −mss′(t)

)
(86)

apart from an irrelevant constant −JNmss′(t)
4/4. Within the DMFA, we seek a solution of

(85) in the product form

ρA,ss′(t) = ρ
(1)
ss′(t) ⊗ · · · ⊗ ρ

(N)
ss′ (t) . (87)

In other terms, we disregard the entanglement between the spins of A. It is important to notice
that making a standard DMFA for the (N + 1) spins of S +A would amount to disregard also
the entanglement between S and A, a very bad idea ! For indeed, as was pointed out in the
first lecture, this entanglement plays a major role in a QM. The justification of the DMFA used
here should certainly merit more attention. We will, however, not elaborate on this point.

Replacing (86) and (87) into (85), one gets for all n = 1, . . . , N ,

dρ̂
(n)
ss′

dt
= iJmss′(t)

3
[
σ̂(n)

z , ρ̂
(n)
ss′ (t)

]
+ igs

(
δs,s′

[
σ̂(n)

z , ρ̂
(n)
ss′ (t)

]
+ δs,−s′

{
σ̂(n)

z , ρ̂
(n)
ss′ (t)

})

+
3∑

a=1

∫ t

0

dτ
{
K(τ)

[
σ̃

(n)
a,M.F.(s, s

′;−τ, t)ρ̂(n)
ss′ (t) , σ̂

(n)
a

]
+

(
h.c., s↔ s′

)}
(88)

where σ̃
(n)
a,M.F.(s, s

′; τ, t) is the spin operator 〈s|σ̃(n)
a (τ)|s〉 in the interaction picture in the DMFA.

This spin operator is obtained by replacing ĤA + ĤSA in (81) by the following mean-field
Hamiltonian in the (s, s′)-sector

ĤM.F.
A (s, s′; t) − gNsm̂z = −µNhss′(t)m̂z + const. . (89)

The z-component of each spin of A is coupled to the magnetic field

hss′(t) = µ−1
(
Jmss′(t)

3 + gs
)

(90)

created by all other spins of A and by the spin S in the eigenstate |s〉 of σ̂
(0)
z . This magnetic

field depends on the spin sector (s, s′) and on time t at which one looks at the apparatus density

matrix ρA,ss′(t). It is clear on the form of the Hamiltonian (89) that σ̃
(n)
a,M.F.(s, s

′; τ, t) acts as an
identity operator on the Hilbert spaces of all spins save for spin n. To simplify the notation,
we momentarily omit the indices n, s and s′. In view of (66), (81) and (89),

∂σ̃a,M.F.(τ, t)

∂τ
= −iµh(t)

[
σ̂z, σ̂a,M.F.(τ, t)

]
. (91)

Expanding σ̃a,M.F.(τ, t) in terms of the Pauli matrices σ̂1, σ̂2 and σ̂3 = σ̂z and using the com-
mutation relation [σ̂a, σ̂b] = 2i

∑3
c=1 ǫabcσ̂c (where ǫabc = 1 if (a, b, c) is a circular permutation of

(1, 2, 3), −1 if it is a circular permutation of (2, 1, 3) and 0 otherwise), a short calculation gives

σ̃1,M.F.(τ, t) = cos
(
2µh(t)τ

)
σ̂1 + sin

(
2µh(t)τ

)
σ̂2

σ̃2,M.F.(τ, t) = − sin
(
2µh(t)τ

)
σ̂1 + cos

(
2µh(t)τ

)
σ̂2 (92)

σ̃3,M.F.(τ, t) = σ̂3 .
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The last identity is a consequence of [σ̂3, ĤA +ĤSA] = 0 and does in fact not rely on the DMFA.

Let us write

ρ̂ss′(t) =
1

2

3∑

b=0

ζb,ss′(t)σ̂b (93)

where σ̂0 = 1 is the 2 × 2 identity matrix and ζb,ss′(t) are complex-valued coefficients. These
coefficients fulfil ζb,ss′(t)

∗ = ζb,s′s(t) because ρ̂A,ss′(t)
† = ρ̂A,s′s(t). It is easy (but somehow

tedious) to derive the system of coupled differential equations satisfied by the ζb,ss′(t)’s. By
replacing (92) and (93) into (88), using the aforementioned commutation relations for the Pauli
matrices and {σ̂a, σ̂b} = 2(δa,b + δa,0σ̂b + δb,0σ̂a − 2δa,0δb,0), one gets





dζ0,ss′

dt
= 2igs δs,−s′ ζ3,ss′(t)

dζ1,ss′

dt
= −

[
Λss′

(
t; h(t)

)
+ Λ0(t)

]
ζ1,ss′(t) +

[
2Jmss′(t)

3 + 2gsδs,s′ + Υss′
(
t; h(t)

)]
ζ2,ss′(t)

dζ2,ss′

dt
= −

[
2Jmss′(t)

3 + 2gsδs,s′ + Υss′
(
t; h(t)

)]
ζ1,ss′(t) −

[
Λss′

(
t; h(t)

)
+ Λ0(t)

]
ζ2,ss′(t)

dζ3,ss′

dt
= 2ig

[
sδs,−s′ + ηss′

(
t; h(t)

)]
ζ0,ss′(t) − 2Λss′

(
t; h(t)

)
ζ3,ss′(t)

(94)
where h(t) is the 2 × 2 matrix with coefficients given by (90), Λ0(t) = 4

∫ t

0
dτ ℜK(τ) and

Λss′
(
t; h(t)

)
= 2

∫ t

0

dτ
{
K(τ) cos

(
2µhss′(t)τ

)
+K(τ)∗ cos

(
2µhs′s(t)τ

)}

Υss′
(
t; h(t)

)
= 2

∫ t

0

dτ
{
K(τ) sin

(
2µhss′(t)τ

)
+K(τ)∗ sin

(
2µhs′s(t)τ

)}
(95)

ηss′
(
t; h(t)

)
=

2

g

∫ t

0

dτ
{
K(τ) sin

(
2µhss′(t)τ

)
−K(τ)∗ sin

(
2µhs′s(t)τ

)}
.

4.2.3 Solution of the Bloch-Redfield equation within the DMFA

The initial condition (71) can be rewritten thanks to (82), (87) and (93) as

ζa,ss′(0) = δa,0 , a = 0, . . . , 3 , s, s′ =↑, ↓ . (96)

The solution of (94) with this initial condition satisfies

ζ1,ss′(t) = ζ2,ss′(t) = 0 ∀ s, s′ =↑, ↓ , ∀ t
ζ0,↑↑(t) = ζ0,↓↓(t) = 1 ∀ t . (97)

The last inequality implies tr(ρ̂↑↑(t)) = tr(ρ̂↓↓(t)) = 1 at any time t ≥ 0 (this is is consistent
with (83)). A short calculation using (97) yields

|ρ↑↓(t)| = |ρ↓↑(t)| =
1

2

(
|ζ0,↑↓(t) + ζ3,↑↓(t)| 0

0 |ζ0,↑↓(t) − ζ3,↑↓(t)|

)
. (98)

By (84) and (87), mss′(t) = tr(|ρss′(t)|σz)/ tr |ρss′(t)|. Thus, in view of (93), (97) and (98),

mss(t) = ζ3,ss(t) , m↑↓(t) = m↓↑(t) =
2ℜ{ζ0,↑↓(t)

∗ζ3,↑↓(t)}
|ζ0,↑↓(t)|2 + |ζ3,↑↓(t)|2

. (99)
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For s = s′ = 1, the last equation in (94) becomes

dm↑↑

dt
= −2Λ↑↑

(
t; h(t)

)
m↑↑(t) + 2ig η↑↑

(
t; h(t)

)
(100)

with the initial condition m↑↑(0) = 0. The functions Λ and η are given by

Λ↑↑

(
t; h(t)

)
= 4

∫ t

0

dτ ℜK(τ) cos
(
2µh↑↑(t)τ

)

η↑↑
(
t; h(t)

)
=

4i

g

∫ t

0

dτ ℑK(τ) sin
(
2µh↑↑(t)τ

)
.

(101)

with h↑↑(t) = µ−1(Jm↑↑(t)
3 + g). An equation similar to (100) holds for s = s′ = −1.

For s = 1 and s′ = −1, the first and last equations in (94) are equivalent to




d2ζ0,↑↓

dt2
+ 2Λ↑↓

(
t; h(t)

)dζ0,↑↓

dt
+ 4g2

[
1 + η↑↓

(
t; h(t)

)]
ζ0,↑↓(t) = 0

ζ3,↑↓(t) = − i

2g

dζ0,↑↓

dt

(102)

with the initial conditions ζ0,↑↓(0) = 1 and (dζ0,↑↓/dt)(0) = 0. The solution of (102) with this
initial condition satisfies ζ0↑↓(t) ∈ R and ζ3↑↓(t) ∈ iR for all times t 15. Thus

m↑↓(t) = m↓↑(t) = 0 (103)

Λ↑↓

(
t; h(t)

)
= 4

∫ t

0

dτ ℜK(τ) cos(2gτ)

η↑↓
(
t; h(t)

)
=

4

g

∫ t

0

dτ ℜK(τ) sin(2gτ)

. (104)

Note that in absence of coupling with the bath, i.e. for γ̂ = 0, (100) and (102) are easily
integrated and yields

ρ̂A,↑↑(t) = ρ̂A,↓↓(t) = 2−N , ρ̂A,↑↓(t) = 2−N exp(2igtNm̂z) . (105)

The diagonal contributions remain unchanged and the matrix elements of the off-diagonal
contribution ρ̂A,↑↓(t) oscillates in the joint eigenbasis of the σ̂

(n)
z with the period π(gNmz)

−1,

where Nmz 6= 0 is the sum of the eigenvalues of the σ̂
(n)
z . As a result, ρ̂SA(t

(j)
rec) = ρ̂SA(0) with

t
(j)
rec = (π/g)j, j = 1, 2, . . .. In absence of apparatus-bath coupling the object and apparatus

therefore come back to their initial states at the recurrence times t
(j)
rec.

4.2.4 Interaction-dominated regime

In the time regime t ≪ tB = ω−1
D , the apparatus-bath interaction dominates the dynam-

ics (in fact, by our assumption on times scales (79) one has also t ≪ g−1, J−1). The real
part of the correlation function K(τ) can be approximated at time τ ≪ tB by ℜK(0) =
γ̂

∫ ∞

0
dω ω coth(βω/2)e−ω/ωD/(8π), see (104). Similarly, ℑK(τ) ≃ −γ̂

∫ ∞

0
dω ω2e−ω/ωD τ/(8π).

Using also the limit ω−1
D ≪ β in (79), we get

ℜK(τ) ≃ γ̂ ω2
D

8π
, ℑK(τ) ≃ − γ̂ ω

3
D

4π
τ , τ ≪ ω−1

D ≪ β . (106)

15Actually, the first equation in (102) admits a real solution since if ζ0↑↓(t) ∈ R ∀ t then ζ3↑↓(t) ∈ iR ∀ t by
the second equation of (102), so that (103) holds true by (99); by virtue of (95), the coefficients Λ↑↓(t;h(t)) and
η↑↓(t;h(t)) are then real and given by (104).
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We may replace cos(2µh↑↑(t)τ) and cos(2gτ) by 1, sin(2µh↑↑(t)τ) by 2(Jm↑↑(t)
3 + g)τ ≃ 2gτ

and sin(2gτ) by 2gτ in (101) and (104) to get

Λ↑↑

(
t; h(t)

)
≃ Λ↑↓

(
t; h(t)

)
≃ γ̂ ω2

D

2π
t

η↑↑
(
t; h(t)

)
≃ −2i

γ̂ ω3
D

3π
t3

η↑↓
(
t; h(t)

)
≃ γ̂ ω2

D

2π
t2

, t≪ ω−1
D ≪ β, g−1, J−1 .

Eq. (100) is then easily integrated and gives for t≪ ω−1
D

m↑↑(t) ≃ −m↓↓(t) ≃
γ̂ ω3

Dg

3π
t4 . (107)

One thus finds that m↑↑(t) is positive and increases with time, whereas m↓↓(t) is negative and
time decreasing.

Let us seek a solution of (102) in the limit t ≪ ω−1
D of the form ζ0,↑↓(t) = e−χ(t) cos(θ(t))

with χ(t) an even real function such that χ(0) = 0 and θ(t) an odd real function. Setting
χ(t) = at2 + bt4 + O(t6) and θ(t) = dt+ et3 + O(t5) and calculating the real coefficients a, b, d
and e, one easily obtain

χ(t) =
γ̂ ω2

Dg
2

2π
t4 + O(t6)

θ(t) = 2gt
(
1 − γ̂ ω2

D

6π
t2

) . (108)

We note that dθ/dt = 2g − (dχ/dt)/θ(t) +O(t4). Disregarding terms of order (ωDt)
5, one gets

ζ0,↑↓(t) ≃ e−χ(t) cos(θ(t)) , ζ3,↑↓(t) ≃ ie−χ(t) sin(θ(t)) , t≪ ω−1
D . (109)

In view of (87), (93), (97), (99), (102), (108) and (109), the object-apparatus density matrix
reads at in time t≪ ω−1

D

ρA,ss(t) ≃
(

1

2
+
mss(t)

2
σ3

)⊗N

ρA,↑↓(t) ≃ exp

{
−

(
t

tdec

)4
}

1

2N
exp

(
iNθ(t)m̂z

)
(110)

with

tdec =
( 2π

γ̂N

)1/4
√

1

ωDg
. (111)

It is interesting to compare (110) with the result (105) in absence of apparatus-bath coupling.
In presence of such a coupling, the diagonal contributions ρA,ss(t), s =↑, ↓, start to evolve at
time t > 0 towards the corresponding ferromagnetic equilibrium of the apparatus coupled the
object spin value s. The off-diagonal contribution ρA,↑↓(t) decays to zero due to the decoherence
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factor e−(t/tdec)
4

which has the same form as in the model studied in lecture 2, see (47). Formula
(111) makes sense provided that tdec ≪ ω−1

D , i.e.,

N ≫ γ̂−1

(
ωD

g

)2

. (112)

Note that tdec is much smaller than the recurrence time t
(1)
rec = π/g. This means that the

information about the object coherences which is spread out among the N spins by the object-
apparatus entanglement process is rapidly lost in the bath, so that this information cannot
come back to the object at a later time, unlike in the case γ̂ = 0.

4.2.5 The Markov regime

At times t much larger than the bath correlation time TB = β, the Redfield equation (80) can
be approximated by a Markovian master equation. This is done by replacing by +∞ the upper
bound t in the integral in the r.h.s. (this is justified if t ≫ TB since K(τ) ≃ 0 for τ ≫ TB).
Replacing the upper bound in the time integrals defining Λ in (101), one gets in view of (78)

Λ↑↑(∞; h↑↑(t)) = γ̂

∫ ∞

−∞

dω

4π
ω coth

(βω
2

)
e−|ω|/ωD lim

ε→0+

∫ ∞

0

dτ eiτ(ω+iε) cos
(
2µh↑↑(t)τ

)

=
γ̂

2
µh↑↑(t) coth

(
βµh↑↑(t)

)
exp

(
−2µh↑↑(t)/ωD

)
. (113)

The last exponential is almost equal to 1 by (79) and (90). Similarly, one finds

η↑↑(∞; h↑↑(t)) ≃ −i
γ̂

2g
µh↑↑(t) . (114)

Hence (100) takes the following form in the Markov regime t≫ TB:

dm↑↑

dt
= γ̂µh↑↑(t)

(
1 − m↑↑(t)

tanh(βµh↑↑(t))

)
, h↑↑(t) = µ−1(Jm↑↑(t)

3 + g) . (115)

Not surprisingly, the stationary solutions of (115) correspond to extrema of the free energy F .
They are given by the implicit equation (73).

4.3 Discussion

By analogy with the model of lecture 2, we may define the entanglement time tent as the time
at which the difference between the magnetisations m↑↑(t) and m↓↓(t) in the ↑↑ and ↓↓ sectors
equals the fluctuation ∆mz. The latter is easily found to be initially ∆mz = tr(m̂2

zρ̂A(0))1/2 =
1/N . Using (107), one gets

tent =

(
3π

2γ̂N

)1/4 (
ω3

Dg
)−1/4

(116)

provided that N ≫ γ̂−1(ωD/g). Like in the model of lecture 2, one has tent ≪ tdec in
the interaction-dominated regime (actually, comparing (111) and (116) one finds tdec/tent =
(ωD/g)

1/4 ≫ 1). The apparatus states ρA,↑↑(t) and ρA,↓↓(t) tied up with the S-spin s =↑ and
s =↓ become macroscopically distinguishable at the much larger time

tint = γ̂−1 max{J−1, g−1} ≫ tent . (117)
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At time t & tint, the magnetisations m↑↑(t) andm↓↓(t) have relaxed to their equilibrium value 16,
so that m↑↑(t) ≃ m1 ≃ 1 and m↓↓(t) ≃ −m1 ≃ −1 for g > gc(β, J) and Jβ ≫ 1. In this case,
if the object-apparatus interaction is switched off at time tint, the apparatus states ρA,↑↑ and
ρA,↓↓ will remain a ferromagnetic state having the N spins pointing in the ↑ and ↓ directions,
respectively, up to small thermal fluctuations (see Sec. 4.1.3). In the spin model under study,
one does not need an amplification mechanism like in the model of lecture 2, thanks to the
existence of the ferromagnetic phase transition.

All the above calculations rely on the DMFA and on a perturbative treatment of the
apparatus-bath interaction with the help of the Bloch-Redfield equation (80). The DMFA
is expected to be accurate for large N . As pointed out earlier, the time-dependent Bloch-
Redfield equation describes accurately the exact dynamics if K(0)2T 3

Btint ≪ 1. Using (106),
(117) and TB = β, this condition can be rewritten as

γ̂ ≪ J

ωD(ωDβ)3
,

g

ωD(ωDβ)3
. (118)

At time t ≫ tdec, the off-diagonal contributions ρA,↑↓(t) and ρA,↓↑(t) are vanishingly small
by virtue of (110). The object-apparatus state can be approximated by

ρSA(t) ≃
∑

s=↑,↓

|cs|2|s〉〈s| ⊗
(

1

2
+
mss(t)

2

)⊗N

(119)

in analogy with the model of lecture 2 and in agreement with (3). The whole discussion of
Sec. 3.7 applies here as well. With probability |c↑|2 (resp. |c↓|2), the object is in state | ↑〉
(resp. | ↓〉) and the apparatus is in the ferromagnetic state with magnetisation m↑↑ ≃ 1
(resp. m↓↓ ≃ −1). Like in the model of lecture 2, under the simultaneous action of the
object-apparatus and apparatus-bath couplings the measurement process does never produce
a Schrödinger cat state as an intermediate step.

Remark: According to Allahverdyan, Balian and Nieuwenhuizen, if the number N of spins in
the apparatus is very large the object-apparatus coherences actually decay like Gaussian on a
time scale tcollapse smaller than tdec. In fact, the authors argue that, approximating (cos(θ(t)))N

by exp(−2g2Nt2) in (109),

ζ0,↑↓(t) ≃ exp

{
−

(
t

tdec

)4
}

exp

{
−

(
t

tcollapse

)2
}

, t≪ ω−1
D ≪ β, g−1, J−1 , (120)

with

tcollapse =
1

g
√

2N
(121)

and tcollapse ≪ tdec for N ≫ γ̂(ωD/g)
2. However, such a decay is not present of one considers e.g.

the matrix element 〈s =↑; ↑ · · · ↑ |ρ̂SA(t)|s′ =↓; ↑ · · · ↑〉 = c↑c
∗
↓ exp{−(t/tdec)

4} exp{iNθ(t)}.
We therefore think that the physical decay of the object-pointer coherence is given by tdec.

16It is clear on (115) that the time scale for this relaxation process is of order (117).
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