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Abstract. A new class of models describing the dissipative dynamics of an open
quantum system by means of random time evolutions of its wavefunction is con-
sidered. The random evolutions are linear and defined by Poisson processes. At
the random Poissonian times, the wavefunction experiences discontinuous changes
(quantum jumps). These changes are implemented by some non unitary operators
satisfying a locality condition. The stochastic dynamics gives the Lindblad master
equation back after averaging over the random times. If the Hilbert space of the
system is infinite dimensional, the models involve an infinite number of independent
Poisson processes and the total frequency of jumps is infinite. We show that the
random evolutions are then given by some almost-surely defined unbounded ran-
dom evolution operators obtained by a limit procedure. The relevance of the models
in the field of electronic transport in Anderson insulators is briefly discussed.

1 Introduction

The dissipative dynamics of an open quantum system S can be described in
two different ways. The first and most popular approach consists in coupling
S with a reservoir R. The density matrix pyo; of the total system S + R is
assumed to follow a Liouville-von Neumann equation, i.e., one assumes that
S+R is a closed system. A state of S is specified by the reduced density matrix
p, defined as the partial trace of pyot over the reservoir’s Hilbert space. p does
not describe a single system but a statistical ensemble. By tracing out the
degrees of freedom of R in the Liouville-von Neumann equation, one obtains
an integro—differential equation for p (Nakajima-Zwanzig equation). Using a
suitable Markov approximation to eliminate memory effects, this equation is
then transformed into a simpler first-order linear differential equation, called
the master equation [1]. The reduced dynamics does not conserve pure states.
It has been shown by Lindblad [2] that the Markovian master equation is of
the form:
dp

ap = Lp=—ilHs.pl + % ; ([Lz p, L}] + [Lz,pLE]) - (1)
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Hg is the Hamiltonian of S (including the energy shifts due to the coupling
with the reservoir), and L, are some operators acting on the Hilbert space Hg
of S, called the Lindblad operators in the sequel. An alternative approach for
the same problem is based on stochastic evolutions of pure states. The state of
S is specified by a random wavefunction (RW) in Hg, evolving according to a
linear or nonlinear stochastic Schrédinger equation. Different stochastic evo-
lutions have been proposed in the last two decades in various fields of physics
and mathematics, especially Quantum Optics [3,4], Quantum Measurement
Theory [5-14] and Electronic Transport in Solids [15-17]. Consistency with
the master equation approach requires that the pure state evolution gives
the density matrix evolution back after averaging over the dynamical noise.
Apart from being intuitively appealing, the RW models provide quite efficient
tools for solving master equations numerically. Actually, one is led to inte-
grate N coupled differential equations for the wavefunction, where N is the
dimension of Hg, for a large enough number of realizations of the dynamical
noise. For large NV, this is generally much more efficient than integrating the
N x N coupled master equations for the density matrix. However, the RW
models are more than simple mathematical or numerical tools: they describe
the real evolution of the system S under continuous monitoring by means of
measurements (photons counting, homodyne or heterodyne detections) [18].
The randomness of their dynamics is a consequence of our ignorance of the
result of a measurement in quantum mechanics. At the end of the eighties,
experiments on the fluorescence of single ions in magnetic traps have shown
records of ‘quantum jumps’ between an excited atomic state and a lower
state, occurring at random times [18]. These sudden jumps — which were
already assumed to exist by Einstein in his paper on the A and B atomic co-
efficients [19] — correspond to the absorption or emission of a photon by the
ion at the corresponding transition. Such direct observations have motivated
the study of the RW models in Quantum Optics.

The aim of this paper is to study a particular quantum jumps model
in the limit where infinitely many levels of the system are coupled by the
dissipative dynamics. The model is built in such a way as to give the classical
kinetic theory back, such as Boltzmann’s equation, when quantum effects can
be neglected. Unlike in the models studied in [3,4,6], the stochastic evolution
for the wavefunction is linear, which makes the mathematical analysis easier.
The price we pay for this convenience is the non conservation of the norm of
the random wavefunction.

Many systems with non-degenerate spectra are correctly described by the
master equation (1) with £ = (4,j), 1 # j, and:

Li; =T a}ai . (2)
a!, a; are the creation and annihilation operators in the one—particle energy

eigenstate |i). I;_,; is the one-particle transition rate from |i) to |j). It can
be calculated perturbatively by means of Fermi golden rule [20]. Examples of
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systems correctly described by this master equation are: (1) an atom coupled
to the quantized electromagnetic field radiating in the vacuum [20]; (2) inde-
pendent electrons in strongly disordered solids coupled to phonons at very low
temperatures [21]. The inverse life-time of eigenstate [i) is I} = 3, I'i;-
If we ignore level shifts, the dynamics of S is completely characterized by its
Hamiltonian Hg and by the set of the transition rates I;_,; for all pairs (¢, 5)
of one—particle eigenstates. In the RW model studied in this paper, the rates
I';_,; give the probability per unit time of occurrence of quantum jumps. For
an infinite dimensional Hilbert space Hg, it usually happens that the double
sum Zi’ j I';_,; is infinite, i.e., that an infinite number of jumps occur in any
finite time interval. Our main result shows that, provided the discontinuous
changes of the wavefunction at the jumps are sufficiently ‘local’, the stochas-
tic dynamics in Hg is also well-defined in this case, and is given by an almost
surely unbounded random evolution operator obtained by a limit procedure.

The physical situation which motivates our work is electronic transport
in strongly disordered solids [22]. The electronic eigenfunctions are expo-
nentially localized in such solids (Anderson localization [23]). The electri-
cal conductivity thus vanishes at zero temperature. At non zero tempera-
ture T' > 0, transport occurs via phonon-assisted hopping of electrons from
one localized eigenstate into another. At small 7', a phenomenological argu-
ment due to Mott [24] shows that the hopping conductivity o is given by
o = ogexp(—(To/T)"), where the exponent v = 1/(d + 1) depends on the
dimension d (d = 1,2,3) only and Tp is a constant which depends on the
localization length and the density of states at the Fermi energy. Efros and
Shklovskii have shown that the presence of a wide Coulomb gap in the density
of states modifies -y, which then equals 1/2 for all dimensions [22]. Hopping
transport occurs for instance in lightly doped compensated semiconductors at
low temperature, in amorphous solids, in two—dimensional electron gases in
zero or strong magnetic field, and in the quasicrystal i—~AlPdRe [22,25]. The
electrons in the disordered potential created by the ions, impurities or defects
are coupled to low energy acoustic phonons. Since phonons do not carry cur-
rent, the study of transport requires the knowledge of the electron dynamics
only. The system S of all electrons is thus an open quantum system. If we
ignore electron—electron interactions, it can be shown that, at low enough
temperature, its dissipative dynamics is correctly described by the master
equation (1) with the Lindblad operators (2) [21]. The transition rate I;_,;
between two localized one—electron eigenstates |i) and |j) decreases exponen-
tially with the distance |i — j| between their localization centers, and depends
strongly at low temperature on their energies E; and E;. The widely used
relaxation time approximation, which amounts to replace all the I';_,;’s by a
single damping constant, is thus completely unjustified in hopping transport.

A fundamental question addressed by mathematical physicists in the the-
ory of solids concerns the study of the spectrum and of the time evolution of
the relevant electronic observables at the thermodynamic limit. Letting the
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volume of a strongly disordered solid tend to infinity, an infinite number of
localized eigenstates |¢) with energies close to the Fermi energy Er comes into
play. Thus, a well-defined RW dynamics in an infinite dimensional Hilbert
space Hg must be specified. The quantum jump model studied in this paper
is a candidate for such a RW dynamics in solids, giving the time evolution of
the electrons under electron—phonon or another coupling.

2 The Model

2.1 The Stochastic Scheme

Let us consider a quantum system composed of identical non-interacting par-
ticles coupled to their environment. We denote by H the one-particle Hamil-
tonian, acting on the one—particle Hilbert space H. H is the second quantized
of H, acting on the Fock space F = @ PLH®", where Py is the particle
(anti-)symmetrizer. We shall assume that H =V + T is the sum of a possi-
bly unbounded self-adjoint operator V', with dense domain D(H) and pure
point spectrum, and of a bounded self-adjoint operator T'. Let {|i);i € A}
be the orthonormal basis of ‘H formed by the eigenfunctions of V', where A
is an infinite subset of Z%. If the system is a doped semiconductor, we can
think of A as the impurity sites in the host crystal Z3; then H acts on the
Hilbert space H = ¢2(A) and {|i);i € A} is the canonical basis (see below).
The annihilation and creation operators of a particle in state |i), i € A, are
denoted by a; and a;[, respectively. For each pair (i,j) € A2, |i — j| is the
Euclidean distance between i € Z¢ and j € Z%. Instantaneous jumps take
place at some random times
0<ti,; <...<tP,; <., i,jeA.

These jumps are labelled by pairs (i, j) € A% of indices and by an integer m,
which counts the number of jumps (i, j) that occurred since the initial time
t = 0. The time delays between two consecutive jumps (i, j), s7*,; = tI,; —
t;"_;jl, m = 2,3,..., and the first jump times s? ,; = t; ,;, for all i,j € A, are
assumed to be mutually independent random variables distributed according
to the exponential law p(ds) = I ;e *li»ids, where I,; > 0 depends
on (4,7) but not on m. In other words, for any fixed (i,j), the jump times
., m € N* are given by a Poisson process with parameter I5_;. The
transition rates I';_,; are considered here as phenomenological parameters.
In concrete situations, they can be computed by using the Fermi golden rule.
They contain all the quantitative physical information on the interaction of
the system’s particles with the environment (e.g., the coupling constant). If
the environment is a thermal bath, they depend on its temperature.

Each jump modifies in a discontinuous way the wavefunction of the sys-
tem in the Fock space F. These discontinuous changes are implemented by
some bounded operators W;_,; (called jump operators in the sequel). More
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precisely, if the system’s wavefunction is [¢)) € F just before a jump (i, j), it
becomes W;_,;|v) just after it:

jump (i,5) : 1) = Wissj 1) - 3)

The jump operators describe the qualitative effect of the interaction between
S and its environment (e.g., the effect on S of the absorption or the emission
of external particles such as photons, phonons, ... ). They do not depend on
the damping rates or on the temperature of the bath.

Between two consecutive jumps, the system evolves according to the
Schrédinger equation with Hamiltonian H + K, where K is a bounded op-
erator describing both some damping effects and some energy renormaliza-
tions due to the coupling with the environment. We will restrict ourself in
this work to systems with a norm—preserving average dynamics, namely, such
that E|[4)(¢)||> = 1, where E is the average over all times ¢7, ;- As we shall see
below, in order that [[1)(t)||?> be conserved in average, the damping operator
K must be given, up to a self-adjoint operator, by:

N N 1 - -
K=Ki=g ) Li(Wh; +1)(Wis; - 1) (4)
i,jEA

This means that K is not self-adjoint.
The wavefunction at time ¢, t, <t < t,11, is thus formally given by:

[¥(t) = efi(tftp)(H+K)Wi L o iltr—tp—1)(H+K)
...Wil_,jle_itl(H+K)|¢) ’ 5)

where |¢) € F is the wavefunction at time t = 0,0 < ¢; < ... <t, < ...
are the times of occurrence of any jump, and (ip, jp) is the random pair of
indices corresponding to the jump that takes place at time t,. As it will be
clear below, the formula (5) is only meaningful if:

3,jE€EA

A way to define the random wavefunction when I' = oo will be given in the
next section.

From a mathematical point of view, it is convenient to represent each
sequence of random times (¢, ;) men- by a counting process (N ;(t)):>o [26]-
Here #]",; are the left discontinuities of the counting function N;_,;(t). For
any compact interval I C Ry, N;;(I) is the (random) number of jumps

(4, ) occurring at times ¢t € I, namely:

Nisi(I) = i x(ti; €1), (7)

m=1
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where x is the characteristic function (x(P) = 1 if the property P is true, 0
otherwise). We set N;_,;(t) = N;—;([0,¢]). The stochastic scheme described
above is thus specified by the infinite set of independent Poisson processes
(N;—;(t))¢>0 with parameters I;_,;, for all i,j € A. If (6) holds, the staircase
function:

N@t) = > Nisj(t) (8)

i,jEA

which counts the total number of jumps between 0 and ¢, define a Poisson
process of parameter I'. The left discontinuities of this function are the jump
times t, above. As follows from the independence of the Poisson processes
(Ni;(t))¢>0, the probability that the p-th jump is a jump (i, 7) is:

P ((ip, ) = (i4)) = 222 Q

2.2 Examples

In order to be more concrete, let us give two examples corresponding to
physical systems for which the above approach applies.

‘Classical’ Model Consider a system made of fermions initially in an eigen-
state of the Hamiltonian H, H = V. The eigenstates of H are of the form
n) = Hl(a;r)” 0), where |0) is the vacuum and n = (n;)ica € {0,1}4. Let
Ry = a;fai be the number operator in state |i). Let I;_,; = 0 and:

Wisj =1 — iy + iy +ala; i # (10a)

K=0. (10b)

The jump operator Wi_m- transforms an eigenstate |n) into a;aim) ifn; =1
and n; = 0, and leaves |n) unchanged otherwise. Let the system evolve from
t = 0 until time ¢ according to the quantum jump scheme described above.
If we restrict ourself to initial wavefunctions |1(0)) = |n), with n € {0,1}4,
the wavefunction [¢(t)) at time ¢ > 0 is in an eigenstate |n(t)) at all time
and its norm is conserved. Actually, |¢(t)) remains unchanged up to a phase,
as long as there is no jump. When a jump occurs, it may (or may not) jump
from an eigenstate |n) into another eigenstate |n'). The RW at time ¢ is
thus completely specified by the sequence of random numbers n(t) € {0, 1}4.
Define the average population p;(t) in the one—particle state |i) as the average
of n;(t), pi(t) = En;(t). In order to determine the equation satisfied by
the p;’s, let us compute the amount of change dp; = dpj — dp; of p;(t)
between times ¢ and ¢ + d¢. The gain dp;r is equal to the sum over j € A
of the probability Ij_,; d¢ that a jump (j,i) occurs between t and ¢ + dt,
multiplied by the probability p;(¢)(1 — p;(t)) that this jump modifies the
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wavefunction. Similarly, the loss dp; is equal to the sum over j € A of the
probability I;_,; dt that a jump (i, j) occurs between ¢ and ¢ + d¢, multiplied
by pi(t)(1 — p;(t)). Hence, p;(t) satisfies the Boltzmann equation:

% - Z (Fj—m' pi(t) (1 - Pi(t)) = I Pi(t)(l - pj(t))) ) (11)
JEA,j#i

This example shows that the RW model of sect.2.1 can be seen as a quantum
generalization of a classical kinetic model. In the quantum case, the classi-
cal ‘random collisions’ between particles of the system and of the bath are
replaced by ‘random quantum jumps’. If we would have worked with sin-
gle particle systems, the same Boltzmann equation (11) without the Pauli
exclusion factors (1 — p;(t)) would have been obtained.

The Anderson Model Let us consider a crystal the atoms of which are
located at the vertices of a Bravais lattice in dimension d. Using labelling of
the lattice sites by integers, we can identify it with Z?. Some random sites
are actually occupied by impurities instead of atoms of the original species.
These sites form an infinite (random) set L C Z?. At low enough temperature,
conducting electrons are almost all in the impurity band, i.e., they are in
linear combinations of impurity orbitals. Neglecting the other electrons and
assuming only one orbital par impurity, the one—electron Hilbert space H is
identified with ¢2(L). The one—electron Hamiltonian can be chosen as the
Anderson Hamiltonian:

H=Y ela)al+ Y taylz)(y| -

zeLl z,yeL

|z), € L, are the canonical basis vectors, describing an electronic state
in the impurity orbital at site z. €, are independent identically distributed
random variables and t,, are hopping terms. The randomness of the site
energies €, describing disorder in the solid, must be distinguished from the
dynamical randomness above, which describes dissipation. As is well-known,
for strong enough disorder, i.e., if (Ae,) is large enough compared with ¢,
the eigenfunctions of H with energies close to the Fermi energy are expo-
nentially localized (Anderson localization [23]). A first choice for the basis
vectors |7) is |i) = |z), for any i € A = L. Then H is non-diagonal, i.e. T # 0.
However, because the Lindblad operators (2) describing the electron-phonon
interaction processes at very low temperature are expressed in terms of the
eigenfunctions of H, another interesting choice is to take |i) equal to these
eigenfunctions. Then T' = 0 and [¢) is an exponentially localized wavefunction
differing from the canonical basis vectors |z). The set A can be considered as
the set of the localization centers of |i), i.e., as the lattice points ¢ € L where
the amplitude of |¢) is maximum.
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We now describe how the electrons are kicked by phonons. We choose
I;,; =0and

Wi—»j:1+a;[ai RENE (12)

The damping operator K is taken according to (4), i.e.

. i . . .
K= —5 Z Fi_,jni(l—n]‘)—l Z Fi_”' a;a,- (13)
i,jEA i#£JEA

(we have set i =1). K adds an imaginary part to the eigenenergies of H and

T-a,-.

introduce some new hopping terms I;_,; a;

3 Case of Infinitely Many States

Suppose that the one—particle Hilbert space H is infinite dimensional, i.e.,
that the set A is infinite. As said in the introduction, if the double sum I" in
(6) diverges, the total number N(I) of jumps in any finite interval I C Ry
is infinite with probability one. One can even shows [27] that, if there exists
B > 0 such that }°; I ,; > f for infinitely many indices ¢ € A, then the
sup over 4 of 37, N;,;(I) is infinite with probability one. The random times
tp, and the random indices (ip, jp) in (5) are therefore not well-defined. The
idea for computing the random evolution in F when I" = oo runs as follows:
(1) restrict A to a finite ‘box’ B C A and determine the wavefunction at time
t using (5); (2) let the size of the box increase to reach the limit B 1 A.

The theorem stated in this section shows that the limit exists provided
suitable conditions on the I;_,; and W;_,; are made. We restrict our analysis
to jump operators Wi, j which are the second quantized of some one-particle
operators W;_,;:

Assumption 1 .
For any i,j € A, W;_,; is a single particle operator, i.e.,

Wi—m’ = Z <k|Wi_,j|l) a;’cal .
k,leA

Let {|n),n € S} be the occupation number basis of F:

w = IT o)™

icA v

0) , n=(ni)icn €9, (14)

where |0) is the vacuum, S = S, = N if the the system’s particles are
bosons and S = S_ = {0,1}" if they are fermions. Assumption 1 implies
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that (Q|Wi_,j|ﬂ’) = 0if |n') is different from cili) (n) a;rakm) for some k,l € A,
where ckff (n) is a normalization constant:

—1/2
@) = (et +m —50) ", e #0 (15a)
A7) =1, me(l—m)#0. (15b)
The sign + refers to bosons and — to fermions. dy; is the Kronecker delta (dy;
= 1if k =1 and 0 otherwise). Similarly, let ¢;jri(n) = ||a;r-a;'a,-ak|ﬂ)||_1. For

any n € N*, we denote by S the subset {n € S;> ieani = n} of S. The
jump rates I'_,;, the jump operators Wi_,j, the damping operator K and the
off-diagonal Hamiltonian T are assumed to fulfill the following requirements:

Assumption 2
There is 11 > 0 such that:

sup E Iy eIl < oo ; sup E Iy =il < oo .
€A jeA i€A jeA

Assumption 3
For any i,j,k,l € A, one has:

|<ﬂ|(Wi_)j —-1) a;ak|ﬂ)| < %(fu + fi)(fie + fix)
cy (n)

for all n € S4, ng(1 £ ny) # 0, where f;; = f;; > 0 is such that there is
ro > 0,
supiij er2li=il < oo .

i€A jeA

Assumption 4
There is r3 > 0 such that, for all n € N*,

sup { > en(m) (o) (T + K) af ag|n)| em!F

neS™ L rea

Y canto) [alRlajafaaln)| s et itk | oo
i,k lEA

Assumption 2 basically means that the rates I;_,; decrease exponentially
with the distance |i—j|. Clearly, this does not imply that I" < oo (for instance,
>_i; €xp(—rli—j|) = co). Assumption 3 means that a jump (4, j), up to small
corrections, can remove a particle in state |I) and create one in a far state
|k) only if [ is ‘exponentially close’ to i and k is ‘exponentially close’ to j,
or vice versa. For instance, the jump operators (12) satisfies this assumption
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with f;; = d;;. It will be shown below that assumptions 1 to 3 imply that the
damping operator K in (4) satisfies assumption 4 with r3 = min{ry/2,r2}.

If H is an unbounded operator, with dense domain D(H ), some care about
domains must be taken. Let B(F) be the C*—algebra of bounded operators
on F. Consider the subspace of B(F):

{A € B(F); AD(H) C D(H) and [H, A] : D(H) — F is bounded } .

This subspace is denoted by D(Ly), as it is the ultraweakly dense domain of
the Liouvillian £ : A € D(L) — i[ﬁ,fl] € B(F) [28].

Assumgtion 5 R
Wi_j, T and K belong to D(Ly) for any i,j € A.

Let us denote F,, = PLH®" the n—particles subspace of F. We say that a
sequence (|, ))ven of random vectors in F,, converges almost surely to |¢) if
the set of outcomes of all the Poisson processes (N;—;(t))¢>o for which [¢,) —
|1)) has a probability one. Note that the limit |4)) is also a random vector (it
takes different values for different outcomes). Our main mathematical result
is summarized in the theorem below.

Theorem: Let [¢)) € Fp,, n € N*, and B C A be a finite box of A. Consider
the random variables:

e 0<tE<... < tf <..., the times of occurrence of any jump (i, j) € B2,
i.e., the left discontinuities of the counting function

Np(t)= > Nis;(t);
i,jeB
° (if, jf), the random pair of indices corresponding to the actual jump
(i,7) € B? that takes place at time t5 :

B _:m
ty, =5, for some m € N*.

Let Ug(t) be the random evolution operator defined by (5):

Up(t) = ei(t-t ) H+E) Wif—»j}? e—ilty —tg_)(H+K)

L Wim e e WEHIR) fr 0 <t <t <tB, . (16)
Then, under assumptions 1 to 5, Us(t)|¢) converges almost surely to a ran-
dom vector |[Y(t)) = U(t)|y) € Fn as B 1+ A. The convergence for a fized
outcome is uniform with respect to t on finite intervals of Ry (on a set of
outcomes of probability one). Moreover, for any t > 0 and any bounded op-
erator A on Fn, the limit B + A and the mean E over the times t",; can be
inverted when calculating expectation values:

E|U®TAT®)1y) = lim, E (| Us(t)TAUg(t) ) - (17)
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Sketch of the proof. The theorem has been proved elsewhere [27] in the one-
particle case, i.e., for RW dynamics in the one-particle Hilbert space H. The
proof in the n-particles case considered here is identical excepted that: (1) the
basis vectors |i) € H, i € A, must be replaced by the basis vectors |n) € Fp,
n € S™; (2) the norms:

JAll = max{sup 3 [(GlAl) e, (A 0 aD} L rz0, ()
icA 4
JEA

on sub-algebras of B(#) must be replaced by some appropriate norms ||||$«n)
on sub-algebras of B(F,). These norms may be constructed as follows. For
any n,n' € S, one can find iy,iy,... ,in,i, € A such that |n) and |n')
are respectively equal to a;-rl ...a;-rn |0) and a;T,l ...a;-r, |0} up to normalization
constants. It is easy to see that:

n

d(n,n') = min Z iy — o (iv)| ,

o:{i1,.. ,in }—{i],... i/, } one—to—one ]
defines a distance on S(™. Clearly, d(n,n') = |i — j| if [n') = ¢ij(n) a;aim).
One sets for any 7 > 0 and A € B(F,):

(n)

T

A

=max{ sup > [(wldn)e ), (Ao AN} (19)

neSM s

If A= Ek7l(k|A|l)aLal is a single—particle operator, then ||/1||£") < n?||Al|.
Let F and G be the operators on H given by [27]:

F=3 fyli)(l , G= " (i) + i)l + Gl) -
i,jeA i,jeA

Then assumption 2, the hypothesis on the f;;’s in assumption 3 and assump-
n)

tion 4 can be rewritten as ||G||,, < 0o, ||F||,, < 0o and [|K + T||\7 < oo,
respectively. [

The following estimates are obtained by using assumptions 1 to 3:

IS LW, = DWissy = 1) < 802 FIIAGll2r

i,jEA
IS Iy (Wiy — 1) < 2n||FIZG]l, -
i,jEA

They show that assumptions 1 to 3 imply that ||K 1||r’;) < ooifry <r;/2and
r3 < ro, i.e, that the damping operator K; in (4) satisfies assumption 4.
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Let us come back to the Anderson model of sect.2.2. Since the one—electron
eigenfunctions |i) are exponentially localized, the jump rates I;_,; decrease
exponentially with the distance |i — j| between their localization center [22].
Moreover, W;_,; and K in (12) and (13) and 7' = 0 satisfy assumptions 1, 3
and 4. Therefore, the theorem above shows that the stochastic dynamics in
F is well-defined at the infinite volume limit B 1 A.

Remark: The theorem does not solve completely the question of the conver-
gence at thermodynamic limit, since it is only valid for a finite number n of
particles. The study of the limit B 1 A, n — oo, n/|B| = const. is a difficult
open problem.

4 Equivalence with the Master Equation

Let us show that the stochastic dynamics in F of sect.2 gives the Lindblad
master equation (1) after averaging over the random times 7", ;. Ignoring
energy shifts, this master equation reads:
dp i 1 i it 7t
i Lp=—ilH,p] + B Z ([Li—>j p, L5+ [Li—>j7pLi—>j]) - (20
i,jEA

We shall see that, for arbitrary Lindblad operators IA/Z-_”-, its solution p(t) =
et“p for p = |¢)(1)| can be written as the mean value E|)(t))(1)(t)|, where
[(¢)) is the random wavefunction (5).

4.1 Decomposition of the Generator £ into a Jump and a
Damping Parts

We assume in this section that I < oco. We set:

Lisj =\Ti5;(Wiss; —aissj) , (21)

where o4, i,j € A, are some complex numbers such that:

Ao = Z Fi_,j(l - |a,~_,j|2) < 0.
i,jeA
The arbitrariness of the parameters a;_,; is linked to the fact that, for fixed
Lindblad operators L;_,;, different choices for the jump operators W;_,; are
possible; it will be shown below that all these choices lead to the same Lind-
blad equation. Equation (20) yields:
Lp= _i[ﬁ7p] + Z I (Wi—m' PW;LJ' — Qij PWL]’
i,jeA

* T 1 T * T
—o;, Winjp+ |ai—>j|2p - 5{(W:—>] - az’—>j)(Wi—>j - ai—m‘):ﬂ}) )
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with {A, B} = AB 4 BA. Let us set:

. 1 . X . A
Ko =5 Z Ty (WL + af ) (Wins; — inyg) — > (22)
i,jeEA
and define the operators:
Wiesj p = Winsj pWL,; (23a)
Lop=—i[H, p| —iKap+ipK] (23b)

acting on density matrices. W;_,; gives the discontinuous transformation of
the density matrix during a jump (4,j) (compare with (3)). One can easily
check by time differentiation that:

et[,ap — efi(IA{+IA(a) pel(f{—f—f(l) . (24)

Ra coincides with K; in (4) for a;—,; = 1. In the general case, ka and K,
differ by a self-adjoint operator. A simple computation gives:

Lp=Lyp+ ZFi_,j(Wi_,j—l)p. (25)

i,jEA
It is assumed here that the Wz'_>j are uniformly bounded in 4, j, so that the
sum converges in norm.

4.2 Average over Quantum Trajectories

Following Carmichael [4], the solution of (20) is expanded as an infinite Dyson
series:

00 t ta
p(t) — et[,p — etﬁap+ Z Z Fi1—>j1 . --Fip—>jp/ dtp . dty
0 0

=1 i1,j1,...,ip,Jp€A
elt—tp)La (Wip—>jp - 1) ..elzmt)La (Wi1—>]'1 - 1) etlﬁap ’ (26)

with p = p(t = 0). The expression inside the sum over p is equal to:

() = (‘5!

q=0

t)4
Tp—q(t) P, (27)
with Jo(t) = e**= and, for any p > 1,

t to
Tp(t) = Z Fiﬁjl...nﬁ,-p/ dt, ... [ dt
0 0

11,0150 7ipajp €A

t—tp) Lo to—t1)La t1La
6( ») Wip—>jp .. .6( 2=t) i1—1€ : . (28)
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In fact, (27) is clearly true for p = 1; let us assume that it holds for p and
show that then it also holds for p + 1. One has:

t
poia®)= 3 Ty [ dtet=0 Wy = 1)y (r)
i,jEA
Moreover,
d /s _ _
(T a1 () = Y Ty €T Wi T (1)
i,jEA

This identity and (27) yields:

14 t —I'7)? d
pria =3 et [ar CEL (g, ) s
q=0 ’

p+1
_ I
—Te ™ 7, (1) p} = E % Tp—q+1(t) p -
q=0 )

The last equality follows from an integration by parts. Hence (27) holds for
p+ 1 and thus for all p € N*.

As a result,
OEDIPD (‘5“" ANOVED B) D L AT
p=0¢=0 ' 7=0 p=q
'Y Tt (29)

We may therefore rewrite the Dyson series (26) as follows:

i Fi —}j1 Fl —J
plt) =eCop+ F o
Z Z r ' Jo<u<..<t,<t

P=1 i1,1,---,ip,jp€A

de(tl, A ,tp) e(t_tP)LG‘ Wip—>jp - e(tz_tl)'C“ i1—j1 etlﬁ”‘p s (30)

with dPy(t1,...,tp) = I'Pe tdt; ...dt,. We now come back to the Poisson
process (8) of parameter I'. Actually, dP,(t1,... ,tp) is precisely the joint
probability that p first jump times immediately following ¢ = 0 occur re-
spectively in the time intervals [t1,¢1 + dt1], ..., [tp,tp + dt,], and that no
other jump occurs between 0 and ¢. Moreover, by (9), the quantity before the
integrals in (30) is the probability that these p jumps are jumps (i1,71), - - -,
(ip, jp)- We may therefore interpret (30) as an average over all the indepen-
dent Poisson processes (N;—;(t)):>o0:

p(t) = Ee(t_tP)LQWip_}jp ... elta—t)La il_,jletlﬁap . (31)
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The remarkable fact in this formula is that the random operator acting on
the density matrix inside the mean conserve pure states. More precisely, it
follows from (23a) and (24) that, if p = |¢)(¢)|, then:

p(t) =E[p@) (@), (32)
with |¢(t)) given by (5).

4.3 Comments

The calculation above shows that the average of the random pure state
[(8)) {1 (t)| given by (5) defines a density matrix p(t) satisfying the Lind-
blad equation (20). Using the terminology of [4], the map ¢ — [¢(¢)) for a
fixed outcome of the Poisson processes is called a quantum trajectory. The
average over all quantum trajectories thus gives the density matrix evolution
back. The formula (21) connects the Lindblad operators I:i_m' with the jump
rates and operators. For given fli_,j, one has many different random evo-
lutions, all giving the same master equation, which correspond to different
choices for W;_,; and a;_,;, in accordance with (21). These different random
evolutions are characterized by different damping operators K = K,, defined
by (22). However, there exists only one choice for the complex numbers o;_,
such that assumption 3 holds. Actually, changing o;_,; is the same as adding
a constant to Wi_m-; but if assumption 3 is true for Wi_,j, then it is not true
for Wi_ﬂ + ¢ if the constant ¢ differs from zero. As a result, K, and the ran-
dom evolution may not be defined when I" = co except for particular values
of the a;;’s.

For instance, if ﬁi_U- is given by (2), one must take a;; = 1 for all
but a finite number of pairs (4, j). Taking a;,; = 1 for any i,j € A, one
ends up with the model discussed at the end of sect.2.2. The corresponding
Lindblad equation describes the electronic dynamics at very low temperature
due to phonon absorption/emission processes; it does not take into account
the elastic electron—phonon scattering. It should be noted that the equation
for the diagonal and for the off-diagonal elements of p(t) in the eigenbasis {|i)}
are decoupled. This is a special property of this Lindblad generator, related
to an adiabatic approximation [21]. The diagonal elements p;;(t) satisfy the
Boltzmann equation (11).

5 Stochastic Hamiltonians

Let us assume that the jump operators can be expressed as exponentials, i.e.
that there exists some bounded operators Vi_,; € D(L H) such that:

Winj=e Vs ijed. (33)
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This is the case for instance in the model for electrons in strongly disordered
solids of sect.2.2. Actually, (a;)2 = 0 for fermions, hence the operators (12)
satisfy (33) with Vz’—m’ = ia}ai. It is shown in this section that the random
dynamics of the preceding sections can be found by solving formally the
stochastic Schrodinger equation:

(ke Y Z St =) @) . (39)

i,jEA

The last term in the time—dependent stochastic Hamiltonian is a random
kicked Hamiltonian (noise term). The second term, which is time independent
and non random, can be interpreted as a ‘damping term’, by analogy with
the Langevin equation for Brownian motion.

Let us restrict as before A to a finite box B C A and compute the solution
of the corresponding stochastic Schrodinger equation,

; d|YB)
de¢

= (ﬁ+KB+i‘7if—>jf5(t—tf)) l(t)) - (35)

As usual (see e.g. [29]), this solution is found in two steps: (1) replace the
Dirac distribution § by a smooth function §. of compact support suppd. C
[—&, €] and integral unity:

/dtés(t)zl , €>0;
R

(2) find the limit as ¢ — 0+ of the corresponding solution |¢g . (t)).

Let us substitute . to § in (35). The solution at time ¢ is expressed in
terms of its value at time 7 < ¢ with the help of a Dyson series [30]. For
th <7T<tl <t<th ande < (t2,, —t)/2,e < (r—t} ;)/2, this yields:

oo i q

Vel Zo ‘I' (.89 H [d7 0 (7 — tf)] eTHHHR)(t=m) Vi;‘?ﬂf
pn -

_1(H+K)(7'2 T1) VB j e—1(H+K)(7—1 T) |¢B ( )) ; (36)

where 7 is the time ordering operator. Letting € — 0+, the integrals tend
to:
/T3 e B A~ /T o B
e ) (Vip i) e O Dl o ()

It can be easily shown [27] that the series (36) converges strongly uniformly
with respect to . As a result,

S £ B A~
|¢Be Z —1(H+K)(t—tp)(v;.f_>]_f)q —1(H+K) _T)|¢B ( ))

By Fr L Ey 4B
- e—l(H+K)(t—tp WWip_jp e "R g (1) . (37)
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By repeating this operation until 7 = 0, we obtain the solution of (35):
$() = lim [¥5.(0) = Us(®)ly) (33)

where Up(t) is the random evolution operator (16). The (formal) solution of
the Schrodinger equation (34) is obtained by letting the size of the box B
tend to infinity:

[9(®) = lim [ (%)) = U(t)) - (39)

The limit exists with probability one by the theorem above. Note the im-
portance of the order of the limits: we have first taken € — 0+ and then
Bt A

Remark: Equation (35) may be rewritten as an Ito stochastic differential
equation in the following way:

idlyp) = ((B+Kp)dt+i Y (Winy = 1)dNi;() [gp(®) . (40)

i,jEB

To see that this equation has the same solutions as (35), one can compute
the values of the discontinuities of [ (t)) = exp(i(H + K))Up(t)[)) at the
jump times ¥, and use the fact that [)(t)) is constant between jumps. Tt
should be noticed that, although it might be tempting to replace dN;_,;(t)
by >, 0(t —ti%,;)dt, the operator multiplying the stochastic differential in

(40) is i(Wi_)j — 1), whereas Vi_,j multiplies the Dirac distributions in (35).

6 Comparison with Other Stochastic Schemes

Other stochastic dynamical schemes with Poisson processes have been intro-
duced by Dalibard, Castin and Mglmer [3], Carmichael [4], Ghirardi, Rimini-
and Weber [6] and Barchielli and Belavkin [8,9]. Different schemes using
Wiener processes have been studied by Gisin and Percival [5], Ghirardi, Pearle
and Rimini [7], van Kampen [10] and by other authors [8,11-14]. We outline
in this section the main similarities and differences of these models with the
model presented above. The reader can find more information and other rel-
evant references in the reviews [4,18,31].

6.1 Quantum Jump schemes

To our knowledge, the first quantum jump scheme is due to Ghirardi et al. [6],
who introduced the following phenomenological model in connection with the
problem of the linear superpositions of macroscopically distinguishable states
(Schrédinger cat states). The authors consider some jump operators

Ly = (ﬁa)fl/z exp (—M)

202
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which implement ‘spontaneous collapses’ in the position space around some
point z € R®. X, is the position operator of the v—th particle of a composite
system of n particles. The collapse (z,v) localizes the v—th particle around
z with an accuracy a > 0. The operators L, , are self-adjoint and satisfy:

dmLi’,,zl ,v=1,...,n. (41)
Rd
In the wavefunction formulation of the model [32], the collapses (jumps)
modify discontinuously the wavefunction of the system according to the non-
linear transformation:

collapse (z,v) : [¢) = ||Lw,,,|v,/))| Ly |¢) .

The probability that a collapse (x,v) (resp. that any collapse) occurs be-
tween times ¢t and t + dt is equal to dp,(z) = A||L,,[¢(t))||*dt (resp. to
dp =3, [dzdp,(x) = An||¢(¢)]|*dt), where X is a characteristic frequency.
Between jumps, the composite system evolves according to Schrédinger equa-
tion (with no damping operator; this fact is related to assumption (41)). As
shown in [6], for macroscopic systems (n > 1), the stochastic collapses kill
very rapidly the coherences between states localized a distance greater than
a. Provided one chooses A small enough, they have little effect on the dy-
namics of microscopic systems (n ~ 1) at times accessible in a laboratory
experiment.

Dalibard et al. [3] and Carmichael [4] have studied a similar but different
model in order to describe photon—atom interactions in Quantum Optics.
The original motivation was to reproduce experimental data on the fluores-
cence of single atoms [18]. Quantum jumps occur as a result of a continuous
measurement of photon emission from the atom. The discontinuous change of
the wavefunction occurring at a jump (i, j) is given, as in the collapse model
above, by a non-linear transformation:

jump (i, 7) : |9) = || Bimsl)|| " Bicsjl) - (42)

The Lindblad operators ﬁ,-_”- are arbitrary and do not need to satisfy a rela-
tion similar to (41), as in the case considered in this work. A jump (7, j) occurs
if a photon of energy equal to the Bohr frequency w;; = (¢|V|i) — (§|V|4) is
detected. Between jumps, the atom evolves in the following way. Successive
measurements on the fluorescence of the atom are performed at short time
intervals &t, with the result of no photon detected. These measurements in-
crease our knowledge on the state of the system; it can be shown that the
wavefunction evolves between two measurements according to Schrodinger
equation but with a non self-adjoint Hamiltonian H + K'. Perturbation the-
ory gives [3]:

|—1

~ 1 ~ A
K'= % LLLis (43)
i,J
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(note the difference with the damping operator K, defined by (22) and (21)).
Immediately after a zero—photon measurement, the wavefunction is normal-
ized, [¢)) — ||¢||7|¢). If, on the contrary, a photon is detected, the wave-
function is transformed as in (42). The probability of detection of a photon
of frequency w;; is 6p;—; = ||ii_>j|zp(t))||2 dt. It depends upon the wavefunc-
tion |¢(t)) before the jump, and thus upon ¢. As a consequence, the time
delays s;—; between consecutive jumps (i,j) are not given by simple expo-
nential laws. The quantum jumps scheme of Dalibard et al. and Carmichael
is therefore more involved than the one given by a set of independent Poisson
processes (this conclusion also holds for the collapse model of ref. [6]). De-
spite this mathematical complexity, its dynamics is very simple to implement
numerically [3]. On time scales greater than 0¢, the stochastic dynamics is
norm—preserving. The same model has been derived by a completely different
and more abstract method using quantum stochastic calculus by Barchielli
and Belavkin [§].

The main difference between the models of ref. [3,4,6,8] with the model
presented in sect.2 is that the stochastic dynamics is linear and not norm-—
preserving in the latter, and vice versa in the formers. A linear non norm-—
preserving model based on Poisson processes has also been discussed by
Belavkin [9]. This author consider a stochastic differential equation of the
form (40) with a damping operator Kp given by (22) for a;; = 0. Cor-
respondingly, the jump operators are related to the Lindblad operators by
ﬁi_,j = /I Wi_”', which means that the discontinuous changes of the
wavefunction are given by (42) without normalization. This model thus co-
incides with the stochastic scheme of sect.2 in the particular case a;—; = 0.
For the Lindblad operators (2), this gives the jump operators Wi_ﬂ- = a;r-a,-
which do not satisfy assumption 3 above. Thus, if I" = oo, the limit B 1 A is
not defined in this model.

6.2 Quantum Diffusion schemes

As in the schemes of ref. [3,4,6,8], the stochastic scheme investigated by Gisin
et al. [5], Ghirardi et al. [7] and Barchielli et al. [8] has a norm-preserving and
non-linear stochastic quantum evolution. However, this evolution is given by a
stochastic Schréodinger equation with Wiener processes (white noise). Another
model based on Wiener processes but with linear stochastic dynamics has
been studied in [7,10]. Its wavefunction satisfies the Ito stochastic Schrodinger
equation:

idl) = (8 + K dt 1) Lios; déiss (8)) (1) (44)

where K is given by (43) and (&i—; (t))e>0 are independent complex Wiener
processes. The Ito differentials d¢;_,; satisfy:

déij dépym = dudjudt , d&ijdégm =0.
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The link between this linear non norm-preserving model and the norm-
preserving non linear one has been emphasized in [7].

As shown in [3-5,7,10], provided that the appropriate damping operator K
is added to the Hamiltonian H, all the above models lead to the same trace—
preserving average dynamics, given by the Lindblad equation (1). We have
seen above that the same holds true for our model. More general stochastic
dynamical models, which lead to non-Markovian master equations and use
correlated noise, have been introduced recently by several authors [11-14]. In
ref. [11,12], two nice derivations of these models by means of a path integral
and a coherent states methods have been proposed.

6.3 Comparison with the Model of Sect.2

The main advantage of the stochastic scheme presented in this work com-
pared with the non linear quantum jumps scheme of e.g. Dalibard et al. is
its simplicity. Because of the use of Poisson processes and of the linearity of
the dynamics, the solution of the stochastic Schrédinger equation is known
exactly: it is given by formula (5). The mathematical analysis is also more
easy, as the operator theory framework can be used to study the stochastic
evolution in the Hilbert space. In the most interesting case a;—; = 1, one
should probably look for a physical interpretation of the stochastic dynamics
in connection with scattering theory (see [17,33]). From the point of view of
the average dynamics (i.e., for statistical ensembles of systems), our model is
equivalent to the model of Dalibard et al. and to the other models discussed
in the preceding subsections. Actually, as seen in sect.4, the density matrix
p(t) =E|p(t))(w(t)| follows the same Lindblad equation as in these models.
For general (non unitary) jump operators W,-_,j, the norm of the wave-
function for a fixed outcome is not constant (and not continuous) in time
(although, as said before, the square norm is conserved on average). Indeed,
if one insists in describing an open system by a wavefunction, its norm may
not be necessarily conserved by the dynamics, since, unlike in a closed system,
the dynamics is not unitary. This is related to the fact that the interaction
with the environment may provide us with some information on the system.
From the numerical side, the stochastic dynamics in our model could be
of interest if the exponentials e~ #$(#+K) were known on a broad interval of
times s and if its eigenvalues have a modulus smaller than one. This happens,
for example, if H + K can be diagonalized analytically and has eigenvalues
with negative imaginary parts. Then, the computation of the wavefunction
at time t requires a multiplication of 2p matrices, where p is the number of
jumps between t = 0 and ¢ (formula (5)), whereas the non linear quantum
jumps and the Wiener schemes involve a time integration between 0 and t¢.
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7 Conclusion

We have studied in this work a model describing dissipation in a system
of quantum particles by means of a random evolution in time. This model
can be seen as a quantum generalization of a classical kinetic model, the
classical collisions being replaced by quantum jumps. The input parameters
of the models are: (1) a set of transition rates I;—; > 0, for all pairs (i, j)
of one-particle states; (2) some operators W,-_,j acting on the Fock space F
of the system, which describe the discontinuous changes of the wavefunction
at a jump. The linear random time evolution ¢t — |¢(t)) € F is specified
by a set of independent Poisson processes, a different Poisson process, with
parameter I;_,;, being associated to each pair (i,j). The average density
matrix p(t) = E|¢(t)){1(t)| obeys the general Lindblad equation. Our main
result is that, if the transition rates decay exponentially with the distance
|i — j| and the jump operators satisfy the locality condition 1 and 3 of sect.3,
then the stochastic evolution of the system is well-defined as some limit if
the double sum Zi’ ; Iim; diverges. This result is only valid for systems with
a finite number of particles. The limit of an infinite number of particles with
a finite density (thermodynamic limit) requires a more abstract algebraic
approach [28]. For aperiodic solids like strongly disordered solids, one should
define a stochastic dynamics on the C*-algebra of the electronic observables
in second quantization, which is the crossed product of a continuous field of
C*-algebras by a groupoid [21].

The use of Poisson processes is natural from a physical point of view,
especially if the dissipation mechanism under study is due to absorption and
emission of external particles by the system (phonons, photons,...). It is also
convenient because of its mathematical simplicity. Unlike in the model de-
fined by Dalibard et al. [3] and Carmichael [4], the random time evolution in
our model is linear, but not norm—preserving. The linearity simplifies greatly
the mathematical analysis. The random evolution operators can be computed
directly from formula (5). The model thus provides an example of quantum
jump scheme for which one can handle rigorously the case where infinitely
many levels are coupled together by the environment. It can be applied to
study electronic transport in disordered or aperiodic solids. A simple exam-
ple was given in sect.2.2. However, a theory of linear response similar to
that elaborated in [15-17] is still lacking within our stochastic wavefunctions
framework. Investigation in this direction will be the object of a future pub-
lication [34].
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