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Abstract. We report and give an alternative derivation of some results on a model for a quantum
measurement studied in [1]. The measured microscopic system is coupled to the position of a macroscopic
pointer, which itself interacts with its environment via its momentum. The entanglement between the
system and the pointer produced by their mutual interaction is simultaneous with the decoherence of distinct
pointer readings resulting from leakage of information to the environment. After a discussion on the various
time scales in the model we calculate the matrix elements of the system-pointer density operator between
eigenstates of the measured observable with distinct eigenvalues. In general, the decay with time of these
coherences is neither exponential nor gaussian. We determine the decoherence (decay) time in terms of the
strength of the system-pointer and pointer-environment couplings. This decoherence time does not depend
upon the details of the pointer-bath coupling as soon as it is smaller than the bath correlation time (non-
Markov regime). In contrast, in the Markov regime it depends strongly on whether this coupling is Ohmic
or super-Ohmic.

1. Introduction
The issue of the interpretation and theoretical description of measurements on quantum systems has
been the subject of intense debates since the birth of quantum mechanics [2]. In the last three
decades the major role played by environment-induced decoherence in measurement processes has been
fully acknowledged thanks to the works of Zeh, Zurek and others (see [3, 4] and references therein).
Various concrete models of a quantum system interacting with a measurement apparatus coupled to its
environment have been investigated; some of them are inspired from statistical physics [5]. A renewal
of interest for quantum detection and decoherence came in the last decade with new developments in
quantum information. It is desirable to understand better the relation between quantum and classical
information and how one can convert one into another. Moreover, a good control over all sources
of decoherence is required to proceed quantum information. On the experimental side, measurements
can be used both to extract information on quantum states and to monitor quantum systems (quantum
trajectories [6], Zeno effect [7]). Experimental data are now available for the decoherence time in
microwave cavities [8] and in solid state devices like superconducting tunnel junction nanocircuits [9,10].

A measurement on a quantum system consists in letting this system (called “object” in the following)
interact with a measurement apparatus in such a way that some information about the object’s state
is transfered to the apparatus. It has been already recognised by Bohr (see e.g. [2]) that even
though the composite (object and apparatus) system has to be described by the quantum theory,
some part of the apparatus (called the “pointer” in the following) must be capable of a classical
behaviour. In an ideal measurement, the interaction builds up a one-to-one correspondence between
the eigenvalues s of the measured observable S (supposed here to have a discrete and non-degenerate
spectrum) and some macroscopically distinguishable pointer states. These states may for instance
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correspond to macroscopically distinct positions of the pointer. As is well-known [2–4] a quantum
measurement involves both the establishment of the aforementioned object-apparatus correlations and
some “superselection rules” destroying coherences between the pointer states. In most previous
discussions in the literature these two processes are treated separately. A first step consists in establishing
quantum correlations between the object and the pointer by means of an appropriate unitary evolution.
This evolution results from an interaction and produces an object-pointer entangled state. If the object
is initially in a superposition of eigenstates |s〉 of S, the unitary evolution builds up a Schrödinger
cat state. This state is a superposition of separable object-pointer states given by tensor products of
the eigenstates |s〉 with some pointer states having, say, sharply-defined positions depending on s.
Macroscopic distances separate pointer locations corresponding to distinct s’s. This Schrödinger cat
state is taken as the initial state for a second dynamical process called decoherence, which leads to
superselection rules. During this second step the quantum correlations between the object and apparatus
are transformed into classical correlations, i.e., the superposition of the object-pointer product states is
transformed into a statistical mixture of the same states.

For such a sequential treatment to make physical sense, the time duration of the entanglement process
must be short compared with the decoherence time after which coherences in the superposition disappear.
However, it is known that the latter time is extremely short. The sequential treatment of the entanglement
and decoherence can then be difficult to achieve in practice. The purpose of this paper is to study a model
in which the two above steps are performed simultaneously. If, in contrast to the situation described
above, the decoherence time is the shorter time, macroscopically distinguishable superpositions are
transformed into statistical mixtures faster than entanglement can create them. The whole measurement
is then performed without producing a Schrödinger cat state as an intermediate step.

Our model is a three-partite system consisting in the microscopic object to be measured, a pointer
composed by a single degree of freedom of the macroscopic apparatus, singled out by its strong coupling
to the object, and a bath consisting of all other degrees of freedom of the apparatus. A pointer-bath
coupling is responsible for decoherence. In an ideal measurement, the measured observable S in the
Heisenberg picture is weakly changed during the measurement. This can be the case provided that, on
the one hand, the object-pointer interaction Hamiltonian producing the aforementioned entanglement
nearly commutes with S and, on the other hand, the time scale for significant evolution of S under
the object Hamiltonian is much larger than the time duration of the measurement. In particular, this
time scale must be large compared with the decoherence time tdec. Furthermore, tdec is also much
smaller than the classical time scale characterising the changes in position of the pointer under its proper
Hamiltonian. As already acknowledged in [11] in the case of a system-bath coupling, explicit formulas
for tdec can be derived on the basis of this separation of time scales, with no further assumptions about
the relation between tdec and the bath correlation time TB . This allows us to treat the pointer-bath
coupling in a non-Markov regime tdec . TB as well as in the Markov regime tdec À TB . Moreover, we
need not to assume that the bath is composed of harmonic oscillators linearly coupled to the pointer, a
supposition often made in previous studies. A third noteworthy generalisation with respect to previous
works concerns the object-apparatus initial state. While it is appropriate to assume that the object and
apparatus are uncorrelated initially, we shall consider two types of initial states for the apparatus in which
the pointer and bath are either uncorrelated (i.e., in a product state) or in thermal equilibrium (i.e., in an
entangled state) with each other.

The paper is organised as follows. The model is introduced in Section 2. We discuss the separation of
the time scales and a subsequent simplification of the object-pointer dynamics in Section 3. Sections 4
and 5 contain a separate study of the two dynamical processes producing the entanglement of the object
with the pointer and the loss of coherences between well-separated pointer readings. Section 6 provides
a short summary of these two sections. We derive and discuss our results for a separable pointer-bath
initial state in Section 7. In the next Section, we report without proofs the results derived in [1] for a
pointer and bath initially entangled and in thermal equilibrium. Our conclusions are drawn in Section 9.
Appendix A contains technical proofs of some statements made in Section 7.
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2. The model
As in much of the previous literature on quantum measurement [3–5], we shall deal with a three-
partite system: the object of measurement is some microscopic system (S); a single-degree-of-freedom
macroscopic pointer (P) will allow read-outs; finally, a bath (B) with many (N À 1) degrees of
freedom serves to decohere distinct pointer readings. We shall have to deal with the following dynamical
variables: for the object S , the observable S to be measured; for P the position X and the momentum
P ; and for B, a certain coupling agent B. The pointer is coupled to S and B via the Hamiltonians

HPS = εSP , HPB = BXα (1)

where ε is a coupling constant and α a positive integer. The object-pointer coupling HPS is chosen
so as to (i) not change the object observable S to be measured (i.e., [HPS , S] = 0); (ii) be capable of
shifting the pointer position by an amount proportional to (the eigenvalues of) S, in such a way that
each eigenvalue s of S becomes entangled with a specific pointer reading; (iii) be a strong coupling (ε is
large), so that different eigenvalues s 6= s′ eventually become associated with pointer readings separated
by large distances. The pointer-bath interaction, in turn, is chosen for most efficient decoherence of
distinct pointer positions [11]. Depending on the value of α, nonlinear (α > 1) as well as linear
(α = 1) couplings will be considered. The free evolutions of S, P and B are generated by respective
Hamiltonians HS , HP and HB. We do not have to specify HS explicitly. The pointer Hamiltonian
HP = P 2/2M + V (X) has a potential V (x) with a local minimum at x = 0, so that V ′(0) = 0
and V ′′(0) > 0; moreover, the potential barriers at the left and right of this minimum have a height V0

satisfying V0 À kBT , where T is the temperature and kB the Boltzmann constant. An example of such
potential is sketched in Fig. 1. A confining potential with a single minimum at x = 0 provides another
example, for which V0 = ∞. The Hamiltonian of the full system S + P + B is

H = HS + HP + HB + HPS + HPB . (2)

We now proceed to describe the initial states of the object S and the apparatus P + B allowed for.
It is appropriate to require initial statistical independence between S and P + B. The initial density
operator ρS of the object may represent a pure or a mixed state. Two types of initial conditions for the
apparatus will be considered. The first one, to be referred to as partial equilibrium, is a product state in
which P has some density operator ρP and B is at thermal equilibrium with the Gibbs density operator
ρ
(eq)
B = Z−1

B exp(−βHB), wherein β = (kBT )−1 is the inverse temperature. For this first initial state all
three subsystems are statistically independent. In the second (more realistic) initial state, the apparatus
P +B is in thermal equilibrium according to the density operator ρ

(eq)
PB = Z−1

PB e−β(HP+HB+HPB). For a
pointer potential as sketched in Fig.1, this thermal equilibrium must be understood as a local equilibrium
around x = 0. It can be achieved by first preparing P in some state localised near x = 0 at a time
t = −tin, with tin larger than the relaxation rate but small with respect to the tunnelling escape rate, and
then letting P interact with B until t = 0. The two initial states of S + P + B are

ρ(0) = ρS ⊗ ρP ⊗ ρ
(eq)
B partial-equilibrium apparatus (3)

ρ(0) = ρS ⊗ ρ
(eq)
PB equilibrium apparatus . (4)

We further specify the partial-equilibrium state (3) by requiring that the probability density 〈x|ρP |x〉
to find the pointer at position x has a single peak of width ∆x = ∆ centred at x = 0. A momentum
uncertainty ∆p = 2π~/λ defines a second length scale λ. A macroscopic pointer has both ∆ and λ
negligibly small against any macroscopic read-out scale ∆class,

λ ≤ 4π∆ ¿ ∆class , (5)
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Figure 1. Sketch of a candidate for the pointer potential.
The height V0 of the potential barriers around x = 0 and
the width of the potential wall, W ≈ (V0/V ′′(0))1/2, are
much larger than kBT and the thermal fluctuation ∆th =
(kBT/V ′′(0))1/2. The unstable parts of V (x) at the left
and right of the barriers serves to amplify the separation
between the peaks in the pointer density produced by its
interaction with the object. Such an amplification can
happen after the object-pointer coupling is turned off at a
time tint > W/(εδs) (see Section 6).

where the first inequality is the uncertainty principle. We shall also require that

λ∆
2π~

=
∆
∆p

≈ (MV ′′(0))−1/2 (6)

which means that the state ρP is not highly squeezed in momentum nor in position. As a concrete
example we may consider a Gaussian pointer density matrix,

〈x|ρP |x′〉 =
1√

2π∆2
e−(x+x′)2/(8∆2) e−2π2(x−x′)2/λ2

. (7)

If P is initially in a pure state then trP ρ2
P =

∫
dxdx′〈x|ρP |x′〉2 = 1, which implies that this state

has the minimum uncertainty product ∆x∆p = ~/2, i.e., λ = 4π∆. The Gaussian density (7) also
arises if P is in a Gibbs state ρ

(eq)
P = Z−1

P e−βHP at high enough temperature. To see this, we note
that the pointer observables X and P evolve noticeably under the Hamiltonian HP on a classical time
scale TP , which is much larger than all other (quantum) time scales in the model. In particular, TP is
much larger than the thermal time, TP À ~β. As a result, the matrix elements 〈x|ρ(eq)

P |x′〉 of ρ
(eq)
P can be

approximated by Z−1
P e−β(V (x)+V (x′))/2e−2π2(x−x′)2/λ2

th , wherein λth = 2π~(β/M)1/2 is the thermal de
Broglie wavelength. The reader may recognise in this expression the short-time behaviour of the quantum
propagator 〈x|e−itHP/~|x′〉 for t = −i~β (see e.g. [12]). Since the potential V (x) has a local minimum
at x = 0, it can be approximated near the origin by a quadratic potential, V (x) ' V (0) + x2V ′′(0)/2.
Therefore, for small x and x′ , 〈x|ρ(eq)

P |x′〉 has the Gaussian form (7) with ∆ = ∆th = (βV ′′(0))−1/2

and λ ' λth. It is important to bear in mind the separation of length scales λth ¿ ∆th ¿ ∆class.
Inasmuch as the pointer classical time scale TP may be defined as TP = (M/V ′′(0))1/2, the fact that
λth is much smaller than ∆th is equivalent to TP À ~β. To fix ideas, for TP = 1 s, M = 1 g, ∆class = 1
cm and a temperature of 1 K, the above-mentioned length scales differ by more than eight orders of
magnitude. Hence (5) and (6) are well satisfied if ρP = ρ

(eq)
P .

All of these illustrations, including the Gaussian (7), are meant to give an intuitive picture. What we
shall need in actual fact are the quasi-classical nature of the pointer initial state, as implied by (5) and
(6), together with the single-peak character of the initial density of pointer positions.

We will study in what follows the dynamics of the reduced state of S + P (object and pointer). This
state is defined by a density operator ρPS(t) obtained by tracing out the bath degrees of freedom in the
state of S + P + B,

ρPS(t) = trB
(
e−itH/~ρ(0) eitH/~

)
. (8)

Here and in what follows trj refers to the partial trace over the Hilbert space of j = S,P or B.
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3. Time scales
3.1. The time scales of the object, pointer and bath
Let us denote by S̃(t) the time-evolved observable S in the absence of the coupling HPS , i.e., for the
dynamics implemented by the “free Hamiltonian” HS . Similarly, let X̃(t) and B̃(t) be the time-evolved
observables X and B when both couplings HPS and HPB are turned off. Namely,

Õj(t) = eitHj/~Oj e−itHj/~ , O = S,X or B , j = S,P or B . (9)

One may associate with the time evolution of X̃(t), B̃(t) and S̃(t) four distinct time scales. The time
scale TP = (M/V ′′(0))1/2 has been already introduced above; it is the time scale for significant
evolution of X̃(t) (or, equivalently, of P̃ (t) = MdX̃/dt ) when the pointer is in the initial state
ρP . If ρP is a pure state, its energy uncertainty ∆E is given by Heisenberg’s uncertainty relation
∆E ≈ 2π~/TP . In fact, ∆E2 = trP(HP2 ρP) − trP(HP ρP)2 is found by means of (7) to be equal to
(2π~)4/(2λ4M2)+V ′′(0)2∆4/2−~2V ′′(0)/(4M); one can check that the three terms in this expression
are of the order of ~2/TP2 by combining λ = 4π∆ and (6).

The bath correlation time TB is defined with the help of the bath auto-correlation function

h(t) = trB
(
B̃(t)Bρ

(eq)
B

)
. (10)

For simplicity, it is assumed here and in the whole paper that

trB(Bρ
(eq)
B ) = 0 . (11)

Because the bath has many degrees of freedom, h(t) decays (often exponentially) to zero as |t| goes
to infinity. We define TB (respectively tB) as the largest (smallest) time constant characterising the
variations of h. More precisely, h(t) ' 0 whenever |t| À TB and h(t) ' h(0) whenever |t| ¿ tB.
Note that with B in thermal equilibrium, the thermal time ~β figures among the decay rates of h and thus
tB ≤ ~β ≤ TB.

The time scale TS is defined in an analogous way as tB, so as to signal significant variation of the
mean value trS(S̃(t)ρS) of S̃(t) and of the object correlation functions such as trS(S̃(t)SρS). Let us
stress that TS can be larger than the inverse of the typical object Bohr frequency (E − E′)/~ (here E
and E′ denote two neighbouring eigenvalues of HS). For instance, if S is (or commutes with) the energy
HS , then TS = ∞.

3.2. Separation of time scales
As stressed in the Introduction, during the time span of an ideal measurement the measured observable
S̃(t) does not evolve noticeably under the “free” Hamiltonian HS . The same conclusion holds for
the pointer observables X̃(t) and P̃ (t), which evolve noticeably on the classical time scale TP . It is
thus legitimate to assume that the object and pointer are put in contact during a time tint much shorter
than both TS and TP . As far as we are aware, this natural separation of time scales in a quantum
measurement has not been so far fully exploited in previous works. We will see below that it allows for
a great simplification of the dynamics implemented by the Hamiltonian (2). The density matrix (8) can
then be determined at time tint without relying on an allegedly short bath correlation time TB ¿ tint

(Markov approximation) and without making a specific choice for the pointer-bath interaction (among
such choices, the quantum Brownian motion and the spin-boson model are widely discussed in the
literature, see [4,18,19] and references therein). In fact, we will see in this Section that for tint ¿ TS , TP
the Hamiltonians HS and HP can be dropped out in the total Hamiltonian (2) provided that the initial
conditions (3) or (4) are modified appropriately.

For times t ¿ TS , TP , the object-apparatus evolution operator can be approximated by

e−itH/~ ' e−it(HS+HP )/~e−it(HB+HPS+HPB)/~ , |t| ¿ TS , TP . (12)
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This can be established by expressing this evolution operator in the interaction picture with respect to
H0 = HS + HP . By (1) and (2),

eitH0/~e−itH/~ = T exp
{
− i
~

∫ t

0
dτ

(
HB + ε S̃(τ)P̃ (τ) + BX̃(τ)α

)}
(13)

wherein T denotes the time-ordering and S̃(τ), P̃ (τ) and X̃(τ) are given by (9). Note that for
|t| ¿ TS , TP these operators are almost constant in time between τ = 0 and τ = t. Hence one
may replace them in (13) by S, P and X , respectively. In other words, the right-hand side of (13) can be
approximated by exp{−it(HB + HPS + HPB)/~}. Multiplying both members of (13) by e−itH0/~, one
obtains (12).

Let us substitute t by −t in (12), take the adjoint and replace the result into (8). One then finds that
the impact of HS and HP on the dynamics of ρPS(t) can be fully accounted for at times t ¿ TS , TP by
modifying the initial state of S + P + B according to

ρ(0) −→ e−it(HS+HP )/~ρ(0) eit(HS+HP )/~ . (14)

After this slippage of the initial condition, one makes a negligible error in (8) by dropping out HS and
HP in the total Hamiltonian (2).

Thanks to the quasi-classical nature of the pointer initial state ρP in (3), this state is not modified by
the substitution (14). This can be justified as follows if ρP is a pure state. Let |Ek〉 be the eigenvectors
of HP with eigenenergies Ek. We set ρ

(0)
P (t) = e−itHP/~ρP eitHP/~. Then

〈Ek|ρ(0)
P (t)|El〉 = e−it(Ek−El)/~〈Ek|ρP |El〉 ' 〈Ek|ρP |El〉 , t ¿ TP . (15)

Indeed, if |Ek − El| is of the order of (or smaller than) the energy uncertainty ∆E ≈ 2π~/TP then the
phase factor in the second member of (15) is close to unity when t ¿ TP ; otherwise 〈Ek|ρP |El〉 ' 0.
One can also show [1] that ρ

(0)
P (t) ' ρP at times t ¿ TP if ρP is a gaussian mixed state given by (7)

and, for the initial condition (4), it holds e−itHP/~ρ(eq)
PB eitHP/~ ' ρ

(eq)
PB provided that t, ~β ¿ TP . The

situation is different for the object initial state ρS : then

ρ
(0)
S (t) = e−itHS/~ρS eitHS/~ (16)

cannot be approximated by ρS . For instance, for S = HS it has been argued above that TS = ∞ and
〈s|ρ(0)

S (t)|s′〉 = e−it(s−s′)/~〈s|ρS |s′〉 is certainly not close to 〈s|ρS |s′〉 for all finite times t, excepted
for the diagonal matrix elements 〈s|ρ(0)

S (t)|s〉 = 〈s|ρS |s〉. For general observables S, these diagonal
elements still almost coincide when t ¿ TS . Actually, in view of the definition of TS (Subsection 3.1),
tr(S̃(t)ρS) =

∑
s s〈s|ρ(0)

S (t)|s〉 has to approximate tr(SρS) =
∑

s s〈s|ρS |s〉 in this limit.
It follows from the above discussion that it is well justified to set H = HB + HPS + HPB in (8) at

times t ¿ TS , TP provided that ρS is replaced in the initial conditions (3) and (4) by the time-dependent
density operator (16).

4. Entanglement of the object and pointer
Before studying the dynamics generated by the total Hamiltonian (2), it is instructive to discuss what
happens if one disregards the free dynamics of S, P and B as well as the pointer-bath interaction,
so that H = HPS = εSP . In such a situation the bath can be ignored. The initial product state
of S and P evolves into an entangled state in which each eigenstate |s〉 of S is tied up with a given
pointer position depending on s. Recalling that P is the generator of space translations we have

Quantum Optics III IOP Publishing
Journal of Physics: Conference Series 84 (2007) 012018 doi:10.1088/1742-6596/84/1/012018

6



eiεSPt/~|s, x〉 = |s, x − tεs〉 where |s, x〉 is the joint eigenstate of S and X with eigenvalues s and
x, normalised as 〈s, x|s′, x′〉 = δss′δ(x− x′). Hence an initial product state of S +P becomes at time t

ρPS(t) = e−itHPS/~ρS ⊗ ρP eitHPS/~ =
∑

s,s′
〈s|ρS |s′〉 |s〉〈s′| ⊗ ρP,s,s′(t) , (17)

ρP,s,s′(t) =
∫

dx dx′ 〈xs(t)|ρP |x′s′(t)〉|x〉〈x′| , xs(t) = x− tεs , x′s′(t) = x′ − tεs′ . (18)

It is now well to put forth a specification: Throughout the present paper we assume for simplicity that S
has a discrete and non-degenerate spectrum. Moreover, if the Hilbert space of S has infinite dimension
we restrict ourselves to initial states of the object satisfying 〈s|ρS |s′〉 = 0 if s or s′ belong to a part of
the spectrum containing arbitrarily close eigenvalues (near an accumulation point).

In the state (17), the diagonal object operator 〈s|ρS |s〉|s〉〈s| is multiplied by the initial pointer density
matrix ρP shifted by tεs in position space, as given by (18) with s′ = s. The interaction has thus tied
up each eigenstate |s〉 of S with a pointer state which have position x ' tεs with uncertainty ∆ and
momentum p ' 0 with uncertainty 2π~/λ. The probability density to find P at position x given that S
is in the state |s〉〈s| has a single peak at x = εst with a width ∆. The peaks corresponding to different
values of s are separated by at least the distance tεδs, where δs is the minimum of |s− s′| over all pairs
(s, s′) of non-degenerate eigenvalues such that 〈s|ρS |s′〉 6= 0. In order to be able to infer the value of s
from the position of the pointer, one must wait until all peaks are well resolved. That resolvability begins
at the entanglement time

tent =
∆

ε δs
. (19)

At that time, the reduced pointer density operator ρP(t) = trS(ρPS(t)) has a Wigner function
represented in Fig.2. Much later yet, the separation between the peaks reaches a macroscopic value
∆class at the time

tclass =
∆class

ε δs
À tent , (20)

allowing for a “reading” of the result by a classical observer.
The entanglement in ρPS(t) comes from the presence of the off-diagonal object operators

〈s|ρS |s′〉|s〉〈s′| in (17). These operators are multiplied by the (non self-adjoint) pointer operators (18),
the matrix elements of which have a peak at (x, x′) = (εst, εs′t) with a height (2π∆2)−1/2 and a width
dominated by ∆ in both x and x′-directions of the (x, x′)-plane. Therefore, the modulus of the matrix
elements 〈s, x|ρPS(t)|s′, x′〉 for fixed s 6= s′ reaches its maximal value when x = εst and x′ = εst. For
those values of x and x′,

〈s, x = εts|ρPS(t)|s′, x′ = εts′〉 = 〈s|ρS |s′〉 〈0|ρP |0〉 (21)

is time-independent and proportional to 〈s|ρS |s′〉. Hence all coherences between different eigenstates
of S present in the initial state of the object are still alive, no matter how large the time t is. At
times t & tclass, ρPS(t) resembles a Schrödinger cat state, i.e., has nonzero matrix elements between
macroscopically distinguishable pointer position eigenstates. For such an object-pointer state, no
classical probabilistic interpretation is possible: one cannot assign a probability to the pointer being
located e.g. in the vicinity of x = εts, henceforth implying that S has the value s. In a quantum
measurement, the entanglement process must be completed by a decoherence process suppressing the
coherences (21). We describe such a decoherence process in the next Section.

5. Decoherence and disentanglement of the object and pointer
Let us now turn to the dynamics generated by H = HPB only, momentarily disregarding all other terms
in the Hamiltonian (2). The coupling between P and B allows for decoherence: As shown in [11] for
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Figure 2. Wigner function of the pointer reduced state ρP(t) at time t = 0 (left) and t ≈ tent (right) if
the observable S is a spin one-half with two eigenvalues ±δs/2.

a similar model, a quantum superposition of coherent states of P with well-separated peaks in position
evolves under HPB to a statistical mixture of these coherent states. If S and P are entangled, this also
modifies the state of S. We recall in this Section the fundamental role played by decoherence in quantum
measurements (for more details, see [3–5]).

Assume object and pointer at time t0 entangled, with ρPS = ρ ent
PS given by (17); the time t0 should be

chosen larger than tent, possibly as large as the classical time scale introduced above, tent ¿ t0 ≈ tclass.
At time t0, the state of S+P+B is ρ(t0) = ρ ent

PS ⊗ρB and the pointer-bath coupling HPB is switched on.
The object-pointer matrix elements 〈s, x|ρ ent

PS |s′, x′〉 almost vanish for all (x, x′) excepted for x ' t0εs
and x′ ' t0εs

′ with uncertainty ∆. At time t > t0, the object-pointer density operator is defined by
(8) with H = HPB. One can show [11] that for a coupling Hamiltonian of the form (1) the coherences
〈s, x|ρPS(t)|s′, x′〉 decay with the time span t−t0 like gaussian if x 6= x′. The corresponding decay rates
are given by tdec(x, x′)−1 = |x′α − xα|

√
〈B2〉/(

√
2 ~). If s 6= s′, x ' t0εs, x′ ' t0εs

′ and t0 ' tclass,
this decay brought about by the pointer-bath coupling requires a time span tdec(x, x′) ' tdec(t0εs, t0εs′)
much smaller than the dissipation time scale on which the pointer-bath coupling can irreversibly change
the pointer position. Let us define the decoherence time tdec as the largest of the times tdec(t0εs, t0εs′)
for all distinct eigenvalues s, s′ such that 〈s|ρS |s′〉 6= 0. For t − t0 À tdec, the object-pointer state has
shed all terms s 6= s′ in the double sum in the density operator (17),

ρPS(t) '
∑

s

〈s|ρS |s〉 |s〉〈s| ⊗ ρ
(s)
P (t) , (22)

ρ
(s)
P (t) =

∫
dx dx′ 〈xs(t0)|ρP |x′s(t0)〉 e−(t−t0)2/tdec(x,x′)2 |x〉〈x′| , (23)

wherein it has been assumed that tdec ¿ t− t0 ¿ tB, TS , TP (so that HB, HS and HP can be neglected)
and tent ¿ t0 ≈ tclass. While ρPS(t) is not (and actually never can become) strictly diagonal in the
position basis of the pointer, the matrix elements of the pointer state (23) almost vanish if |x − x′| is
larger than either the uncertainty λ (see (7)) or the decoherence length

√
2~/(α ∆α−1(t − t0)

√
〈B2〉)

(see the second factor inside the integral in (23)).
It is worth noting that the object-pointer states appearing in the sum over s in (22) are product states;

ρPS(t) is a statistical mixture of these states with probabilities ps = 〈s|ρS |s〉. Hence the decoherence
disentangles S and P . This implies that in the time regime indicated after (23), S and P can be given
independent states ρS(t) and ρP(t),

ρS(t) =
∑

s

ps|s〉〈s| , ρP(t) =
∑

s

ps ρ
(s)
P (t) . (24)
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The object S is in one of the eigenstates |s〉 with probability ps, in agreement with von Neumann’s
postulate. The pointer P is in the quasi-classical state ρ

(s)
P (t), with the same probability.

6. Quantum measurements: how long does it take?
Let us sum up the discussion of the two previous Sections about the object-pointer entanglement
produced by the interaction HPS and the decoherence arising from the coupling with the bath HPB.
The dynamics implemented by HPS uniquely ties up after the entanglement time tent each eigenvalue s
of S with a characteristic pointer position xs(t). Neighbouring such pointer positions differ by more than
the uncertainty ∆ then. In absence of any other interaction, after a time tclass À tent the initial product
state has evolved into an object-pointer Schrödinger cat state. Nothing irreversible is brought about by
the dynamics: the entanglement can be as easily undone as done, by applying the Hamiltonian HPS with
the parameter reset ε → −ε. The dynamics implemented by HPB accounts for decoherence. After the
decoherence time tdec, any pair of object-pointer states corresponding to macroscopically distinguishable
pointer positions are entangled with almost orthogonal states of the bath. After averaging the object-
apparatus state over the bath variables, one obtains an object-pointer state ρPS(t) in which all information
about the coherences between such macroscopically distinguishable states is missing. Because of the loss
of information inherent in this averaging, the dynamics is irreversible. For t À tdec, ρPS(t) has shed all
coherences for pairs (s, s′) of distinct eigenvalues.

An object-pointer state ρPS(t) describes an accomplished measurement under two conditions:

(i) all coherences 〈s, x|ρPS(t)|s′, x′〉 corresponding to s 6= s′ have disappeared, so that S + P is in a
statistical mixture of separable states like in (22); this occurs at time t À tdec;

(ii) the separation between the peaks of the distinguished pointer states ρ
(s)
P (t) reaches a macroscopic

value ∆class; this occurs at time t0 & tclass, see (20).

Only for t0 & tclass can a classical observer infer a measured value s by looking at the position of the
pointer. Such a “reading” of the pointer, while still a physical process in principle perturbing P , surely
cannot blur the distinction of the peaks. Rather, the pointer will behave classically under a reading, i.e.,
it will not noticeably react. It is clear on (20) that (ii) can hardly arise unless the object-pointer coupling
constant ε is very large (otherwise tclass would be larger than the time duration of the measurement).
This is related to the well-known amplification problem in quantum measurements [13]. One may,
however, consider a different situation than that described in Section 4, in which the interaction HPS
is switched off at some time tint < tclass. The pointer potential V (x) must then be non-confining,
with two potential barriers separated by a distance W as in Fig.1. If tint is larger than W/(εδs), the
pointer dynamics allows for a subsequent amplification of the inter-peak distance. Assuming also that
∆ ¿ W ¿ ε δs TP , one has tint ≈ W/(εδs) ¿ TP . In this situation, the small quantum system S
must be able to perturb the pointer strongly enough in order to produce in it a “mesoscopic change”
(i.e., a distance W between the peaks in its density), instead of a macroscopic change as required in
Section 4. In particular, if ρP is a Gibbs state with position uncertainty ∆th = (kBT/V ′′(0))1/2, this
arises when the height V0 ≈ W 2V ′′(0) of the two potential barriers satisfies kBT ¿ V0 ¿ M(ε δs)2

(recall that TP2 = M/V ′′(0)). Then condition (ii) will be fulfilled at time t0 ≈ TP . If moreover
V0 ¿ V ′′(0)(ε δs TS)2, tint ¿ TS , TP and the simplification of the Hamiltonian (2) discussed in
Subsection 3.2 is valid up to time tint.

7. Partial-equilibrium apparatus initial state
As was stressed above, we are interested in a quantitative description of a quantum measurement when,
unlike in the situation described in Sections 4 and 5, S and P evolve under the simultaneous action of
HPS and HPB. Furthermore, we will no longer assume that the decoherence time is small compared
with the bath time tB; as we shall see, the bath Hamiltonian HB then plays an important role as well.
We study in this Section the object-pointer dynamics for an apparatus initially in the partial-equilibrium
initial state (3).
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7.1. Derivation of the result
Our starting point is the time-dependent Redfield equation (also known as the time-convolutionless
master equation) [14, 15] for the object-pointer density matrix. It reads

dρPS
dt

= − i
~

[
HPS , ρPS(t)

]
+

1
~2

∫ t

0
dτ

{
h(τ)

[
e−iτHPS/~Xα eiτHPS/~ ρPS(t) , Xα

]

+h(τ)∗
[
Xα , ρPS(t) e−iτHPS/~Xα eiτHPS/~

]}
(25)

where h(τ) is the bath correlation function (10). In (25) we have neglected HS and HP . As we have
seen in Subsection 3.2, this is justified at times t ¿ TP , TS provided that ρ

(0)
S (t) is substituted to

the object initial state ρS at the end of the calculation. As a matter of fact, the Redfield equation is
valid in a perturbative regime with respect to the pointer-bath interaction. However, the result to be
obtained below can be derived differently [1] by using a non-perturbative approach which only relies
on the assumption t ¿ TS , TP and on a property of the bath coupling agent (namely, B is a sum of
operators Bν acting on single degrees of freedom of the bath). In virtue of (1) and of the formula
e−iετSP/~XeiετSP/~ = X − ε τS, (25) yields

dρPS
dt

= − i ε
~

[SP, ρPS(t)] +
1
~2

∫ t

0
dτ

{
h(τ)[(X − ε τS)α ρPS(t) , Xα] + h.c.

}
. (26)

Hence the matrix elements of ρPS in the eigenbasis of S and X satisfy at time t ¿ TP , TS

∂

∂t
〈s, x|ρPS(t)|s′, x′〉 =

[
−ε

(
s

∂

∂x
+ s′

∂

∂x′
)

+ (x′α − xα)
∫ t

0
dτ

{
h(τ)(x− ε τs)α

−h(τ)∗(x′ − ε τs′)α
}]
〈s, x|ρPS(t)|s′, x′〉 . (27)

The solution of (27) with the initial condition 〈s, x|ρPS(0)|s′, x′〉 = 〈s|ρ(0)
S |s′〉〈x|ρP |x′〉 reads

〈s, x|ρPS(t)|s′, x′〉 = 〈s|ρ(0)
S |s′〉 f (

xs(t), x′s′(t), t
)

(28)

wherein xs(t) and x′s′(t) are given by (18) and the function f(x, x′, t) satisfies

∂f(x, x′, t)
∂t

=
(
x′s′(−t)α − xs(−t)α

)∫ t

0
dτ

{
h(τ)xs(τ − t)α − h(τ)∗x′s′(τ − t)α

}
f(x, x′, t) (29)

with f(x, x′, 0) = 〈x|ρP |x′〉. The solution of (29) is

f(x, x′, t) = 〈x|ρP |x′〉 exp
{
−

∫ t

0
dτ1

∫ τ1

0
dτ2

(
(x′s′(−τ1)α − xs(−τ1)α

)(
h(τ1 − τ2)∗x′s′(−τ2)α

−h(τ1 − τ2)xs(−τ2)α
)}

. (30)

As is well-known [16], the real and imaginary parts of the bath correlation function (10) satisfy
<h(−t) = <h(t) and =h(−t) = −=h(t) for all times t. Substituting ρ

(0)
S in (28) by the time-dependent

object initial state (16) and using (30), one gets

〈s, x|ρPS(t)|s′, x′〉 = 〈s|ρ(0)
S (t)|s′〉 〈xs(t)|ρP |x′s′(t)〉 exp

{−Dt(xs(t), x′s′(t); s, s
′)− iφt

}
(31)
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where φt is a certain real phase (depending on t, x, x′, s and s′) which we do not specify here since it is
irrelevant for decoherence, and

Dt(x, x′; s, s′) =
1

2~2

∫ t

0
dτ1

∫ t

0
dτ2

(
x′s′(−τ1)α − xs(−τ1)α

) (
x′s′(−τ2)α − xs(−τ2)α

)
h(τ1 − τ2) .

(32)
Note that (31) is valid for times t ¿ TS , TP only. Due to both the initial statistical independence and
our special choice of the interactions, the density matrix of S + P retains at such times a remarkably
simple product structure. The first factor in (31) accounts for free evolution of the object initial state ρS ,
as generated by HS , see (16). It is equal to ps = 〈s|ρS |s〉 if s = s′ and t ¿ TS (Subsection 3.2). The
second factor is nothing but the matrix elements of the pointer operators (18). Here, the Hamiltonian
HP does not show up because of our assumption t ¿ TP and our choice of a quasi-classical initial state
ρP . Most important is now the third factor in (31); it accounts for decoherence, i.e., for the suppression
of coherences with respect to pointer displacements associated with different eigenvalues s 6= s′. We
proceed to the discussion of that “decoherence factor”.

The exponent Dt appearing in (32) has the following properties:

(a) Dt(x, x′; s, s′) ≥ 0 for all values of x, x′, s and s′;
(b) Dt(x, x′; s, s′) = 0 initially (for t = 0) for all matrix elements and at all later times for the diagonal

matrix elements (x = x′ and s = s′);
(c) Dt(xs(t), x′s′(t); s, s

′) = D−t(x, x′; s, s′).

The non-negativity (a) is a consequence of the fact that the correlation function h(t) and its real part
<h(t) are of positive type, i.e., they have nonnegative Fourier transforms ĥ(ω) and (̂<h)(ω). Actually,
one may rewrite (32) as

Dt(x, x′; s, s′) =
1

2~2

∫ ∞

0

dω

π
(<̂h)(ω)

∣∣∣∣
∫ t

0
dτ(x′s′(−τ)α − xs(−τ)α)e−i ωτ

∣∣∣∣
2

≥ 0 (33)

where we have used (̂<h)(ω) = (̂<h)(−ω). Property (c) is easily checked by a change of the time
integration variable in (33). Let us recall from Section 4 that the dynamics generated by HPS maps
the object-pointer coordinate (x, s) into (xs(t), s) after time t and, similarly, (x′, s′) is mapped into
(x′s′(t), s

′). Hence one may interpret (c) as the invariance of Dt under time reversal, i.e., under t → −t
and the exchange of the initial and final coordinates.

7.2. Decoherence time
As it was stressed in Section 4, the object-pointer matrix elements (31) for xs(t) = x′s′(t) = 0,

ρpeak
PS (t; s, s′) = 〈s, x = εts|ρPS(t)|s′, x′ = εts′〉 = 〈s|ρ(0)

S (t)|s′〉 〈0|ρP |0〉 e−Dpeak
t (s,s′)−iφpeak

t , (34)

are of particular importance for decoherence in a quantum measurement. The main difference between
(34) and (21) lies in the presence of the damping factor exp{−Dpeak

t (s, s′)} given by

Dpeak
t (s, s′) = Dt(0, 0; s, s′) =

ε2α

2~2
(s′α − sα)2

∫ t

0
dτ1

∫ t

0
dτ2 τα

1 τα
2 h(τ1 − τ2) . (35)

Note that if α = 2, 4, . . . is even then Dpeak
t (s,−s) = 0. This means that, if moreover the spectrum

of S is symmetric with respect to s = 0, the coherences (34) for s′ = −s are not damped. This comes
from the symmetry x ↔ −x of the coupling Hamiltonian HPB in (1), which allows for the existence
of decoherence-free subspaces [17]. Due to these long-living coherences, P + S fails to reach (at least

Quantum Optics III IOP Publishing
Journal of Physics: Conference Series 84 (2007) 012018 doi:10.1088/1742-6596/84/1/012018

11



0.5 1 1.5 2
Τ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

HΤent�cΗL
2HDpeakLΤ Figure 3. Decoherence exponent Dpeak

τ (multiplied
by tent

2(~βη)−2) as function of the dimensionless
time τ = t/(~β) for the harmonic oscillator
bath discussed in Subsection 7.5, with α = 1,
m = 3 and wD = 2. The intersection of the
curve with the horizontal dashed line at distance
tent

2(~βη)−2 from the τ -axis gives the dimensionless
decoherence time τdec. The dashed-dotted line is
the minimal decoherence exponent minx,x′ Dτ (x, x′)
(also multiplied by tent

2(~βη)−2).

within a time span t ¿ TP , TS) the statistical mixture required to be able to give a classical result to the
measurement. We therefore exclude such a situation in the discussion below. In more precise words, we
assume that |s′α− sα|/|s′− s|α is bounded below by a constant cα > 0 of the order of unity, for all pairs
(s, s′) of eigenvalues in the spectrum of S such that 〈s|ρS |s′〉 6= 0.

It is shown in Appendix A that for sα 6= s′α, Dpeak
t (s, s′) is an increasing convex function of time.

This means that, quite generally, the graph of Dpeak
t looks qualitatively like in Fig.3. We denote by

tdec(s, s′) the time after which the coherences (34) for s 6= s′ are significantly damped. More precisely,
this time is given by solving the implicit equation Dpeak

t=tdec
(s, s′) = 1, i.e.,

(
tent(s, s′)

η1/α

)2α

=
cα(s, s′)2

(~β)2

∫ tdec(s,s
′)

0
dτ1

∫ τ1

0
dτ2 τα

1 τα
2

<h(τ1 − τ2)
〈B2〉 (36)

where
tent(s, s′) =

∆
ε|s′ − s| (37)

is the entanglement time (whose physical interpretation has been illustrated in Section 4), η is the
(fluctuation of the) initial pointer-bath coupling energy in units of kBT ,

η = 〈B2〉1/2∆αβ ≈ β(tr(H2
PB ρP ⊗ ρ

(eq)
B ))1/2 , (38)

cα(s, s′) = 1 if α = 1 and

cα(s, s′) =
|s′α − sα|
|s′ − s|α if α ≥ 1 . (39)

By inspection on (36), tdec(s, s′) depends on the object-pointer and pointer-bath coupling constants ε
and η through the single parameter ε η1/α. Recalling that (31-36) are valid with the proviso t ¿ TS , TP ,
one has to check a posteriori that the “free” evolutions of S and X , P are slow compared to tdec(s, s′),

tdec(s, s′) ¿ TS , TP . (40)

If moreover tdec(s, s′) ≥ tent(s, s′) then at time t À tdec(s, s′) the object-pointer coherences
〈s, x|ρPS(t)|s′, x′〉 are vanishingly small for all values of (x, x′) . This comes from the single-peak
character of the pointer initial state: As already pointed out in Section 5, for values of (x, x′) such
that |xs(t)| & ∆ or |x′s′(t)| & ∆ the pointer coherences 〈xs(t)|ρP |x′s′(t)〉 are small. On the other
hand, if (x, x′) is close to (tεs, tεs′) with uncertainty ∆ and t À tdec(s, s′) ≥ tent(s, s′), i.e., if
|xs(t)|, |x′s′(t)| . ∆ ¿ εt|s′ − s|, it follows from (32) and (35) that the decoherence factor exp{−Dt}
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in (31) is close to exp{−Dpeak
t } and is thus small. As a result, for t À tdec(s, s′) the product of the

pointer coherence and the decoherence factor in (31) is small for all (x, x′). It is worth to emphasise that
if, unlike in the situation just described, tdec(s, s′) is smaller than tent(s, s′) then some matrix elements
〈s, x|ρPS(t)|s′, x′〉may still be large at time tdec(s, s′) for some (x, x′) located within a distance ∆ from
the centre (εts, εts′) of the peak of the pointer coherence. In such a case the decoherence time must be
defined as the time t at which the minimum of Dt(x, x′; s, s′) over all values of (x, x′) is equal to 1. For
α = 1 this minimum turns out to be given by the right-hand side of (35) excepted that the range [0, t]
of both time integrals must be replaced by the symmetric range [−t/2, t/2]. It can be observed in Fig.3
that minx,x′ Dt(x, x′; s, s′) can be significantly smaller than Dpeak

t at times t . TB, but it is possible to
show that for t À TB these two quantities differ by a numerical factor only. We refer the reader to [1]
for more details.

If S has a discrete spectrum satisfying the requirements of Section 4, the decoherence time tdec of
the measurement is the largest of the times tdec(s, s′) for all pairs of distinct eigenvalues (s, s′) such that
〈s|ρS |s′〉 6= 0 (with the proviso tdec ≥ tent = ∆/(ε δs), in the light of the discussion of the preceding
paragraph). This amounts to replace |s′α − sα| in (35) by its minimum value over all such pairs (s, s′)
(recall that Dpeak

t is an increasing function of time). For α = 1 this minimum value is by definition equal
to δs (see Section 4); for α ≥ 2 it depends on the spectrum of S in a more subtle way. At times t À tdec,
the object-pointer state (31) is very close to the separable state (22). In other words, S and P are in the
statistical mixture (24) with the probabilities ps = 〈s|ρS |s〉 and with the pointer states ρ

(s)
P (t) given by

〈x|ρ(s)
P (t)|x′〉 = 〈x− tεs|ρP |x′ − tεs〉 exp

{−D−t(x, x′; s, s)− iφt

}
. (41)

The initial superpositions of eigenstates |s〉 have disappeared by indirect decoherence via the pointer.
The pointer is in a statistical mixture of quasi-classical states having densities localised around x = tεs
with uncertainty ∆. The essence of quantum measurements lies in this loss of coherences: for indeed, as
pointed out in Section 6 it is only when all object-pointer coherences for s 6= s′ are vanishingly small that
a classical probability can be given for the result of the measurement. The measurement is accomplished
under the supplementary condition that the distance between the nearest peaks of the pointer states (41)
is macroscopic. This occurs at the time tclass given by (20). Because all our calculations are valid with
the proviso t ¿ TS , TP , one must assume for consistency that tclass ¿ TS , TP , in addition to (40). A
situation under which this condition on tclass is not necessary has been discussed in Section 6.

It is worthwhile mentioning here that if tclass À tdec, the object and pointer are never in a Schrödinger
cat state as in (17). This is because in the limit in question, decoherence subdues linear superpositions
faster (see the third factor in (31)) than entanglement between P and S can produce them (second factor
in (31)). Due to the simultaneous action of HPS and HPB, the whole measurement process directly
produces the mixture of macroscopically distinct pointer states ρ(s)(t), i.e. without allowing for the
intermediate appearance of superpositions of macroscopically distinguishable pointer states.

Our results (31-36) go beyond the so-called Markovian limit which would require TB ¿ tdec. This
is an important point, since for sufficiently large ε decoherence takes place within the “non-Markovian”
regime t . TB. Explicit asymptotical results for tdec can now be drawn from the foregoing expressions,
both for tdec ¿ tB and tdec À TB.

7.3. The short-time regime tdec ¿ tB
In this (non-Markovian) regime, the dynamics is dominated by the interactions HPS and HPB. For
t ¿ tB, one may approximate h(τ) in (35) by the thermal variance h(0) = 〈B2〉 = trB(B2ρ

(eq)
B ) of the

bath coupling agent. In view of (37-39) this yields

Dpeak
t (s, s′) =

(
t

tdec(s, s′)

)2α+2

, tdec(s, s′) =

(√
2(α + 1)
cα(s, s′)

) 1
α+1 (

tent(s, s′)
~β η1/α

) α
α+1

~β . (42)
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That result makes sense with the proviso tdec(s, s′) ¿ tB, TS , TP . The fact that Dpeak
t ∝ t2α+2

could be expected from the results of Sections 4 and 5: Indeed, for fixed x and x′ and HPS =
0, it has been argued that the object-pointer coherences 〈s, x|ρPS(t)|s′, x′〉 decay like the gaussian
exp{−t2(x′α − xα)2〈B2〉/(2~2)} when t ¿ tB, TP ; recalling that for HPS given by (1) the positions
of the peaks grow proportionally with time, we recover the aforementioned power law.

It has been stressed above that the interpretation of tdec as the decoherence time of the measurement
relies on the assumption tent ≤ tdec. We now argue that this condition is fulfilled if the pointer-bath
initial coupling energy is of the order or smaller than kBT (i.e., η . 1) and s′/s is not very close to
unity. In fact, under these assumptions one has even tent(s, s′) ¿ tdec(s, s′). This follows from (42),
the consistency condition tdec(s, s′) ¿ tB and the inequality tB ≤ ~β, which imply tdec(s, s′) ¿ ~β
and thus tent(s, s′) ¿ ~β. In contrast, if α ≥ 2 and |s′/s − 1| ¿ 1 one sees by inspection on (39) that
cα(s, s′) ' α|1 − s′/s|1−α À 1. Hence the first factor in the right-hand side of the second equation in
(42) is small and one may have tent(s, s′) ≥ tdec(s, s′). A similar conclusion holds when η À 1.

It is worthwhile comparing the strength of decoherence for different values of the exponent α in the
coupling Hamiltonian HPB, keeping its magnitude η/β in (38) constant. We find that tdec is smaller in
the nonlinear case α > 1 in comparison with the linear case α = 1 by a factor tdec

(α>1)/tdec
(α=1) of the

order of (tent/tdec
(α=1))(α−1)/(α+1) ¿ 1. Interestingly, a linear pointer-bath coupling is less efficient

than a nonlinear one in suppressing the coherences (34) for s 6= s′.
It should also be noted that tdec depends on the bath through the single parameter η. This comes from

the fact that the bath dynamics can be ignored when t ¿ tB. Actually, (42) can be obtained directly,
without relying on the general results (34) and (35), by setting H = HPS + HPB in (8) and performing
a calculation similar to the calculation of the decoherence time in [11].

7.4. The Markov regime tdec À TB
When tdec À tB the off-diagonal matrix elements (34) have no time to decay between t = 0 and
tB. Decoherence may then take place within the so-called Markov regime t À TB, also known in the
mathematical literature as the singular-coupling limit [20]. Note that under our condition tdec ¿ TS
it is not appropriate to use a rotating-wave approximation. The value of the decoherence time tdec is
governed in this regime by the small-frequency behaviours of the Fourier transforms of the real and
imaginary parts of h(t), (<̂h)(ω) and (=̂h)(ω). We assume that (=̂h)(ω) ∼ −i γ̂ ωm for ω ¿ TB−1,
γ̂ being a positive constant. Bearing in mind that (=̂h)(ω) is an odd function of ω and must be regular
enough (i.e., admit differentials of sufficiently high orders) in such a way that =h(t) decays rapidly to
zero as t → ±∞, we take m to be a positive odd integer. By analogy with the case of a bath of harmonic
oscillators linearly coupled toP , we speak of Ohmic damping when m = 1 and of super-Ohmic damping
when m > 1 [18, 19]. It is shown in Appendix A that in the Ohmic case m = 1,

Dpeak
t (s, s′) =

(
t

tdec(s, s′)

)2α+1

(Ohmic) , (43)

tdec(s, s′) =
(

(2α + 1) 〈B2〉 ~β
cα(s, s′)2

∫∞
0 dτ <h(τ)

) 1
2α+1

(
tent(s, s′)
~β η1/α

) 2α
2α+1

~β (44)

and in the super-Ohmic case m ≥ 3

Dpeak
t (s, s′) =

(
t

tdec(s, s′)

)2α

(super-Ohmic) , (45)

tdec(s, s′) =
(

2 〈B2〉 ~2β2

cα(s, s′)2| ∫∞0 dτ τ <h(τ)|

) 1
2α tent(s, s′)

η1/α
(46)

with the proviso tdec(s, s′) ¿ TS , TP and tdec(s, s′) À TB. We can interpret the growth of Dpeak
t like

t2α+1 in the Ohmic case by saying that for fixed x and x′, in the Markov regime Dt must be proportional
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to t(x′α − xα)2 (the fact that Dt ∝ t is well-known [3]); the indicated time behaviour of Dpeak
t then

follows by replacing (x, x′) by (εts, εts′). Since |h(τ)| ≤ h(0) = 〈B2〉 and <h(τ) ' 0 for τ À TB
(Subsection 3.1), the integrals

∫∞
0 dτ <h(τ) and | ∫∞0 dτ τ <h(τ)| are at most of the order of 〈B2〉TB

and 〈B2〉TB2, respectively. If |s′/s−1| is not close to unity (so that cα(s, s′) in (39) is not very large) the
factor inside the parenthesis in (46) is of the order of (~β/TB)2 or smaller. Thus, for coupling strength
η . ~β/TB the condition tent(s, s′) ≤ tdec(s, s′) holds in the Markov regime for super-Ohmic baths.
The situation is different for Ohmic baths: then by (44) the condition in question is violated even for
small η if the entanglement time tent(s, s′) is large enough compared with ~β. More precisely, still
assuming that cα(s, s′) is of the order of unity in (44), tdec(s, s′) becomes smaller than tent(s, s′) when

tent(s, s′)
~β

& 〈B2〉~β
η2

∫∞
0 dτ <h(τ)

. (47)

For super-Ohmic baths, the decoherence time (46) decreases by increasing α for η . ~β/TB and
|s′/s− 1| not close to unity, i.e., provided that tdec(s, s′) ≥ tent(s, s′). Otherwise the reverse statement
holds. For Ohmic baths and if cα(s, s′) ≈ 1 and tent(s, s′) satisfies (47), we find that tdec(s, s′) is larger
in the nonlinear case α > 1 than in the linear case α = 1 by a factor tdec

(α>1)/tdec
(α=1) of the order

of (tent/tdec
(α=1))(2α−2)/(2α+1) ≥ 1. This means that nonlinear pointer-bath couplings become less

efficient than a linear coupling as soon as tent(s, s′) is large enough so as to fulfil (47). This is in striking
contrast with the super-Ohmic case: then, for a fixed weak enough pointer-bath coupling strength η,
nonlinear object-pointer couplings always win over a linear coupling in efficiency for decoherence.

Finally, it is worth mentioning that in the Markov regime Ohmic baths win in efficiency over super-
Ohmic baths. Actually, (tdec

Ohm/tdec
supOhm)2α+1 is equal up to a numerical factor of the order of unity

to the product of | ∫∞0 dτ τ <h(τ)|(~β ∫∞
0 dτ <h(τ))−1 by ~β/tdec

supOhm. Since the last factor must
be small compared with 1 for consistency (recall that ~β ≤ TB), it follows that tdec

Ohm(s, s′) is smaller
than tdec

supOhm(s, s′).

7.5. Bath of harmonic oscillators linearly coupled to P
To study the transition between the limiting time regimes discussed in the two preceding Subsections,
let us consider a bath of N À 1 harmonic oscillators, HB =

∑
ν ~ων(b

†
νbν + 1/2), coupled to the

pointer via a coupling agent B linear in each of its creation and annihilation operators b†ν and bν ,
B =

∑
ν(κνb

†
ν + κ∗νbν)/

√
N [18]. Here ων is the frequency and κν the coupling constant of the νth

oscillator. We shall take the following specific choice for the power spectrum function:

J(ω) =
π

N

N∑

ν=1

|κν |2δ(ω − ων) = γ̂ ωme−ω2/ω2
D (48)

wherein m is an odd positive integer, γ̂ > 0 and ωD is a cut-off frequency. The case m = 1
corresponds to the so-called Ohmic damping, whereas one speaks of super-Ohmic damping for m > 1.
For instance, m = d or d + 2 for a phonon bath in d dimensions, depending on the underlying
symmetries [19]. As is well-known [18, 19] for such a harmonic oscillator bath with a linear interaction
the imaginary part of the bath function (10) is temperature-independent. Moreover, its Fourier transform
is given by i(=̂h)(ω) = J(ω) for ω ≥ 0. By the KMS property (see Appendix A) this implies
(<̂h)(ω) = coth(~βω/2)J(|ω|). If wD = ~ωDβ > 1, the thermal time TB = ~β is the largest decay
time of <h(t). The other time scale characterising the variations of<h(t) is the inverse Debye frequency
tB = ω−1

D < TB. By (36), the decoherence and entanglement times in units of TB, τdec = tdec/(~β) and
τent = tent/(~β), are given by

τ2α
ent

c2
α η2

=

∫∞
0 dw coth(w/2)wm e−w2/w2

D |∫ τdec

0 dτ τα e−iwτ |2
2

∫∞
0 dw coth(w/2)wm e−w2/w2

D

(49)
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Figure 4. Decoherence vs entanglement times in
units of ~β in a log-log scale for the same bath
as in Fig 3. The four black curves in full lines
on the left correspond to η = 10−3, wD = 10
and (α,m) = (1, 3), (1, 1), (2, 3) and (2, 1) (from
left to right); for the three gray curves on the right
η = 0.5, wD = 2 and (α, m) = (1, 5), (1, 3) and
(1, 1) (from left to right). For α = 2 we take c = 1.
The broken lines show the approximate expressions
for τdec ¿ w−1

D (dotted lines) and τdec À 1 (broken
lines for m = 3, 5, dashed-dotted lines for m = 1),
see (42), (44) and (46).
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Figure 5. Decoherence time τdec in units of ~β as
function of the pointer-bath coupling strength η in
a log-log scale for the same bath as in Fig 3 with
τent = 0.1, m = 3 and c = 1. Three distinct values
of wD are shown: wD = 2 (full lines), wD = 5
(dashed-dotted lines) and wD = 10 (broken lines).
For each of these values, τdec is shown for α = 1, 2
and 3 (from top to bottom).

where we have expressed <h(t) in terms of its Fourier transform (see (33)) and relied on (48). We
did not write explicitly in (49) the dependence of τent and τdec in (s, s′). The right-hand side of (49)
is shown in Fig.3. We have computed numerically the integrals appearing in this right-hand side for
various values of α, m and wD, so as to obtain τdec as function of τent and η. The main results are shown
in Fig.4 and 5 in a log-log scale. For fixed α and η, the plain curves representing τdec in Fig.4 split
by increasing τent into distinct branches corresponding to distinct m’s, as predicted by (43) and (45).
This splitting occurs when τdec is in the transition region w−1

D . τdec . 1. After this splitting τdec is
larger for larger m so that, in particular, a Ohmic bath (m = 1) has a lower decoherence time than a
super-Ohmic bath (m = 3, 5 . . .) as stated above. For comparison, the power law behaviours found in
Subsection 7.3 and 7.4 in the small time (τdec ¿ w−1

D ) and Markov (τdec À 1) regimes are also shown
in Fig.4 (broken lines). A remarkably good agreement between the exact and asymptotic behaviours
of τdec is obtained: the exact results are well approximated by their small-time behaviours (42) up to
τdec ≤ w−1

D and they are hardly distinguishable from the Markov approximation as soon as τdec ≥ 1 (or
τdec ≥ 10 for the gray curve corresponding to η = 0.5). Our aforementioned statement that a nonlinear
pointer-bath coupling is more efficient for decoherence than a linear one when τent is not too large (and
even for arbitrarily large τent if m ≥ 3 and η . 1) is well confirmed. Indeed, it is seen in Fig.4 and 5 that
τdec becomes significantly smaller when the value of α is increased from α = 1 to α = 3. If the broken
lines showing ln(τdec) above the horizontal axis would be drawn further to the right in Fig.4, those lines
corresponding to distinct α and fixed m = 1 would intersect; after this intersection (not shown in the
figure) the reverse situation of higher values of α leading to higher values of τdec occurs. In contrast,
for m = 3, 5, . . . the broken lines associated with distinct α’s never intersect (their are all parallel to the
line ln(τdec) = ln(τent)); hence τdec decreases with α and τent ≤ τdec for all values of τent. We also
emphasise that τdec increases in Fig. 5 with the Debye cut-off frequency ωD. Even though the results in
Fig.4 and 5 correspond to the simplifying choice of a bath of harmonic oscillators with power spectrum
function (48), for more general baths these figures should give the correct qualitative picture.
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8. Equilibrium apparatus initial state
We now turn to the initial state (4), i.e., to a pointer and bath initially entangled and locally in thermal
equilibrium. Our result for this initial state looks quite similar to that for the initial state (3) discussed
in Section 7. We shall here only state this result, postponing the details of its proof to [1]. Let us first
introduce the pointer effective potential

Veff(x) = V (x)− ~−1γ0 x2α , (50)

wherein γ0 is given in terms of the imaginary part of the bath correlation function h(t) by

γ0 =
∫ 0

−∞
dτ =h(τ) . (51)

We write ZP,eff =
∫

dx e−βVeff(x) for the partition function associated with Veff . It can be shown with
the help of the KMS property (A2) and the positivity of (<̂h)(ω) that γ0 ≥ 0. Considering e.g. a linear
pointer-bath coupling, γ0/~ is the mean force per unit length exerted by the bath on the pointer. Note that
Veff(x) is a non-confining potential if V (x) = o(x2α) at large distances. For instance, if P is a harmonic
oscillator (V (x) ∝ x2 for all x) and α > 1 then Veff(x) looks like in Fig. 1. This means that an initial
pointer density localised around x = 0 will eventually spread over the whole real line via tunnel effect
after the pointer-bath coupling (1) is switched on. Our result for the initial state (4) relies, in addition
to t ¿ TP , TS , on the two following additional hypotheses: (a) the separation of time scales ~β ¿ TP
or, equivalently, the separation of length scales λth ¿ ∆th (Section 2); (b) a weak enough pointer-bath
coupling satisfying

ηth < 1/
√

2 if α = 1 , ηth ¿ 1 if α > 1 (52)

where ηth is given by (38) with ∆ = ∆th = (βV ′′(0))−1/2. Condition (52) is motivated by the following
requirement: The effective potential (50) must have a local minimum at x = 0 and the width and height
of the potential well at the origin must be much larger than ∆th and kBT , respectively (see Fig. 1). If this
requirement is not fulfilled then, due to the instability induced by the coupling HPB, it is not possible to
prepare a pointer-bath initial equilibrium-like state ρ

(eq)
PB with a pointer density 〈x| trB(ρPB)|x〉 having

a single peak at the origin as discussed in Section 2. We exclude here such a possibility, henceforth also
excluding the occurrence of symmetry breaking and phase transitions considered in [5]. It is shown in [1]
that (52) implies the required stability of Veff(x).

We can now state our result for the object-pointer density operator when P and B are initially in the
state (4). For α = 1, it is given at times t ¿ TS , TP by

〈s, x|ρPS(t)|s′, x′〉 = 〈s|ρ(0)
S (t)|s′〉 exp

{−Dt(xs(t), xs′(t); s, s′)− iφ′t
}

R0(xs(t), x′s′(t)) (53)

wherein Dt is the same decoherence exponent as before, see (32), φ′t is a real phase and

R0(x, x′) = Z−1
P,eff e−β(Veff(x)+Veff(x′))/2 e−2π2(x′−x)2)/λ2

th . (54)

The only difference between (53) and the formula (31) for the partial-equilibrium initial state lies in the
replacement of the initial pointer density 〈x|ρP |x′〉 by the Gibbs-like density R0(x, x′). Interestingly,
(53) entails the following result on the reduced pointer initial state ρP = trB(ρPB)

〈x| trB(ρPB)|x′〉 = R0(x, x′) . (55)

Comparing (54) with the expression of 〈x|ρ(eq)
P |x′〉 at high-temperatures given in Section 2, we see that

under the aforementioned conditions (a) and (b) the coupling betweenP and B can be fully accounted for
by the effective potential (50). Furthermore, for a linear coupling α = 1, the matrix elements (55) can be
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approximated for small x and x′ by the Gaussian (7) with an almost unchanged uncertainty in momentum
∆p ' 2π~/λth and a renormalised uncertainty in position ∆eff given by ∆−2

eff = β(V ′′(0) − 2γ0/~).
Note that (52) entails ∆th ≤ ∆eff ≤ √

2∆th. The analog of (34) for the equilibrium-apparatus initial
state is

ρpeak
PS (t; s, s′) = 〈s|ρ(0)

S (t)|s′〉R0(0, 0) e−Dpeak
t (s,s′)−iφpeak

t

′
(56)

where Dpeak
t is given by (35). For α = 2, one has at times t ¿ TS , TP

〈s, x|ρPS(t)|s′, x′〉 = 〈s|ρ(0)
S (t)|s′〉 exp

{−Dt(xs(t), xs′(t); s, s′)
} e−iφ′′t R0(xs(t), x′s′(t))

(1 + 4g2
t (x, x′; s, s′))1/4

(57)

wherein Dt and R0 are given by (32) and (54), φ′′t is a real phase and

gt(x, x′; s, s′) = (8π2)−
α
2

λα
th

~2

∫ t

0
dτ1

∫ τ1

−∞
dτ2=h(τ2)

(
(x′s′(−τ1)α − xs(−τ1)α

)
. (58)

It can be shown [1] that for α > 1, (52) entails gt(x, x′; s, s′)2 ¿ (λth/∆th)2Dt(x, x′; s, s′). The
denominator in (57) is thus close to unity if condition (a) holds and Dt(x, x′; s, s′) . 1. Therefore, in
the interesting regime 0 ≤ t . tdec(s, s′), (56) gives a good approximation of ρpeak

PS (t; s, s′) for α = 2
as well. It is argued in [1] that this is still true for higher α’s.

It follows from (53-57) that the coherences of ρPS(t) for s 6= s′ decay with the same rate for the
initial states (3) and (4), at least in the early time regime 0 ≤ t . tdec. Furthermore, in view of (54) the
whole discussion of Section 4 about the emergence of classically discernible peaks remains qualitatively
valid. Hence our result for the equilibrium apparatus initial state goes a long way towards supporting the
general conclusions about quantum measurement of Section 7. In particular, tdec is given by (42), (44)
and (46) in the short-time and Markov limits and it behaves like in Fig.4 and 5 in the intermediate region
between these two limits.

9. Conclusion
Let us summarise the main results of this paper. The model for a quantum measurement presented
in Section 2 has five parameters: the object-pointer coupling constant ε, the thermal variance 〈B2〉 of
the bath coupling agent, the temperature T = (kBβ)−1 of the bath, the uncertainty ∆ in the initial
pointer position (equal to ∆eff ≈ ∆th for the initial state (4)) and the exponent α associated with the
nonlinearity of the pointer-bath Hamiltonian (1). One may construct out of the first four parameters two
relevant dimensionless constants. The first one is the entanglement time τent = ∆(ε δs ~β)−1 in units
of the thermal time. It measures the efficiency of the pointer-bath interaction (a coupling is efficient if
τent is small). More precisely, it is the time after which distinct positions of the pointer corresponding to
distinct eigenvalues s begin to be resolved. The second constant is the coupling energy η = 〈B2〉1/2∆αβ
in units of kBT , which measures the strength of the pointer-bath interaction. We have found that the joint
state (8) of the object and pointer is close to the statistical mixture of separable states (22) at times t large
compared with the decoherence time tdec = ~β τdec given by

τdec ∝
(
η−1/ατent

)γ
, γ =





α
α+1 if tdec . tB (interaction-dominated regime)

2α
2α+1 if tdec & TB for a Ohmic bath (Markov)

1 if tdec & TB for a super-Ohmic bath (Markov).

(59)

This formula is valid provided that tdec ¿ TS , TP . We have omitted all numerical factors, which
are given explicitly in (42), (44) and (46). Two distinct regimes ought to be identified in (59): in the
interaction-dominated regime, the decoherence time is shorter than the characteristic time tB after which
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the bath correlation function h(t) in (10) differs significantly from its value 〈B2〉 at t = 0; in the opposite
Markov regime, one must wait more than the bath correlation time TB, i.e., the largest decay time of h(t),
to obtain the required statistical mixture (22). While tdec presents a universal behaviour in the interaction-
dominated regime (it depends on the bath through the parameter η only), in the Markov regime it is
determined by the small-frequency behaviour of the Fourier transform of the imaginary part of h(t),
(=̂h)(ω) ∼ −i γ̂ ωm. Larger values of tdec are found for larger m’s. Although the dependence of tdec

on m is partly hidden in the proportionality factors in (59), a significant change of behaviour between
m = 1 (Ohmic bath) and m > 1 (super-Ohmic bath) is manifest in this equation. In both time regimes,
it turns out that the value of tdec depends strongly on the nonlinearity exponent α. Smaller decoherence
times are obtained for larger α’s excepted in the Markov regime if m > 1 and η & ~β/TB or if m = 1
and η2τent & ~β/TB, where the reverse statement holds. Moreover, with the same restrictions one has
τdec ≥ τent. Let us emphasise again that for a small τent, the time tdec needed for the transformation of
linear superpositions into statistical mixtures can be so small that the whole measurement is performed
without producing a Schrödinger cat state as an intermediate step. It would be interesting to study
concrete models for the object and pointer involving projective measurements in this “no-cat” regime, in
connection with recent experiments in Solid State Physics and with parametric oscillators in Quantum
Optics.
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Appendix A. Large-time behaviours of the decoherence exponent (35)
Let us first show that for sα 6= s′α, Dpeak

t (s, s′) is an increasing convex function of time. Actually, let us
take x = x′ = 0 in (33), differentiate both sides with respect to t, integrate the remaining time integral
by parts and make the variable substitution u = τ/t. This yields

∂

∂t
Dpeak

t (s, s′) =
ε2α

~2
(s′α − sα)2α t2α

∫ ∞

0

dω

π

(<̂h)(ω)
ω

∫ 1

0
du (1− u)α−1 sin(ωtu) . (A1)

Using the fact that the function (1− u)α−1 is positive and decreasing between 0 and 1, it is easy to show
that the integral over u in (A1) is positive for almost all ω ≥ 0. Bearing in mind that (̂<h)(ω) ≥ 0, this
establishes that ∂Dpeak

t /∂t > 0. Hence Dpeak
t is an increasing function of t. By a similar argument,

∂2Dpeak
t /∂t2 > 0 and thus Dpeak

t is convex.
We now study the behaviour of Dpeak

t as t À TB. In the light of the discussion in Subsection 7.4, we
assume (=̂h)(ω) ∼ −i γ̂ ωm as ω ¿ TB−1 with γ̂ > 0. The small-frequency behaviours of (<̂h)(ω) and
(=̂h)(ω) are related by the KMS relation ĥ(ω) = e~βωĥ(−ω), i.e.

(<̂h)(ω) =
i(=̂h)(ω)

tanh(~βω/2)
. (A2)

Such a relation holds because the equilibrium density matrix defining h(t) in (10) is a bath Gibbs
state [21]. It implies (<̂h)(ω) ∼ 2 γ̂ ωm−1/(~β). Let us first discuss the super-Ohmic case m ≥ 3.
The frequency integral in (A1) can be rewritten after an integration by parts as

∫ ∞

0

dω

π

(<̂h)(ω)
t ω2

(
1− δα1 cos(ωt)− (α− 1)

∫ 1

0
du (1−u)α−2 cos(ωtu)

)
'

∫ ∞

0

dω

π

(<̂h)(ω)
t ω2

(A3)

Quantum Optics III IOP Publishing
Journal of Physics: Conference Series 84 (2007) 012018 doi:10.1088/1742-6596/84/1/012018

19



where we have neglected in the right-hand side the oscillatory integrals by invoking t À TB. But
∫ ∞

0
dτ τ <h(τ) = lim

ε→0+

∫ ∞

−∞

dω

2π
(<̂h)(ω)

∫ ∞

0
dτ τ e−i(ω−iε)τ = −

∫ ∞

0

dω

π

(<̂h)(ω)
ω2

. (A4)

Hence, for m ≥ 3 the frequency integral in (A1) can be approximated by t−1| ∫∞0 dτ τ <h(τ)|. For a
Ohmic bath m = 1, the last integral in (A3) diverges. We now argue that one can replace (<̂h)(ω) by
(<̂h)(0) = 2γ̂(~β)−1 in the frequency integral in (A1), which becomes

∫ ∞

0

dω

π

(<̂h)(0)
ω

∫ 1

0
du (1− u)α−1 sin(ωtu) =

(<̂h)(0)
2α

(A5)

in the limit t À TB (we have used
∫

dω sin(ωtu)/ω = π for tu > 0). Note that this amounts to
replace <h(t) by a white-noise correlator (<̂h)(0) δ(t) in (35). Let us estimate the error introduced
in the frequency integral in (A1) by this substitution. This error is given by the left-hand side of (A3)
modulo the replacement of (<̂h)(ω) by (<̂h)(ω)− (<̂h)(0). Disregarding oscillatory integrals as in the
case m ≥ 3, the error is equal in the limit t À TB to t−1

∫∞
0 dω ((<̂h)(ω)− (<̂h)(0))ω−2/π. The latter

integral converges since (<̂h)(ω) − (<̂h)(0) behaves like ω2 for small ω. Comparing with (A5), one
concludes that the relative error introduced in (A1) by the substitution of (<̂h)(ω) by its value for ω = 0
is small, of the order of TB/t. Therefore, for m = 1 the frequency integral in (A1) can be approximated
by (<̂h)(0)/(2α) = α−1

∫∞
0 dτ <h(τ). Collecting the above results and integrating (A1) with respect

to t, one easily establishes (43-46).
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