
Quantum correlations and distinguishability of quantum states

Dominique Spehner

Univ. Grenoble Alpes and CNRS, Institut Fourier, F-38000 Grenoble, France

&

CNRS and univ. Grenoble Alpes, LPMMC, F-38000 Grenoble, France

July 16, 2014

Abstract

A survey of various concepts in quantum information is given, with a main emphasis on the
distinguishability of quantum states and quantum correlations. Covered topics include generalized
and least square measurements, state discrimination, quantum relative entropies, the Bures distance
on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound,
bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations.
The article is intended both for physicists interested not only by collections of results but also
by the mathematical methods justifying them, and for mathematicians looking for an up-to-date
introductory course on these subjects, which are mainly developed in the physics literature.
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1 Introduction

The fundamental role played by the theory of information in physics has been demonstrated in the last
century along with the development of statistical physics [14]. More recently, it has been recognized
that information is also at the heart of quantum physics, leading to the emergence of a new field called
quantum information. In few words, quantum information theory is concerned with the use of quantum
systems to accomplish information-processing tasks which are either not feasible classically or are done
classically much less efficiently [117]. These tasks can be related to a computational problem or to
communication, for instance, sending encrypted information in a secure way. Computational tasks
are performed on a quantum computer made of qubits. Such qubits are two-level quantum systems
in arbitrary superpositions of |0〉 and |1〉 instead of being either in state 0 or 1 as with classical bits.
A quantum algorithm is a unitary quantum evolution on a set of qubits followed by a measurement,
the outcomes of which should provide the solution of the problem. For example, the celebrated Shor
algorithm factorizes an integer with N digits into prime numbers in a time O(N2 lnN ln(lnN)) [145],
instead of the exponential time required by all known classical algorithms. Quantum computers with a
few qubits have been implemented in physics laboratories. There is still a lot of debate about whether
we will be able in the future to manipulate coherently many qubits and address them locally during
a sufficiently long computational time, and which quantum systems are the most promising [117, 28].

The fact that quantum algorithms and communication protocols can outperform their classical
analogs is usually attributed to quantum correlations. Such correlations in composite quantum sys-
tems are at the origin of the violation of the Bell inequalities, which has been confirmed experimen-
tally [127]. These quantum correlations are quite different in nature from classical correlations in
stochastic processes. For a long time they have been identified with entanglement. However, there
is now increasing evidence that other types of quantum correlations in mixed states, which may be
present even in unentangled states and are captured notably by the quantum discord [120, 75], might be
of relevance in certain quantum algorithms and communication protocols [49, 97, 123, 107, 34, 66, 47].

In this survey article, we review the basic properties of the entanglement measures and quantum
discord and present a geometrical description of these notions based on the Bures distance on the set
of quantum states. In this approach, the quantum discord turns out to be related to the problem
of discriminating non-orthogonal quantum states. Two central questions guide the discussion in this
article and can be formulated as follows. How well can one distinguish unknown quantum states
pertaining to a given ensemble by performing a measurement on a system? If this system consists of
several particles, does the amount of information one gets from measurements on a single particle tell us
something about the way the particles are correlated? Quantum measurements and entropies obviously
come into the game in these two questions. They constitute the subjects of Secs. 3, 4, and 6. Some
answers to the first question are given in Secs. 5 and 8, devoted respectively to state discrimination
and to related topics called hypothesis testing and parameter estimation. The Bures distance and
Uhlmann fidelity are introduced in Sec. 7. A detailed account of their properties is given there. The
remaining sections (Secs. 9, 10, and 11) address the problem of quantifying quantum correlations and
provide answers to the second question. It is neither our purpose to discuss thoroughly the (huge
amount of) quantum correlation measures found in the literature nor to study how these correlations
could explain the quantum efficiencies. Well-documented surveys on quantum entanglement already
exist, see e.g. [82, 67], as well as on the quantum discord and related measures [110]. The precise
role of entanglement as a resource in quantum computing and quantum communication is still not
completely understood, in spite of recent progresses (such as the proof that, in order to offer an
exponential speedup over classical algorithms, a quantum algorithm using pure states must produce
entanglement which is not restricted to blocks of qubits of fixed size as the system size increases [92]).
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The role played by the discord as a quantum resource is, in turn, still poorly understood and constitutes
a challenging issue (see [110]).

We concentrate in our exposition on the mathematical and fundamental aspects of the theory. In
particular, we will not investigate here the physical implementations and the system-dependent irre-
versible dynamical processes destroying (or sometimes producing) quantum correlations. We present
the detailed proofs of some selected fundamental results, instead of relating all important achievements
obtained so far. Most of these results have been published in physics journals, and are sometimes ex-
plained in the original papers without full mathematical rigor in their derivation. Others have been
published in mathematical journals with full proofs, which are nevertheless given here for completeness.
We try to emphasize how the results are connected between themselves and to stress the similarities
in the arguments used to derive them. This sometimes leads to new proofs.

Quantum information is a rapidly growing field of research and the amount of articles and surveys
devoted to it is already considerable. Researchers who got interested by this subject recently (includ-
ing the author) may fear to have difficulties to form a clear opinion about the most pertinent open
questions. Significant contributions have been made by physicists, mathematicians, and computer
scientists, who constitute a broad community with different viewpoints. We hope that this article
may be useful to mathematicians, by providing examples of interesting problems and explaining the
mathematical tools used to tackle them. It may also be of help to physicists wishing to get acquainted
with such tools, which could be useful to derive new results. The paper is written as an introduc-
tory course. Certain statements appear as remarks, which play the role of exercises, with the main
arguments to justify them. We encourage the reader to complete these proofs by himself. This work
is intended to be complementary to other surveys containing collections of results without explicit
derivations and to more introductory monographs like [117], which do not include the most recent
advances.

The following comments on the structure of the article might be helpful. The contents of Sec. 5,
Sec. 7, and Secs. 9-10 are largely independent. On the other hand, Sec. 5 is partly related to Sec. 4,
and Sec. 8 makes use of the results of Sec. 5 and Sec. 7.5. The material of Secs. 6.1 and 6.2 is relevant
for Secs. 9 and 10. Section 11 needs more or less the knowledge of all previous sections. The main
definitions and theorems presented in Secs. 2 and 3 are used in the whole article. Two appendices
contain textbook issues about operator convex functions and some less standard trace inequalities.

Before closing this introduction, let us warn the reader that we will be exclusively concerned by
quantum systems with finite-dimensional Hilbert spaces. This is motivated for two reasons. Firstly,
this is the case of most systems in quantum information theory. Secondly, in this way one avoids the
technical complications of infinite-dimensional spaces and concentrates oneself on the main ideas and
concepts. Some of these concepts have been originally worked out in the general setting of C∗-algebras,
but we shall present here simpler proofs applying to the finite-dimensional case only.
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2 Quantum states

In this section we review the basic definitions of pure and mixed states, entangled states, and the pure
state decompositions and purifications of mixed states. Before that, we introduce in Sec. 2.1 some
notation and define a few mathematical objects from the theory of operator algebras, which will be
used repeatedly in this article. In Sec. 2.2 we discuss an extremely useful result from linear algebra,
namely, the Schmidt decomposition.

In all what follows, capital letters A, B, etc., refer to quantum systems, HA, HB, etc., denote their
Hilbert spaces, and nA = dimHA, nB = dimHB, etc., the dimensions of these spaces. These dimensions
are always assumed to be finite. A bipartite system AB formed by putting together the systems A

and B has Hilbert space given by the tensor product HAB = HA ⊗HB. For instance, if A and B are
two qubits with Hilbert spaces HA ≃ HB ≃ C

2, the space of these two qubits is HAB = C
2 ⊗C

2 ≃ C
4.

Similarly, HA1...Ak
= HA1 ⊗· · ·⊗HAk

is the Hilbert space of the multipartite system formed by putting
together the systems A1, . . . ,Ak. The tensor product vectors |ψA〉⊗ |φB〉 ∈ HAB will be denoted either
by |ψA ⊗ φB〉 or, more often1, by |ψA〉|φB〉.

2.1 Quantum states and observables

A state of a quantum system with Hilbert spaceH is given by a density matrix ρ, that is, a non-negative
operator on H with unit trace tr ρ = 1. We write E(H) the convex cone formed by all states on H.
States will always be denoted by the letters ρ, σ, or τ , with subscripts referring to the corresponding
system if necessary. The extreme points of the cone E(H) are the pure states ρψ = |ψ〉〈ψ|, with
|ψ〉 ∈ H, ‖ψ‖ = 1 (here |ψ〉〈ψ| designates the rank-one orthogonal projector onto C|ψ〉). The pure
states can be identified with elements of the projective space PH, that is, the set of equivalence classes
of normalized vectors in H modulo a phase factor. The vectors eiθ|ψ〉 ∈ H with 0 ≤ θ < 2π are called
the representatives of ρψ ∈ PH. We will abusively write |ψ〉 instead of ρψ, except when this may be
a source of confusion. If ρ is a state of a bipartite system AB with Hilbert space HAB = HA ⊗ HB,
the reduced states of A and B are defined by partial tracing ρ over the other subsystem. They are
denoted by ρA = trB(ρ) ∈ E(HA) and ρB = trA(ρ) ∈ E(HB). These reduced states correspond to the
marginals of a joint probability in classical probability theory.

The C∗-algebra of bounded linear operators from H to H′ is denoted by B(H,H′), and we write
B(H) = B(H,H). In our finite-dimensional setting, B(H,H′) is the algebra of all n′×n finite complex
matrices, with dimH = n and dimH′ = n′. The Hilbert-Schmidt scalar product on B(H,H′) is defined
by

〈X , Y 〉 = tr(X∗Y ) , (1)

where X∗ denotes the adjoint operator of X. The associated norm is ‖X‖2 = [tr(X∗X)]
1
2 . The set of

states E(H) can be endowed with the distances2

dp(ρ, σ) = ‖ρ− σ‖p =
[
tr(|ρ− σ|p)

] 1
p (2)

with p ≥ 1. Here |X| denotes the non-negative operator |X| =
√
X∗X. When p→ ∞, ‖X‖p converges

to the operator norm ‖X‖∞ = ‖X‖ of X, that is, the maximal eigenvalue of |X|. The Hölder inequality
reads

‖X‖p = max
Y,‖Y ‖q=1

| tr(XY )| (3)

1 As common in the physics literature we do not write the tensor product symbol ⊗ explicitly.
2 We shall see in Sec. 7 that there are other more natural distances on E(H) from a quantum information point of

view.

6



with p > 1 and q = p/(p − 1). This still holds for p = 1 and q = ∞, as can be shown by using the
Cauchy-Schwarz inequality for the scalar product (1). In that case the maximum is achieved if and only

if Y U |X| 12 = eiθ|X| 12 with θ ∈ [0, 2π) and U a unitary such that X = U |X| (polar decomposition).
A self-adjoint operator O ∈ B(H) is called an observable. The real vector space of all observables

on H is denoted by B(H)s.a.. If AB is a bipartite system, one says that O ∈ B(HAB)s.a is a local
observable if either O = A⊗ 1 or O = 1⊗B, with A ∈ B(HA)s.a. and B ∈ B(HB)s.a.. Here and in the
following, 1 stands for the identity operator on HA, HB, or another space.

A linear map3 M : B(H) → B(H′) is positive if it transforms a non-negative operator into a
non-negative operator. It is completely positive (CP) if the map

M⊗ 1 : X ∈ B(H⊗ C
m) 7→

m∑

k,l=1

M(Xkl)⊗ |k〉〈l| ∈ B(H′ ⊗ C
m) (4)

is positive for any integer m ≥ 1.
Given two orthonormal bases {|i〉}nA

i=1 of HA and {|j〉}nB

j=1 of HB, one can identify any operator

O : HB → HA with a vector |Ψ̃O〉 ∈ HA ⊗HB thanks to the bijection

O 7→ |Ψ̃O〉 =
∑

i,j

〈i|O|j〉|i〉|j〉 . (5)

This bijection is an isomorphism between the Hilbert spaces B(HB,HA) (endowed with the scalar
product (1)) and HAB. Similarly, one can represent the linear map M : B(HB) → B(HA) by an
operator OM acting on HBB = HB ⊗HB with values in HAA = HA⊗HA. The matrix elements of this
operator in the product bases {|k〉|l〉}nB

k,l=1 of HBB and {|i〉|j〉}nA

i,j=1 of HAA are given by (OM)ij,kl =
〈i|M(|k〉〈l|)|j〉. This representation is an ∗-isomorphism between the C∗-algebras B(B(HB),B(HA))
and B(HBB,HAA). The so-called reshuffling operation [20] associates to OM the operator OR

M ∈
B(HAB) with matrix elements (OR

M)ik,jl = (OM)ij,kl, which satisfies

〈A⊗B , OR
M〉 = 〈Ψ̃A|OMJ |Ψ̃B〉 = 〈A,M(B)〉 (6)

for any A ∈ B(HA) and B ∈ B(HB). Here J denotes the anti-unitary operator on HBB defined by
〈k|〈l|J |Ψ〉 = 〈k|〈l|Ψ〉 (complex conjugation in the canonical basis) and B =

∑
k,l 〈k|B|l〉|k〉〈l| is the

operator associated to J |Ψ̃B〉 via the isomorphism (5). With these definitions, M : B(HB) → B(HA)
is CP if and only if OR

M ≥ 0, that is, OR
M has non-negative eigenvalues4.

The left and right multiplications LX and RX by X ∈ B(H) are the operators from B(H) into
itself defined by5

LX(Y ) = XY , RX(Y ) = Y X ,∀ Y ∈ B(H) . (7)

They are represented on B(H⊗H) by local operators X⊗ 1 and 1⊗XT , respectively, where T stands
for the transposition in the basis {|i〉}. Given two states ρ and σ ∈ E(H) with ρ > 0, the Araki relative
modular operator ∆σ|ρ is defined by [11]

∆σ|ρ(Y ) = σY ρ−1 = Lσ ◦ Rρ−1(Y ) ,∀ Y ∈ B(H) . (8)

It is a self-adjoint non-negative operator on the Hilbert space B(H) (for the scalar product (1)).

3 Operators acting on the vector space of observables B(H)s.a. or on the whole algebra B(H) are always denoted by
calligraphic letters.

4 Actually, OR
M ≥ 0 is equivalent to OR

M = A∗A for some A ∈ B(HAB), that is, to (OR
M)ik,jl = 〈i|M(|k〉〈l|)|j〉 =∑

p,q Apq,ikApq,jl for all i, j = 1, . . . , nA and k, l = 1, . . . , nB. Setting Apq =
∑

i,k Apq,ik|i〉〈k|, it follows that OR
M ≥ 0 if

and only if M(X) =
∑

pq ApqXA
∗
pq for all X ∈ B(HB), which is equivalent to M being CP by the Kraus representation

theorem (Theorem 3.2.3 below).
5 In the C∗-algebra setting, the map X 7→ LX is the Gelfand-Neumark-Segal representation of the C∗-algebra [29].
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2.2 The Schmidt decomposition

The following standard result is very useful in quantum information theory.

Theorem 2.2.1. (Schmidt decomposition) Any pure state |Ψ〉 ∈ HA⊗HB of a bipartite system admits
a decomposition

|Ψ〉 =
n∑

i=1

√
µi|αi〉|βi〉 (9)

where n = min{nA, nB}, µi ≥ 0, and {|αi〉}ni=1 (respectively {|βi〉}ni=1) is an orthonormal family of
HA (respectively of HB). The µi and |αi〉 (respectively |βi〉) are the eigenvalues and eigenvectors of
the reduced state ρA = trB(|Ψ〉〈Ψ|) (respectively ρB = trA(|Ψ〉〈Ψ|)). Thus, if the eigenvalues µi are
non-degenerate then the decomposition (9) is unique.

The non-negative numbers µi are called the Schmidt coefficients of |Ψ〉. They satisfy
∑

i µi =
‖Ψ‖2 = 1.

Proof. Let {|i〉}nA

i=1 and {|j〉}nB

j=1 be some fixed orthonormal bases of HA and HB. By using the
isomorphism |Ψ〉 7→ OΨ =

∑
i,j〈i ⊗ j|Ψ〉|i〉〈j| between HAB and the space of nA × nB matrices (see

Sec. 2.1), we observe that the decomposition (9) corresponds to the singular value decomposition of
OΨ, that is, OΨ = UA

∑
i

√
µi|i〉〈i|U∗

B
with µi the eigenvalues of O∗

ΨOΨ and UA and UB unitaries on
HA and HB. Then UA|i〉 = |αi〉 and UB|i〉 = |β∗i 〉 are eigenvectors of OΨO

∗
Ψ and O∗

ΨOΨ, respectively.
Denoting by J is the complex conjugation in the basis {|j〉} (see above), one has |βi〉 = J |β∗i 〉. ✷

The Schmidt decomposition can be generalized to mixed states by considering ρ as a vector in the
Hilbert space B(HA)⊗ B(HB). Any ρ ∈ E(HAB) can be written as

ρ =

n2∑

m=1

√
µmXm ⊗ Ym , (10)

where {Xm}n
2
A

m=1 and {Ym}n
2
B

m=1 are orthonormal bases of B(HA) and B(HB) for the scalar product (1)
and µm are the eigenvalues of the n2

A
× n2

A
matrix R ≥ 0 defined by

Rij,i′j′ =
〈
ρ |i〉〈i′| ⊗ 1 , |j〉〈j′| ⊗ 1 ρ

〉
(11)

(the Rij,i′j′ are the matrix elements in the orthonormal basis {|i〉〈j|}n
2
A

i,j=1 of B(HA) of the operator

playing the role of the reduced state in Theorem 2.2.1). Note that
∑

m µm = tr(ρ2) ≤ 1, with equality
if and only if ρ is a pure state.

Remark 2.2.2. Alternatively, the µm are the square roots of the singular values of ρR ∈ B(HBB,HAA),
where R is the reshuffling operation (Sec. 2.1), and Xm and Ym are given in terms of the eigenvectors
|χm〉 and |ψm〉 of ρR(ρR)∗ and (ρR)∗ρR by Xm =

∑
i,j〈i⊗ j|χm〉|i〉〈j| and Ym =

∑
k,l 〈k ⊗ l|ψm〉|k〉〈l|,

respectively.

Proof. Considering ρ as a vector in B(HA) ⊗ B(HB) and introducing two orthonormal bases {Ap} of
B(HA) and {Bq} of B(HB), according to the proof of Theorem 2.2.1,

√
µm are the singular values of

the n2
A
× n2

B
matrix (〈Ap ⊗ Bq, ρ〉)p,q. Denote by {|αp〉} and {|βq〉} the orthonormal bases of HAA

and HBB associated to {Ap} and {Bq} via the isomorphism (5). The statement follows by choosing
Ap = |i〉〈j| and Bq = |k〉〈l| and using the identity 〈αp|ρRJ |βq〉 = 〈Ap ⊗Bq, ρ〉, see (6). ✷
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2.3 Purifications and pure state decompositions of mixed states

Definition 2.3.1. Let ρ be an arbitrary state on H and K be another Hilbert space. A pure state
|Ψ〉 ∈ H ⊗ K such that ρ = trK(|Ψ〉〈Ψ|) is called a purification of ρ on H⊗K.

In the language of C∗-algebras, a purification is an example of cyclic representation of a state [29].
An example of purification of ρ on H⊗H is

|Ψ〉 =
n∑

k=1

√
pk|k〉|k〉 , (12)

where ρ =
∑

k pk|k〉〈k| is a spectral decomposition of ρ. If |Ψ〉 and |Φ〉 are two purifications of ρ on the
same space H ⊗K, then there exists a unitary operator U acting on K such that |Φ〉 = 1 ⊗ U |Ψ〉. In
fact, one infers from the Schmidt decomposition that |Ψ〉 = ∑

k
√
pk|k〉|fk〉 and |Φ〉 = ∑

k
√
pk|k〉|gk〉,

where {|fk〉}nk=1 and {|gk〉}nk=1 are two orthonormal families of K. Thus |gk〉 = U |fk〉 for some unitary
U .

We will often be interested in the sequel by families of quantum states of a system S, ρi ∈ E(HS),
i = 1, . . . ,m, to which we attach some probabilities ηi ≥ 0,

∑
i ηi = 1. Following the terminology

employed by physicists in statistical physics, we call {ρi, ηi}mi=1 an ensemble of quantum states (or more
simply an ensemble). A convex decomposition of ρ is an ensemble {ρi, ηi}mi=1 such that ρ =

∑
i ηiρi.

A pure state decomposition of ρ is a convex decomposition in terms of finitely many pure states
ρi = |ψi〉〈ψi|, i.e.

ρ =

m∑

i=1

ηi|ψi〉〈ψi| . (13)

If the vectors |ψi〉 are orthogonal, then (13) coincides with the spectral decomposition, but we will
see that there are infinitely many other ways to decompose ρ. Physically, (13) describes a state
preparation: it means that the system has been prepared in the pure state |ψi〉 with probability ηi.
The non-uniqueness of the decomposition can be interpreted as follows. If a receiver is given two
ensembles {|ψi〉, ηi}mi=1 and {|φj〉, ξj}pj=1 corresponding to different state preparations of two identical
systems in the same state ρ, then he cannot make any difference between them if he has no prior
knowledge on the state preparation. Indeed, any measurement performed by him gives rise to the
same distribution of outcomes for the two ensembles. In other words, the full information that the
receiver can collect on the system via measurements is encoded in ρ, and not in the ensemble involved
in the state preparation. This very important fact has consequences that are sometimes disconcerting
to people unfamiliar with the conceptual aspects of quantum mechanics. For instance, if a preparer
gives a maximally mixed state ρ = 1/n to a receiver, the latter has no way to decide whether this state
was prepared from n equiprobable orthonormal pure states (which are only known by the preparer)
or if it was prepared by another procedure involving more than n states. It is also worth mentioning
that the process transforming the ensemble {ρi, ηi}mi=1 into the average state ρ =

∑
i ηiρi, which can

be viewed as the inverse of a convex decomposition, corresponds physically to a loss of information
about the state preparation.

Given a fixed orthonormal basis {|fi〉}pi=1 of K with p ≥ ran(ρ) = r, there is a one-to-one corre-
spondence between pure state decompositions of ρ containing at most p states and purifications of ρ
on H⊗K. Actually, given the pure state decomposition (13),

|Ψ〉 =
p∑

i=1

√
ηi|ψi〉|fi〉 (14)

9



defines a purification of ρ on H ⊗ K (we have set ηi = 0 for m < i ≤ p). Reciprocally, let |Ψ〉 be a
purification of ρ on H⊗K. Denote as before the eigenvalues and orthonormal eigenvectors of ρ by pk
and |k〉. As argued above, one can find a unitary U on K such that

|Ψ〉 =
r∑

k=1

√
pk|k〉U |fk〉 =

p∑

i=1

r∑

k=1

√
pk〈fi|U |fk〉|k〉|fi〉 =

p∑

i=1

√
ηi|ψi〉|fi〉 (15)

with
√
ηi|ψi〉 =

∑
k
√
pk〈fi|U |fk〉|k〉. Hence |Ψ〉 has the form (14). Taking the partial trace over K,

one can associate to it a unique pure state decomposition, which is given by (13).
Since two purifications |Ψ〉 and |Φ〉 of the same state ρ are related by a local unitary U acting

on the ancilla space K, this implies that any two pure state decompositions ρ =
∑m

i=1 ηi|ψi〉〈ψi| and
ρ =

∑p
j=1 ξj |φj〉〈φj | are related by

√
ξj|φj〉 =

max{m,p}∑

i=1

uji
√
ηi|ψi〉 , (16)

where (uji) is a unitary matrix with size max{m, p} (if m < i ≤ p we set as before ηi = 0).

2.4 Entangled and separable states

Let us consider a bipartite system AB. If this system is in a tensor product state |Ψsep〉 = |ψA〉|φB〉
with |ψA〉 ∈ HA and |φB〉 ∈ HB, then the expectation value of the product of two local observables
A⊗ 1 and 1⊗B coincides with the product of the expectations values, i.e.

GAB(|Ψsep〉) = 〈Ψsep|A⊗B|Ψsep〉 − 〈Ψsep|A⊗ 1|Ψsep〉〈Ψsep|1⊗B|Ψsep〉 = 0 . (17)

This means that the random outcomes of measurements of the local observables A⊗ 1 and 1⊗B are
uncorrelated. More generally, if one thinks of AB as a pair of particles located far apart (e.g. a photon
pair shared by two observers Alice and Bob), this pair is in a product state if and only if there are
no correlations between the results of arbitrary local measurements performed independently on each
particle (for instance, if Alice sends her photon through a polarizer and then to a photodetector, and
Bob does the same with his photon, the clicks of the two detectors will be uncorrelated whatever the
polarizer angles). One says that |Ψsep〉 = |ψA〉|φB〉 is a separable state. If the pure state |Ψ〉 ∈ HAB is
not a product state one says that it is entangled.

By applying the Schmidt decomposition, one sees that |Ψ〉 is separable if and only if all its Schmidt
coefficients vanish except one, that is, if and only if its reduced states ρA and ρB are pure. In the
opposite, if either ρA or ρB is proportional to the identity matrix (maximally mixed state), we say
that |Ψ〉 is maximally entangled. Such states have the form

|Ψent〉 =
1√
n

n∑

i=1

|αi〉|βi〉 , (18)

where {|αi〉}ni=1 and {|βi〉}ni=1 are orthonormal families in HA and HB and n = min{nA, nB}. For
instance, denoting by |0〉 and |1〉 the canonical basis vectors of C2, the EPR (or Bell) states |Φ±〉 =
(|0〉|0〉 ± |1〉|1〉)/

√
2 and |Ψ±〉 = (|0〉|1〉 ± |1〉|0〉)/

√
2 are maximally entangled states of two qubits,

and any maximally entangled two-qubit state is an EPR state, up to a local unitary transformation
UA ⊗ UB.

For mixed states, entanglement is no longer equivalent to being a product state. The “good”
definition of mixed state entanglement is due to Werner [165].
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Definition 2.4.1. A mixed state ρ of a bipartite system AB is separable if it admits a pure state
decomposition

ρ =
∑

i

ηi|ψi ⊗ φi〉〈ψi ⊗ φi| (19)

in terms of pure separable states |ψi ⊗ φi〉 ∈ HAB. If such a decomposition does not exist then ρ is
entangled. The set of all separable states of AB forms a convex subset of E(HAB), which is denoted by
SAB.

It follows from the Carathéodory theorem that the number of pure product states in the decom-
position (19) can always be chosen to be smaller or equal to (nAnB)

2 + 1.
According to this definition, a state is separable if it could have been prepared from pure product

states only. This does not mean that it has actually been prepared using such states. For example,
if one prepares two qubits in the maximally entangled states |Φ+〉 and |Φ−〉 with equal probabilities,
the corresponding state

ρ =
1

2
|Φ+〉〈Φ+|+

1

2
|Φ−〉〈Φ−| =

1

2
|0〉〈0| ⊗ |0〉〈0| + 1

2
|1〉〈1| ⊗ |1〉〈1| (20)

is separable! This unexpected result is inherent to the ambiguity of the state preparation discussed
in the preceding subsection. This quantum ambiguity unfortunately obliges us to look for all possible
state preparations of a given mixed state ρ to decide whether ρ is entangled or not. This makes this
problem highly non-trivial.

An explicit complete characterization of SAB is known for qubit-qubit and qubit-qutrit systems only,
that is, for (nA, nB) = (2, 2), (2, 3), and (3, 2). In such a case, the Peres-Horodecki criterion [125, 80, 81]
gives a necessary and sufficient condition for ρ to be entangled. This criterion is formulated in terms of
the partial transpose. Given two orthonormal bases {|i〉} of HA and {|k〉} of HB, the partial transpose
ρTB of ρ with respect to B has matrix elements in the product basis {|i〉|k〉} given by

〈i|〈k|ρTB |j〉|l〉 = 〈i|〈l|ρ|j〉|k〉 . (21)

One defines similarly ρTA and note that ρTA = (ρTB)T . It follows from Definition 2.4.1 that if ρ is
separable then ρTA ≥ 0 and ρTB ≥ 0, i.e. ρTA and ρTB are states of AB. Thus, if ρTA (or, equivalently,
ρTB) has negative eigenvalues then ρ is necessarily entangled. Since the transpose is a positive but not
CP map, such negative eigenvalues may indeed exist. However, if nAnB > 6, certain entangled states
have non-negative partial transposes [81]. It is remarkable that this does not happen when nAnB ≤ 6:
then ρTA ≥ 0 if and only if ρ ∈ SAB [80]. Two remarks should be made at this point. First, states
with non-negative partial transposes cannot undergo entanglement distillation and therefore form an
interesting subset of E(HAB) on their own, which contains SAB (see [82] for more detail). Second,
extending the Peres criterion to all positive but not CP linear maps ΛB : B(HB) → B(HA) (i.e. asking
that 1 ⊗ ΛB(ρ) ≥ 0 for any such map) yields a necessary and sufficient condition for entanglement,
valid whatever the space dimensions nA and nB [80]. Due to the lack of an explicit characterization
of such maps (except for (nA, nB) = (2, 2) or (3, 2))6, this condition is unfortunately not very helpful
in general.

Let us also mention another necessary but not sufficient (even for two qubits) condition for en-
tanglement, which relies on the Schmidt decomposition (10) for mixed states. By using the fact that

6 When (nA, nB) = (2, 2) or (3, 2), any positive map Λ : B(HB) → B(HA) can be written as Λ = M1 + M2 ◦ T ,
where M1 and M2 are CP and T is the transposition [170]. The fact that the partial transpose criterion is sufficient for
entanglement follows from this characterization [80].
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∑
m
√
µm defines a norm on E(HAB), one can show that if ρ ∈ SAB then

∑
m
√
µm ≤ 1 [39]. Hence∑

m
√
µm > 1 implies that ρ is entangled.

Once a state has been recognized as separable, it may be of relevance to determine its decom-
position(s) into pure product states. This problem has been addressed in [169, 137, 162] for two
qubits.

Definition 2.4.1 can be extended straightforwardly to multipartite systems A1 . . .Ak. Then different
kinds of entanglement can be defined according to the chosen partition of {A1, . . . ,Ak}. In this article
we will not consider multipartite entanglement, which is a challenging subject in its own [67, 82].
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3 Quantum measurements

In this section we review the notions of quantum operations and generalized measurements and give
the basic theorems, namely, the Stinespring theorem, the Kraus decomposition, and the Neumark
extension theorem. We start by a physical description of a von Neumann measurement.

3.1 Physical realization of a measurement process

A measurement on a quantum system S is realized by coupling S with a measurement apparatus. This
apparatus consists of a macroscopic pointer P interacting with an environment E playing the role of
an infinite bath. One may think of P as the center of mass of the needle of a meter. The environment
E then includes all the other degrees of freedom of the macroscopic apparatus. The coupling of
the measured system S with the pointer transforms the initially uncorrelated state |ψ〉 ⊗ |0〉 of the
composite system SP into an entangled state,

|ψ〉 ⊗ |0〉 −→ |Ψent
SP 〉 =

∑

i,l

cil|αil〉 ⊗ |i〉 . (22)

Our assumption that S and P are initially in pure states is made to simplify the foregoing discussion
and can be easily relaxed. The states |αil〉 form an orthonormal basis of the system Hilbert space HS

(measurement basis), which is the eigenbasis of the measured observable A, i.e. A|αil〉 = ai|αil〉. The
index l labels if necessary the different orthogonal eigenstates of A with the same degenerate eigenvalue
ai. In ideal measurements cil = 〈αil|ψ〉. The states |i〉 are the pointer states of the apparatus. After
a sufficiently long coupling time between S and P, these states are macroscopically distinct and thus
nearly orthogonal, 〈i|j〉 ≃ δij (hereafter δij stands for the Kronecker symbol, equal to 1 if i = j
and zero otherwise). The transformation (22) is a unitary transformation, i.e. |Ψent

SP
〉 = USP|ψ〉|0〉

where USP is a unitary evolution operator on HSP. One usually calls such a transformation the pre-
measurement [64]. This unitary evolution induces quantum correlations between S and P, such that
each eigenprojector Πi =

∑
l |αil〉〈αil| of A is in one-to-one correspondence with a pointer state |i〉.

The resulting state (22) is a superposition of macroscopically distinct states, sometimes referred to as
a “Schrödinger cat state”. The pointer states are singled out by their robustness against environment-
induced decoherence. More precisely, if the pointer P is initially in the state |i〉, its interaction with the
environment E does not entangle P and E. Letting P and E interact during a time t much larger than
the decoherence time, the SP-entangled state |Ψent

SP
〉 is transformed into a statistical mixture in which

all the coherences between the pointer states |i〉 have disappeared. After tracing out the environment
degrees of freedom, the reduced state of SP is modified according to

|Ψent
SP 〉〈Ψent

SP | −→ ρp.m.
SP

=
∑

ikl

cikcil|αik〉〈αil| ⊗ |i〉〈i| =
∑

i

Πi ρΠi ⊗ |i〉〈i| , (23)

ρ = |ψ〉〈ψ| being the initial system state. The final SP-state has no quantum correlations but is
classically correlated: indeed, each pointer state |i〉 goes hand in hand with the system state

ρS|i = p−1
i Πi ρΠi , pi = tr(Πiρ) . (24)

Concrete models for the pointer and its coupling with the system and the environment have been
investigated in [2, 3, 147, 148]; in these works the aforementioned decoherence time and the time
duration of the measurement are estimated in the more realistic situation where the two transforma-
tions (22) and (23) occur simultaneously. The readout of the pointer (that is, the observation of the
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position of the needle) cannot significantly alter the macroscopic state |i〉. It merely selects one of the
measurement outcomes,

outcome i: ρp.m.
SP

−→ ρSP|i = ρS|i ⊗ |i〉〈i| (wavepacket reduction). (25)

After the measurement yielding the outcome i the measured system is in the conditional state ρS|i,
and this outcome occurs with probability pi (Born rule). The transformation (25) results from the
knowledge of the random outcome, it should not be regarded as a true dynamical process. It is
actually analog to a state preparation (see Sec. 2.3). In mathematical terms, it corresponds to a
convex decomposition of ρp.m.

SP
=

∑
i piρSP|i.

We point out that recent progresses in the understanding of quantum measurement processes via
dynamical models and their interpretation with a statistical physics viewpoint have been made by
Allahverdyan, Balian, and Nieuwenhuizen [4].

3.2 Quantum operations

In the absence of readout of the measurement result, one does not know which state ρS|i has been
prepared and the system is after the measurement in the average state

MΠ(ρ) =
∑

i

Πi ρΠi , (26)

where ρ is the state before the measurement.
Since {Πi} is the spectral measure of the self-adjoint operator A, the Πi form a family of projectors

in B(HS)s.a. satisfying ΠiΠj = δijΠi and
∑

iΠi = 1. We will refer in the sequel to such a family as an
orthonormal family of projectors. It is easy to show that the map MΠ is CP (as a sum of CP maps)
and trace-preserving. In quantum information, such maps are called quantum operations.

Definition 3.2.1. A quantum operation M : B(HS) → B(H′
S
) is a trace-preserving CP map from

B(HS) into B(H′
S
).

A necessary and sufficient condition for a linear map M : B(HS) → B(H′
S
) to be CP is that

it satisfies M ⊗ 1(|Ψent〉〈Ψent|) ≥ 0 for the maximally entangled state |Ψent〉 = n
−1/2
S

∑
k |k〉|k〉 in

HS ⊗HS, where {|k〉} is an orthonormal basis of HS. In fact, M⊗ 1(|Ψent〉〈Ψent|) coincides with the
operator OR

M defined in Sec. 2.1 up to a factor 1/nS, and it has been argued above that M is CP if
and only if OR

M ≥ 0.
A quantum operation is the quantum analog of a stochastic matrix Mclas giving the transition

probabilities q(j|i) of a classical Markov process,

p = (p1, . . . , pn) 7→ Mclasp with (Mclasp)j =
n∑

i=1

q(j|i) pi , q(j|i) ≥ 0 ,
n∑

j=1

q(j|i) = 1 . (27)

Save for the wavepacket reduction (25), all physical dynamical processes on quantum systems are
given by quantum operations7. Let a system S interact with another system E at times t ≥ 0. If S

7 In order to include the transformation (25), many authors define a more general notion of quantum operation by
relaxing the trace-preserving condition and replacing it by tr(M(ρ)) ≤ 1 for any ρ ∈ E(H). The state transformation is
then given by the non-linear map ρ 7→ M(ρ)/ tr(M(ρ)). Theorems 3.2.2 and 3.2.3 can be easily adapted to this more
general definition. In particular, the Kraus decomposition (31) holds, with Kraus operators Ai satisfying

∑
iA

∗
iAi ≤ 1.
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and E are initially in a product state ρ(0)⊗ ρE(0) and SE can be considered as an isolated system, so
that its dynamics is governed by the Schrödinger equation, then the reduced state of S at time t reads

ρ(t) = trE
(
e−itHSEρ(0)⊗ ρE(0)e

itHSE

)
. (28)

Here HSE = HS +HE + λHint is the Hamiltonian of SE, where HS and HE are the Hamiltonians of
S and E, Hint their coupling Hamiltonian, and λ the coupling constant. The time-evolved state (28)
is related to the initial state ρ(0) by a quantum operation Mt, i.e. ρ(t) = Mtρ(0). The Stinespring
theorem says that any quantum operation M can be viewed as a reduced evolution of the system
coupled to an auxiliary system (ancilla).

Theorem 3.2.2. (Stinespring [151]) Let M be a quantum operation B(HS) → B(HS). Then one
can find an ancilla Hilbert space HE, a state |ǫ0〉 ∈ HE, and a unitary operator U on HSE such that
M(ρ) = trE(Uρ⊗ |ǫ0〉〈ǫ0|U∗).

It is appropriate at this point to review a few well-known facts from the theory of CP maps
on C∗-algebras. The adjoint M∗ with respect to the trace of M : B(HS) → B(H′

S
) is the map

M∗ : B(H′
S
) → B(HS) defined by tr[AM(ρ)] = tr[M∗(A)ρ] for any A ∈ B(H′

S
) and ρ ∈ B(HS). If M

is a quantum operation then M∗ is also a CP map and is unity-preserving, M∗(1) = 1. According to
Stinespring’s theorem, one has

M∗(X) = 〈ǫ0|U∗X ⊗ 1U |ǫ0〉 (29)

for any X ∈ B(H). It follows that M∗ satisfies the Kadyson-Schwarz inequality

|M∗(X)|2 ≤ M∗(|X|2) . (30)

Theorem 3.2.3. (Kraus [95]) A linear map M from B(HS) into itself is a quantum operation if and
only if it admits the representation

M(ρ) =
∑

i

AiρA
∗
i , (31)

where {Ai} is a countable family of operators on HS satisfying
∑

iA
∗
iAi = 1.

For infinite dimensional Hilbert spaces and in the more general C∗-algebra setting, the Kraus
decomposition holds under the additional assumption that M is normal, that is, ultra-weakly contin-
uous. One usually deduces it from Stinespring’s theorem. In our finite-dimensional setting, however,
a simple direct proof of Theorem 3.2.3 exists (see Remark 3.2.4 below). One can then obtain the
Stinespring theorem from the Kraus decomposition as follows. Let {|k〉}nS

k=1 be an orthonormal ba-
sis of HS and HE be a (possibly infinite-dimensional) Hilbert space with orthonormal basis {|ǫi〉}.
Define the vectors |Ψk0〉 =

∑
iAi|k〉|ǫi〉. Using

∑
iA

∗
iAi = 1, one finds that these vectors form

an orthonormal family in HSE, which can be completed so as to get an orthonormal basis {|Ψkl〉}.
Then M∗(X) = 〈ǫ0|U∗X ⊗ 1U |ǫ0〉 for any X ∈ B(HS), where the unitary U on HSE is defined by
U |k〉|ǫl〉 = |Ψkl〉 for any k and l.

Remark 3.2.4. Any quantum operation B(HS) → B(HS) with dimHS = nS < ∞ admits a Kraus
decomposition (31) with at most n2

S
operators Ai. Consequently, one can choose the ancilla space HE

in Theorem 3.2.2 of dimension dimHE = n2
S
.

Sketch the proof [117]. To show that M has the form (31), consider the operator B = M ⊗
1(|Ψent〉〈Ψent|) with |Ψent〉 = n

−1/2
S

∑
k |k〉|k〉 ∈ HSS as above. Since M is CP, one has B ≥ 0.
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Let |Φ̃i〉 be orthogonal eigenvectors of B, normalized in such a way that nSB =
∑

i |Φ̃i〉〈Φ̃i|. Then

define the Kraus operators Ai as the operators associated to |Φ̃i〉 by the isomorphism (5) between
B(HS) and HSS. ✷

It is important to realize that the Kraus decomposition is not unique. For indeed, if {Ai}pi=1 is a
family of Kraus operators for M and (uji)

q
i,j=1 is a unitary matrix of size q ≥ p, then the operators

Bj =

p∑

i=1

ujiAi , j = 1, . . . , q , (32)

define another family of Kraus operators for M. Conversely, two families {Ai}pi=1 and {Bj}qj=1 of
Kraus operators for M with p ≤ q <∞ are related to each other by (32). Actually, let B and |Ψent〉
be defined as in the Remark 3.2.4 above. Then B =

∑
i |µ̃i〉〈µ̃i| =

∑
j |ν̃j〉〈ν̃j | with

|µ̃i〉 = n
− 1

2
S

∑

k

(Ai|k〉)|k〉 , |ν̃j〉 = n
− 1

2
S

∑

k

(Bj |k〉)|k〉 . (33)

In view of the link (16) between pure state decompositions of a non-negative operator, one has |ν̃j〉 =∑
i uji|µ̃i〉 with (uji)

q
i,j=1 unitary. This implies (32).

Given a purification |Ψ〉 of ρ on HS ⊗ HR and a quantum operation M : B(HS) → B(H′
S
), it is

natural to ask about purifications of M(ρ). A slight generalization of Theorem 3.2.2 ensures that there
exist a vector |ǫ0〉 ∈ HE and a unitary U : HS⊗HE → H′

S
⊗H′

E
such that M(ρ) = trE′(Uρ⊗|ǫ0〉〈ǫ0|U∗).

Therefore,

|ΨM〉 = 1R ⊗ U |Ψ〉|ǫ0〉 =
n∑

k=1

p∑

i=1

√
pk(Ai|k〉)|fk〉|ǫ′i〉 (34)

is a purification of M(ρ) onH′
S
⊗HR⊗H′

E
. In the second equality, {|k〉} is an orthonormal eigenbasis of

ρ, {|fk〉} is the orthonormal family of HR such that |Ψ〉 = ∑
k

√
pk|k〉|fk〉, and {|ǫ′i〉} is an orthonormal

basis ofH′
E
such that U |k〉|ǫ0〉 =

∑
i(Ai|k〉)|ǫ′i〉 (see the expression of U in terms of the Kraus operators

after Theorem 3.2.3).

3.3 Generalized measurements

For the quantum operation MΠ defined by (26), the orthogonal projectors Πi form a family of Kraus
operators. One may wonder if more general quantum operations, given by Kraus operators Ai which
are not necessarily orthogonal projectors, correspond to some kind of measurements. The answer is
yes: such operations can always be obtained by coupling the system S to an auxiliary system E (the
ancilla) and subsequently performing a von Neumann measurement on E.

Theorem 3.3.1. (Neumark extension theorem) Let {Ai}pi=1 be a finite family of operators satisfying∑
iA

∗
iAi = 1. Then there exist a space HE with dimension dimHE = p, a pure state |ǫ0〉 ∈ HE, an

orthonormal family {πEi } of projectors in B(HE), and a unitary operator U on HSE such that for any
density matrix ρ ∈ E(HS),

AiρA
∗
i = trE(1⊗ πEi Uρ⊗ |ǫ0〉〈ǫ0|U∗1⊗ πEi ) . (35)

Proof. Use the same arguments as in the above proof of Stinespring’s theorem from Theorem 3.2.3,
and define πEi = |ǫi〉〈ǫi|. ✷
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Definition 3.3.2. A generalized measurement is given by a family {Mi} of non-negative operators Mi

satisfying
∑

iMi = 1 (positive operator valued measure, abbreviated as POVM) together with a family
of operators {Ai} such that Mi = A∗

iAi. The conditional state ρS|i given outcome i and the probability
of this outcome read

ρS|i = p−1
i AiρA

∗
i , pi = tr(Miρ) . (36)

According to Theorem 3.3.1, any generalized measurement can be realized by letting the system
S interact with an ancilla E in the state |ǫ0〉 and subsequently performing a von Neumann measure-
ment on E, that is, coupling E to a macroscopic apparatus with pointer P. The interaction between
S and E first transforms the initial state ρS ⊗ |ǫ0〉〈ǫ0| into ρSE = UρS ⊗ |ǫ0〉〈ǫ0|U∗, U being a unitary
evolution operator on HSE, and the subsequent von Neumann measurement leads to the wavepacket
reduction for the system SP (compare with (24) and (25))

outcome i: ρSP → ρSP|i = p−1
i trE(1⊗ πEi ρSE1⊗ πEi )⊗ |i〉〈i| = p−1

i AiρSA
∗
i ⊗ |i〉〈i| , (37)

where pi = tr(1⊗ πEi ρSE) = tr(MiρS) is the probability of outcome i, in agreement with (36).

One has Ai = UiM
1/2
i (polar decomposition) for some unitary operator Ui depending on i. The

conditional states ρS|i are thus characterized by the POVM {Mi} up to unitary conjugations, which
introduce a freedom in choosing the output state associated to each measurement outcome. For
instance, if Mi = |µ̃i〉〈µ̃i| are of rank one then Ai = |i〉〈µ̃i| for some arbitrary normalized vector
|i〉 and the output conditional states are ρS|i = |i〉〈i|. One usually takes the vectors |i〉 to form
an orthonormal basis (which can be identified to the pointer state basis of Sec. 3.1), in such a way
that the states ρS|i be perfectly distinguishable (this happens if the ρS|i are orthogonal only, see
Sec. 5 below). One should keep in mind, however, that the probability pi = 〈µ̃i|ρ|µ̃i〉 of outcome i is
independent of the choice of {|i〉}. If one is interested only in functions of the post-measurement states
ρS|i which are invariant under unitary conjugations (as, for instance, the von Neumann entropy), then
the generalized measurement can be fully specified by the measurement operators Mi. Thanks to the
Neumark extension theorem, these operators may be written as

Mi = A∗
iAi = 〈ǫ0|U∗1⊗ πEi U |ǫ0〉 . (38)

As stressed above, in the absence of read-out the state of the system after the measurement is the
average of the conditional states,

M(ρ) =
∑

i

piρS|i =
∑

i

AiρA
∗
i , (39)

in analogy with (26). This defines a quantum operation M, the Kraus decomposition of which specifies
the state preparation associated with the wavepacket reduction.

Writing the spectral decomposition of each operator Mi, one observes that

Mi =

ri∑

k=1

|µ̃ik〉〈µ̃ik| ,
∑

i

Mi =
∑

i,k

|µ̃ik〉〈µ̃ik| = 1 , (40)

where ri = rank(Mi) and |µ̃ik〉 are unnormalized eigenvectors with norms equal to the square roots of
the corresponding eigenvalues. The last condition in (40) implies that either {|µ̃ik〉} is an orthonor-
mal basis, in which case {Mi} is an orthonormal family of projectors (von Neumann measurement),
or {|µ̃ik〉} is a non-orthogonal family containing more than nS vectors, in which case at least two
eigenvalues ‖µ̃ik‖ are strictly smaller than one and {Mi} is not a von Neumann measurement.

The set of all POVMs is a convex set. Its boundary and extremal points have been studied in [45].

17



Remark 3.3.3. An alternative version of Theorem 3.3.1 states that if m =
∑

i ri with ri = rank(Mi),
then there exist a space HE with dimension m − nS + 1, a state |ǫ0〉 ∈ HE, and a von Neumann
measurement {ΠSE

i } on HSE such that

Mi = 〈ǫ0|ΠSE
i |ǫ0〉 . (41)

The interesting point is that the dimension of the ancilla space HE can be smaller than p in Theo-
rem 3.3.1 (for instance dimHE = p− nS + 1 for rank-one operators Mi).

Sketch of the proof [126]. Note that m ≥ nS by the observation above. Define

|ζik〉 = |µ̃ik〉|ǫ0〉+
m−nS∑

l=1

cik,l|φ〉|ǫl〉 , (42)

where |µ̃ik〉 is as in (40), |φ〉 ∈ HS is an arbitrary state, and {|ǫl〉}m−nS

l=0 is an orthonormal basis of HE.
The coefficients cik,l may be chosen such that {|ζik〉} is an orthonormal family of HSE. To establish
this statement, set cik,l = 〈l|µ̃ik〉 for m−nS < l ≤ m, with {|l〉}ml=m−nS+1 an orthonormal basis of HS,
and let cl ∈ C

m be the vector with components cik,l. Then cl · cl′ = δll′ for any l, l′ > m − nS, as a
result of

∑
iMi = 1. One can choose the (m − nS) other vectors cl in such a way that (c1, . . . , cm)

forms a m×m unitary matrix. Then ΠSE
i =

∑
k |ζik〉〈ζik| has the desired property. ✷

3.4 Connections between POVMs, quantum operations, and state ensembles

To each POVM one can associate a quantum operation and vice-versa. Similarly, there is a canon-
ical way to associate to a quantum operation a state ensemble and vice-versa. These correspon-
dences depend on an orthonormal basis {|i〉}mi=1 of a fictitious pointer P with m-dimensional space
HP. It has been already seen above that one can associate to a POVM {Mi}mi=1 on S a quantum
operation with Kraus operators Ai such that Mi = A∗

iAi. This operation implements the state
changes in the measurement process in the absence of readout. If we imagine that S is coupled to
P and that the measurement is performed on both S and P, one may consider the Kraus operators
Aik = |k〉|i〉〈µ̃ik| such that Mi =

∑
k A

∗
ikAik, where {|k〉}nS

k=1 is an orthonormal basis of HS and |µ̃ik〉
are the unnormalized eigenvectors of Mi in (40). Provided that there is no readout of the measure-
ment on S, one may trace the post-measurement states over HS. The conditional states of P are
given by ρP|i = p−1

ik trS(AikρA
∗
ik) = |i〉〈i| with pik = 〈µ̃ik|ρ|µ̃ik〉, and the corresponding probability is

pi =
∑

k pik = tr(Miρ). The state changes in the absence of readout are implemented by the quantum
operation M : B(HS) → B(HP) defined by

M(ρ) =
∑

i

tr(Miρ)|i〉〈i| , ρ ∈ E(HS) ⇔ M∗(|i〉〈j|) =Miδij , i, j = 1, . . . ,m . (43)

Conversely, if M is a quantum operation B(HS) → B(HP) then Mi = M∗(|i〉〈i|) defines a POVM
{Mi}mi=1 (actually, Mi ≥ 0 by the positivity of M∗ and

∑
iMi = M∗(1) = 1). Therefore, for a given

orthonormal basis {|i〉}mi=1 of HP, there is a one-to-one correspondence between POVMs {Mi}mi=1 on
HS and quantum operations M : B(HS) → B(HP) of the form (43).

A similar one-to-one correspondence can be found between state ensembles on HS with fixed
probabilities {ηi}mi=1 and quantum operations B(HP) → B(HS) such that M(|i〉〈j|) = 0 for i 6= j.
This correspondence is given by

ρi = M(|i〉〈i|) , i = 1, . . . ,m . (44)
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In fact, if M : B(HP) → B(HS) is a quantum operation then {ρi, ηi}mi=1 is clearly an ensemble on
HS. Conversely, if {ρi, ηi}mi=1 is an ensemble of m states, let us write the spectral decompositions
ρi =

∑
k pik|ψik〉〈ψik|. Then the operation with Kraus operators Aik =

√
pik|ψik〉〈i| has the required

property.
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4 Transpose operation and least square measurement

4.1 Recovery operation in quantum error correction

The notion of transpose operation was introduced by Ohya and Petz in their monograph [119]. It
plays the role of an approximate reversal of a quantum operation, in a sense that will be made more
precise below.

Definition 4.1.1. Let M : B(H) → B(H′) be a quantum operation and ρ ∈ E(H) be a state such
that M(ρ) > 0. The transpose operation of M for ρ is the quantum operation RM,ρ : B(H′) → B(H)

with Kraus operators Ri = ρ
1
2A∗

iM(ρ)−
1
2 , where {Ai} is a family of Kraus operators for M. It is

independent of the Kraus decomposition of M. Actually, for any σ ∈ E(H′),

RM,ρ(σ) = ρ
1
2M∗

(
M(ρ)−

1
2σM(ρ)−

1
2
)
ρ

1
2 . (45)

One easily checks that
∑

iR
∗
iRi = 1, so that RM,ρ is indeed a quantum operation, and that

RM,ρ ◦M(ρ) = ρ. Furthermore, transposing twice amounts to do nothing, that is, the transpose of
RM,ρ for the state M(ρ) is equal to M.

The operation RM,ρ appears naturally in the context of quantum error correction. The problem
of quantum error correction is to send a state ρ over a noisy quantum communication channel in such
a way that ρ is resilient to the effect of the noise in the channel. The state ρ is encoded via a unitary
transformation into a subspace HC of the Hilbert space H of the quantum channel. The noise is
described by some quantum operation M.

Proposition 4.1.2. Let M be a quantum operation on B(H) with Kraus operators {Ai}. Let ΠC
denote the orthogonal projector onto a subspace HC ⊂ H and EC : ρ 7→ ΠC ρΠC be the conditional
expectation onto the space of operators supported on HC . There exists a recovery quantum operation R
on B(H) satisfying R ◦M ◦ EC = EC if and only if the following condition holds:

EC(A
∗
iAj) = aijΠC , (46)

where (aij) is a self-adjoint matrix. If this condition is satisfied then for any ρ with support ran(ρ) ⊂
HC , the transpose operation RM,ρ is a recovery quantum operation.

We refer the reader to the book of Nielsen and Chuang [117] for a proof of the necessary and
sufficient condition (46). Some bibliographic information on this topic can also be found there.

Proof of the second statement. By taking advantage of the non-uniqueness of the Kraus decomposi-
tion, (46) can be transformed into EC(B

∗
iBj) = piδijΠC , where the Kraus operators Bi are given by

(32) with (uij)(aij)(uij)
∗ the diagonal matrix with entries pi. Together with the polar decomposition,

this implies BjΠC =
√
pjWj with Wj = VjΠC satisfying W ∗

i Wj = δijΠC , the Vj being some unitary
operators. Thus the subspaces VjHC are orthogonal for different j’s and the restriction of

∑
jWjW

∗
j

to the subspace V = ⊕jVjHC equals the identity. If ρ = EC(ρ) and the restriction of ρ to HC is
invertible, then M(ρ) =

∑
j pjWjρW

∗
j and M(ρ)−1/2 =

∑
jWjρ

−1/2W ∗
j /

√
pj, the last operator being

defined on V. A simple calculation then shows that RM,ρ ◦M◦EC = EC , as stated in the Proposition.
✷
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4.2 Transpose operation as an approximate reverse operation

Since the condition (46) is not always fulfilled, it is natural to ask whether one can find an optimal
imperfect recovery map, which would enable to recover a given ensemble {ρi, ηi} subject to some noise
with a maximal fidelity. A notion of fidelity has been introduced by Schumacher [141]. Its definition
is as follows (for more detail and motivations from classical information theory, see [117]). Given a
state ρ ∈ E(HS), consider a purification |Ψρ〉 of ρ on HS ⊗ HR, where R is a reference system with
Hilbert space HR ≃ HS. For instance, |Ψρ〉 can be given by (12). If ρ is a mixed state then |Ψρ〉 is SR-
entangled (Sec. 2.4). The entanglement fidelity of ρ quantifies how well this entanglement is preserved
when the system S is subject to some noise modelized by a quantum operation M on B(HS). It is
defined by

Fe(ρ,M) = 〈Ψρ|M ⊗ 1(|Ψρ〉〈Ψρ|)|Ψρ〉 . (47)

Since different purifications of ρ on HSR are related by unitaries acting on HR, the right-hand side of
(47) does not depend on the chosen purification. As a consequence of the positivity and the trace-
preserving property of M, one has 0 ≤ Fe(ρ,M) ≤ trSR[M⊗ 1(|Ψρ〉〈Ψρ|)] = tr[M(ρ)] = 1. Plugging
(12) and (31) into (47), a simple calculation yields

Fe(ρ,M) =
∑

j

∣∣tr(Ajρ)
∣∣2 , (48)

where {Aj} is a family of Kraus operators for M. Note that the sum in the right-hand side does
not depend on the choice of Kraus decomposition (this follows from (32)), as it should be. For a
pure state ρψ = |ψ〉〈ψ|, the entanglement fidelity reduces to the input-output fidelity F (ρψ,M) =
〈ψ|M(|ψ〉〈ψ|)|ψ〉. One infers from (48) that Fe(ρ,M) is a convex function of ρ.

Let us now consider an ensemble of states {ρi, ηi}mi=1. The corresponding average entanglement
fidelity is defined by

F e({ρi, ηi},M) =
∑

i

ηiFe(ρi,M) . (49)

This fidelity belongs to the interval [0, 1].

Proposition 4.2.1. (Barnum and Knill [19]) If the states ρi commute with ρ =
∑

i ηiρi, then

F e

(
{ρi, ηi},RM,ρ ◦M

)
≥ F e

(
{ρi, ηi},Ropt ◦M

)2
, (50)

where RM,ρ is the transpose operation of M for ρ and Ropt the optimal recovery quantum operation R
maximizing F e({ρi, ηi},R ◦M).

Hence, if the minimal fidelity error is 1 − F e({ρi, ηi},Ropt ◦ M) = η, then the fidelity error by
using Rρ,M as the recovery operation is at most twice larger than this minimal error.

Proof. Taking advantage of the non-uniqueness of the Kraus decomposition, one can choose for any

fixed i some families {Ropt (i)
j } and {A(i)

k } of Kraus operators for Ropt and M satisfying

tr
(
R

opt (i)
j A

(i)
k ρi

)
= 0 , j 6= k . (51)

Actually, given any families {Ropt
m } for Ropt and {Al} for M, the operators R

opt (i)
j =

∑
m u

(i)
jmR

opt
m and

A
(i)
k =

∑
l v

(i)
kl Al have the required property if (u

(i)
jm) and (v

(i)
kl ) are the unitary matrices in the singular
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decomposition of (tr(Ropt
m Alρi)). Since {Ropt (i)

j A
(i)
k } is a Kraus family for Ropt ◦M, one obtains from

(48), (49), and (51)

F e

(
{ρi, ηi},Ropt ◦M

)
=

∑

i,j

ηi
∣∣tr(Ropt(i)

j A
(i)
j ρi)

∣∣2 . (52)

We first consider the case ρM = M(ρ) > 0. Without loss of generality, we may assume that

ran(R
opt(i)
j ) ⊂ ran ρi ⊂ ran ρ, so that the operators

Xij = η
1
4
i ρ

− 1
4

M A
(i)
j ρ

1
4 ρ

1
2
i , Yij = η

1
4
i ρ

− 1
4

M B
(i)
j ρ

1
4ρ

1
2
i and (B

(i)
j )∗ = ρ−

1
2R

opt (i)
j ρ

1
2
M (53)

are well-defined. Since [ρi, ρ] = 0, one finds by using twice the Cauchy-Schwarz inequality

F e({ρi, ηi},Ropt ◦M)2 =

(∑

i,j

∣∣tr(Y ∗
ijXij)

∣∣2
)2

≤
∑

i,j

(
tr(Y ∗

ijYij)
)2 ∑

i,j

(
tr(X∗

ijXij)
)2

≤
∑

i,j,k

∣∣tr(Y ∗
ijYik)

∣∣2∑

i,j,k

∣∣tr(X∗
ijXik)

∣∣2 . (54)

The transpose operation Rρ,M has Kraus operators R
(i)
j = ρ

1
2 (A

(i)
j )∗ρ

− 1
2

M . As a result,

F e

(
{ρi, ηi},Rρ,M ◦M

)
=

∑

i,j,k

ηi
∣∣tr(R(i)

j A
(i)
k ρi)

∣∣2 =
∑

i,j,k

∣∣tr(X∗
ijXik)

∣∣2 . (55)

The first sum in the last member of (54) is equal to F e({ρi, ηi},Ropt◦B), where B is the CP map defined

by B(σ) =
∑

k B
(i)
k σ(B

(i)
k )∗ (note that B does not depend on i). Even if B is not trace-preserving,

with the help of (47) this fidelity can be bounded from above by tr[Ropt ◦ B(ρ)], which equals unity
thanks to the identity B(ρ) = M(ρ). This yields the inequality (50). If ρM is not invertible, one
approximates M by some quantum operations Mε satisfying Mε(ρ) > 0 for ε > 0 and Mε → M as
ε→ 0, and obtains the result by continuity. ✷

4.3 Least square measurement

Let us consider an ensemble {ρi, ηi}mi=1 of states of the system S forming a convex decomposition
of ρout =

∑
i ηiρi. For any i, we denote by ρi =

∑
k pik|ψik〉〈ψik| the spectral decomposition of ρi

and set ρi = AiA
∗
i , where Ai =

√
ρiUi is defined up to a unitary Ui. Introducing as in Sec. 3.4 an

arbitrary orthonormal basis {|k〉}nS

k=1 of HS and a fictitious pointer with m-dimensional space HP and
orthonormal basis {|i〉}mi=1, one can choose

Ai =

nS∑

k=1

√
pik|ψik〉〈k|〈i| ∈ B(HSP,HS) . (56)

We remark that Ai is associated to a purification of ρi⊗|i〉〈i| on HSP⊗HS via the isometry (5) between
B(HSP,HS) and HSP ⊗ HS, namely, |Ψi〉 =

∑
k
√
pik|ψik〉|i〉|k〉. Moreover, |Ψout〉 =

∑
i
√
ηi|Ψi〉 is a

purification of ρout on the same space.
The least square measurement 8 associated to {ρi, ηi}mi=1 is given by the Kraus and measure-

ment operators

Rlsm
i =

√
ηiA

∗
i ρ

− 1
2

out =
∑

k

√
ηipik|k〉|i〉〈ψik |ρ

− 1
2

out , M lsm
i =

∣∣Rlsm
i

∣∣2 = ηiρ
− 1

2
outρiρ

− 1
2

out (57)

8 This measurement bears several names: it was referred to as the “pretty good measurement” in [71] and is also
called “square-root measurement” by many authors.
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for i = 1, . . . ,m. One indeed checks that
∑

iM
lsm
i = 1, so that (57) defines a generalized measure-

ment in the sense of Definition 3.3.2. While the operators M lsm
i and thus the outcome probabilities

qi = tr(M lsm
i σS) (here σS is the system state) only depend on {ρi, ηi}, the post-measurement states

also depend on the choice of the basis {|i〉}, as highlighted in Sec. 3. The conditional and average
post-measurement states of the pointer P are

outcome i: σS 7→ σP|i = q−1
i trS(R

lsm
i σS(R

lsm
i )∗) = |i〉〈i| (58)

no readout: σS 7→ σP = Mlsm(σS) =
m∑

i=1

qiσP|i =
m∑

i=1

qi|i〉〈i| . (59)

For a pure state ensemble {|ψi〉, ηi}mi=1, the least square measurement consists of rank-one measure-

ment operators Mi = |µ̃i〉〈µ̃i| with |µ̃i〉 =
√
ηiρ

− 1
2

out |ψi〉. The vectors |µ̃i〉 have the following prop-
erty [78, 54], which elucidates the name given to the measurement: they minimize the sum of the
square norms ‖|µ̃i〉 −

√
ηi|ψi〉‖2 under the constraint

∑
i |µ̃i〉〈µ̃i| = 1. If the |ψi〉 are linearly indepen-

dent and span HS, so that m = n, then {|µ̃i〉} is an orthonormal basis of HS. In that case {M lsm
i } is

a von Neumann measurement (see Sec. 3.3).

Remark 4.3.1. The aforementioned property of a least square measurement can be stated as follows:

min
{|µ̃i〉}

{ m∑

i=1

∥∥|µ̃i〉 −
√
ηi|ψi〉

∥∥2
}

= nS + 1− 2 tr(ρ
1
2
out) with ρout =

∑

i

ηi|ψi〉〈ψi| , (60)

the minimum being over all families {|µ̃i〉}mi=1 in HS such that
∑

i |µ̃i〉〈µ̃i| = 1. This minimum is

achieved if and only if |µ̃i〉 =
√
ηiρ

−1/2
out |ψi〉 (up to irrelevant phase factors).

Sketch of the proof. [54, 83] Define A =
∑

i
√
ηi|ψi〉〈i| and B =

∑
i |µ̃i〉〈i| in analogy with (56). Then

observe that the sum to be minimized in (60) is equal to ‖A∗ − B∗‖22 = 1 + nS − 2Re tr(AB∗), and
use (3). ✷

As suggested by this result, the least square measurement plays an important role in distinguishing
quantum states drawn from a given ensemble. This point will be discussed in Sec. 5.3 below.

Let us recall from Sec. 3.4 that the relation ρi = M(|i〉〈i|), where {|i〉}mi=1 is a fixed orthonormal
basis of HP, can be used to associate to a quantum operation M : B(HP) → B(HS) an ensem-
ble {ρi, ηi}mi=1 on HS. Conversely, if {ρi, ηi} is an ensemble on HS, the operation M with Kraus
operators Aik = Ai|k〉 =

√
pik|Ψik〉〈i| satisfies this relation (here Ai is the operator (56)). Simi-

larly, the relation (43) establishes a one-to-one correspondence between POVMs {Mi} on HS and
quantum operations R : B(HS) → B(HP). It was recognized by Barnum and Knill [19] that the
least square measurement associated to the ensemble {ρi = M(|i〉〈i|), ηi} is nothing but the measure-
ment corresponding to the transpose operation RM,ρin of M for the state ρin =

∑
i ηi|i〉〈i|. Actually,

since M(ρin) = ρout, according to the Definition 4.1.1,

Rik = ρ
1
2
inA

∗
ikρ

− 1
2

out =
√
ηipik|i〉〈ψik|ρ

− 1
2

out (61)

are Kraus operators for RM,ρin . Thus

M lsm
i = ηiρ

− 1
2

outρiρ
− 1

2
out =

∑

k

R∗
ikRik = R∗

M,ρin(|i〉〈i|) . (62)

Conversely, it is immediate to verify that RM,ρin(σ) =
∑

ik RikσR
∗
ik =

∑
i tr(M

lsm
i σ)|i〉〈i|, hence

RM,ρin is the operation associated to {M lsm
i } by the relation (43).
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5 Quantum state discrimination

The carriers of information in quantum communication and quantum computing are quantum systems,
and the information is encoded in the states of those systems. After processing the information, it
is necessary to perform measurements in order to read out the result of the computation. In other
words, one has to determine the output state of the system. If these possible outputs form a set
of orthogonal states, that is, if they are given by m known density matrices ρi with orthogonal
supports, then it is easy to devise a measurement which discriminates them without any error (a von
Neumann measurement with projectors Πi onto ran(ρi) will do the job). However, when the ρi are
non-orthogonal a perfect discrimination is impossible. Indeed, if two non-orthogonal states |ψ1〉 and
|ψ2〉 could be discriminated perfectly then one could duplicate those states by producing copies of
|ψi〉 if the measurement outcome is i = 1, 2, without prior knowledge on which of the two states one
actually possesses. This would contradict the no-cloning theorem9. Consequently, one can extract less
information from an ensemble of non-orthogonal states than from an ensemble of orthogonal ones.

It is of interest to find the best measurement to distinguish non-orthogonal states ρi with the
smallest possible failure probability. We study this state discrimination problem in this section. This
is a quite important issue in quantum cryptography and in quantum communication in general. As
emphasized in the introduction of this article, we aim at explaining some typical questions, providing
examples, and establishing basic general results that will be used in the next sections, rather than
giving a full account on the subject. We refer the reader to the review articles [38, 26, 25] for more
complete presentations. Measurements for distinguishing quantum states can also be optimized using
other criteria than the minimal probability of equivocation. For instance, one can try to maximize the
mutual information between the initial distribution of the state ensemble and the distribution of the
measurement outcomes. This optimization problem, which plays an important role in the transmission
of information in quantum channels, is briefly discussed at the end of this section.

Before entering into the detail of the theory, let us make a philosophical remark concerning the
quantum-classical differences. Let us inquire about the quantum analog of the celebrated experiment
in classical probability which consists of picking up randomly colored balls contained in an urn. In
quantum mechanics, the readout of the system’s state (the color of the ball in the classical analogy)
is performed by a measurement perturbing the system. If the urn contains an ensemble of non-
orthogonal states, we have just seen above that there is no way to identify with certainty which state
from the ensemble has been picked up. Therefore, the starting assumption that the color of the ball
is known once it has been extracted from the urn is not fulfilled in the quantum world and identifying
these colors is already a non-trivial task!

5.1 Discriminating quantum states drawn from a given ensemble

We review in this subsection two strategies for discriminating non-orthogonal states, known as the
ambiguous and unambiguous state discriminations. Let us consider an ensemble {ρi, ηi}mi=1 of states
ρi with prior probabilities ηi. For instance, the ρi can be some states of the electromagnetic field
encoding m symbols of a given alphabet, the ith symbol occurring with frequency ηi. In order to send
a message, a sender prepares random states drawn from the ensemble and gives them to a receiver.

9 No unitary evolution on a system S initially in state |ψ〉 and a register R initially in state |φ〉 can transform
|Ψ〉 = |ψ〉|φ〉 into |Ψ′〉 = |ψ〉|ψ〉 for any |ψ〉 belonging to a set of distinct non-orthogonal states, e.g. |ψ〉 ∈ {|ψ1〉, |ψ2〉}.
Actually, the scalar products 〈Ψ1|Ψ2〉 = 〈ψ1|ψ2〉 and 〈Ψ′

1|Ψ′
2〉 = 〈ψ1|ψ2〉2 are different if 〈ψ1|ψ2〉 6= 0, 1. More generally,

the no-cloning theorem tells us that one cannot duplicate unknown states by using any (not necessarily unitary) quantum
evolution, except when these states pertain to a family of orthogonal states [18].
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To decode the message the latter must identify these states by performing measurements. He wants
to find the measurement that minimizes the failure probability.

A first strategy, called ambiguous (or minimal error) quantum state discrimination, consists in
looking for a generalized measurement with m outcomes yielding the maximal success probability
PS =

∑
i ηipi|i, pi|i being the probability of the measurement outcome i given that the state is ρi.

Here, the number of possible outcomes is chosen to be equal to the number of states in the ensemble.
The conditional probability of the outcome j given the state ρi is (see Sec. 3.3)

pj|i = tr(Mjρi) (63)

so that the maximal success probability reads

P opt
S ({ρi, ηi}) = max

POVM {Mi}

{ m∑

i=1

ηi tr(Miρi)

}
, (64)

where the maximum is over all POVMs {Mi}mi=1.
A second strategy consists in seeking for a generalized measurement with (m+1) outcomes enabling

to identify perfectly each state ρi, but such that one of the outcomes leads to an inconclusive result.
This strategy, originally proposed by Ivanovic [85] and further investigated by Dieks and Peres [52, 124],
is called unambiguous quantum state discrimination. In other words, if the measurement outcome is
j ∈ {1, . . . ,m} then the receiver is certain that the state is ρj, whereas if j = 0 he does not know. This
means that pj|i = pi|iδij with pi|i > 0, for any i, j = 1, . . . ,m. The probability of occurrence of the
inconclusive outcome, P0 =

∑
i ηip0|i, must be minimized. Since p0|i = 1− pi|i, the success probability

is obtained from the same formula (64) as for ambiguous discrimination, but with a maximum over
all POVMs {Mj}mj=0 such that tr(Mjρi) = pi|iδij for j 6= 0. For pure states ρi = |ψi〉〈ψi|, the rank-one
measurement operators Mj satisfying this condition are

Mj =
pj|j

|〈ψ∗
j |ψj〉|2

|ψ∗
j 〉〈ψ∗

j | , j = 1, . . . ,m , (65)

with the dual normalized vectors |ψ∗
j 〉 defined by 〈ψ∗

j |ψi〉 = δij〈ψ∗
i |ψi〉. The remaining problem is

to find the values of the probabilities pj|j which maximize the success probability (64) under the
constraint that {Mj}mj=0 is a POVM, that is,

M0 = 1−
m∑

j=1

pj|j

|〈ψ∗
j |ψj〉|2

|ψ∗
j 〉〈ψ∗

j | ≥ 0 . (66)

This is a non-trivial problem, which has been solved so far in particular cases only. Upper and lower
bounds on the maximal success probability can be found in terms of the scalar products 〈ψi|ψj〉 (see
e.g. [26]).

It is worth noting that unambiguous discrimination is not always possible. For instance, a pure
state ensemble {|ψi〉, ηi} with linearly dependent vectors |ψi〉 cannot be discriminated unambigu-
ously [37]. Indeed, assume that |ψi0〉 is a linear combination of the other states |ψi〉. Together with
the no-error condition pj|i = pi|iδij , which is equivalent to |ψi〉 ∈ kerMj for any j /∈ {0, i}, this means
that |ψi0〉 ∈ ker(Mi0) and thus pi0|i0 = 0, in contradiction with the requirement pi0|i0 > 0. The same
argument shows that one cannot discriminate unambiguously an ensemble of mixed states {ρi, ηi} such
that one state ρi0 has its support ran(ρi0) contained in the sum of the supports of the other states.

Ambiguous and unambiguous quantum state discriminations have many applications. For instance,
the discrimination of two non-orthogonal states plays a central role in the quantum cryptography
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protocol proposed by Bennett in 1992 to distribute a secrete key between two parties [21]. We will
not elaborate further on these applications. Let us also mention that other optimization schemes than
those discussed above have been worked out [26, 25]. State discriminations have been implemented
experimentally by using polarized photons in pure states (see [42] and references therein) and, more
recently, in mixed states [111].

5.2 Ambiguous and unambiguous discriminations of two states

5.2.1 Ambiguous discrimination

The simplest example of ambiguous discrimination is the case of m = 2 states ρ1 and ρ2. Then the
optimal success probability and measurement are easy to determine [74]. One starts by writing the
measurement operator M2 as 1−M1 in the expression of the success probability,

P
{Mi}
S,a ({ρi, ηi}) = η1 tr(M1ρ1) + η2 tr(M2ρ2) =

1

2

(
1− tr Λ

)
+ tr(M1Λ) (67)

with Λ = η1ρ1 − η2ρ2. The maximum of tr(M1Λ) over all M1 satisfying 0 ≤ M1 ≤ 1 is achieved
when M1 is the spectral projector Π1 associated to the positive eigenvalues λ1 ≥ · · · ≥ λp > 0 of the
Hermitian matrix Λ. Consequently, the maximal success probability is given by the Helstrom formula

P opt
S,a ({ρi, ηi}) =

1

2

(
1 + tr |Λ|

)
, Λ = η1ρ1 − η2ρ2 . (68)

The optimal measurement is a von Neumann measurement {Πopt
1 , 1 − Πopt

1 } with Πopt
1 the projector

onto the support of Λ+ = (Λ + |Λ|)/2. If Λ ≥ 0 the optimal measurement is {Πopt
1 = 1,Πopt

2 = 0},
meaning that no measurement can outperform the simple guess that the state is ρ1 (a similar statement
holds for ρ2 if Λ ≤ 0). For pure states ρi = |ψi〉〈ψi|, (68) reduces to

P opt
S,a ({|ψi〉, ηi}) =

1

2

(
1 +

√
1− 4η1η2|〈ψ1|ψ2〉|2

)
(69)

and the optimal measurement consists of the rank-one eigenprojectors of Λ for the positive and neg-
ative eigenvalues. When η1 = η2, these are the projections onto the two orthogonal subspaces placed
symmetrically with respect to |ψ1〉 and |ψ2〉, as represented in Fig. 1.

5.2.2 Unambiguous discrimination of two pure states

The power of generalized measurements is illustrated in the unambiguous discrimination of two pure
states |ψ1〉 and |ψ2〉. Indeed, we will show that such measurements enable to distinguish quantum
states better than von Neumann measurements10. Clearly, the Hilbert space H can be restricted to its
two-dimensional subspace spanned by |ψ1〉 and |ψ2〉. The unambiguity condition implies |ψ1〉 ∈ kerM2

and |ψ2〉 ∈ kerM1, so that the measurement operators M1 and M2 are of rank one and given by (65).
We can already observe at this point that the number of outcomes is larger than the space dimension, so
that the unambiguous discrimination strategy cannot be realized with a von Neumann measurement.

The optimal success probability is given by [86]

P opt
S,u ({|ψi〉, ηi}) =

{
1− 2

√
η1η2|〈ψ1|ψ2〉| if 1− q1 ≤ η1 ≤ q1

ηmax(1− |〈ψ1|ψ2〉|2) if ηmax ≥ q1
(70)

10 This can be considered as the main physical motivation to introduce generalized measurements [127].
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Figure 1: Optimal measurement {Mopt
i } in the discrimination of two non-orthogonal pure states |ψ1〉

and |ψ2〉 with equal prior probabilities ηi = 1/2. (a) For ambiguous discrimination, {Mopt
i } is the von

Neumann measurement in the two orthogonal states |φ1〉 and |φ2〉 with |〈φi|ψi〉| = cos(π4 − θ
2), that

is, it is the least square measurement associated to {|ψi〉, ηi} (b) For unambiguous discrimination,
if the maximal prior probability ηmax is larger than q1 = 1/(1 + cos2 θ), then the von Neumann
measurement in the orthonormal basis {|ψ1〉, |ψ∗

2〉} (if ηmax = η2 > η1) or {|ψ2〉, |ψ∗
1〉} (if ηmax = η1 >

η2) indicated by the red dashed vectors yields the smallest failure probability. Failure occurs when the
outcome corresponds to the first vector in these two bases (inconclusive result). If 1− q1 < η1 < q1, a
smaller failure probability is obtained by using the generalized measurement with rank-one operators
Mi indicated schematically by the green vectors.
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with ηmax = max{η1, η2} and q1 = 1/(1 + |〈ψ1|ψ2〉|2). It is instructive to establish this formula by
using the Neumark extension theorem [26]. Thanks to Theorem 3.3.1, one can represent {Mj} as
a von Neumann measurement on the larger space H ⊗ HE, with HE ≃ C

3. Let {Aj}2j=0 be the

Kraus operators for the measurement and |ǫ0〉, U , and πEj be as in this theorem. We may assume

that πEj = |j〉〈j| are of rank one, where {|j〉}2j=0 is an orthonormal basis of HE (see the proof of
Theorem 3.3.1). One writes

|Ψ′
i〉 = U |ψi〉|ǫ0〉 =

2∑

j=0

√
pj|i|ϕj|i〉|j〉 (71)

for i = 1, 2, where
√
pj|i|ϕj|i〉 = 〈j|Ψ′

i〉 ∈ H are in general non-orthogonal for distinct j’s and ‖ϕj|i‖ = 1.
By (35) and (36) the unnormalized post-measurement states are ρ̃j|i = 〈j|Ψ′

i〉〈Ψ′
i|j〉 = pj|i|ϕj|i〉〈ϕj|i|,

hence pj|i and |ϕj|i〉 can be interpreted as the probability of outcome j and the corresponding condi-
tional state for the input state |ψi〉. Since we require p2|1 = p1|2 = 0, the unitarity of U imposes the
conditions p0|i = 1− pi|i and 〈Ψ′

1|Ψ′
2〉 =

√
p0|1p0|2〈ϕ0|1|ϕ0|2〉 = 〈ψ1|ψ2〉. The last relation implies that

the probabilities p0|i satisfy

p0|1p0|2 ≥ p0|1p0|2|〈ϕ0|1|ϕ0|2〉|2 = cos2 θ , (72)

where we have set cos θ = |〈ψ1|ψ2〉|. Note that this bound could have been obtained directly from
(66), which is easy to solve since we are dealing here with 2× 2 matrices [26].

In order to maximize the success probability PS =
∑

i ηipi|i = 1 − ∑
i ηip0|i, we are looking for

the smallest possible p0|1 and p0|2. For such p0|i’s the inequality (72) is an equality. Assuming

cos θ > 0, this holds whenever |ϕ0|2〉 = eiδ|ϕ0|1〉 with δ = arg〈ψ1|ψ2〉. Accordingly, the conditional
post-measurement state for the inconclusive outcome is the same irrespective of the input state |ψi〉.
This is physically meaningful since if this post-measurement state was depending on |ψi〉 then one
could perform a new measurement on it to increase further the success probability. In summary, for
the optimal measurement one has

|Ψ′
i〉 =

√
pi|i|ϕi|i〉|i〉+

√
p0|i e

iδi |Φ0〉 (73)

with |Φ0〉 = |ϕ0|1〉|0〉 and δ1 = 0, δ2 = δ.
The failure probability

P0 = η1p0|1 + η2
cos2 θ

p0|1
(74)

is easy to minimize as a function of p0|1. The minimum is achieved for popt0|1 =
√
η2/η1 cos θ and is

equal to P opt
0 = 2

√
η1η2 cos θ. This yields the upper expression in (70). The restrictions on the values

of η1 come from the conditions popt
0|1

≤ 1 and popt
0|2

≤ 1. When η1 ≤ 1 − q1, the minimum is achieved

for popt0|1 = 1 and popt0|2 = cos2 θ, i.e. popt1|1 = 0 and popt2|2 = sin2 θ. In such a case only the state |ψ2〉 can

be identified with certainty, as |ψ1〉 always produces an inconclusive outcome. Strictly speaking this
does not correspond to an unambiguous discrimination. One can nevertheless determine the optimal
measurement, characterized by Mopt

1 = 0 and by two orthogonal projectors Mopt
2 = |ψ∗

2〉〈ψ∗
2 | and

Mopt
0 = |ψ1〉〈ψ1|, see (65). A similar statement holds when η1 ≥ q1 by exchanging the indices 1 and

2. The corresponding success probability is given by the lower expression in (70).
These results are summarized in Fig. 1. As claimed above, when 1 − q1 < η1 < q1 generalized

measurements, obtained via a coupling of the system with an ancilla and a measurement on the
latter, do better in decoding the message than a von Neumann measurement performed directly on
the system.
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5.2.3 Unambiguous discrimination of two mixed states

Let us now turn to the case of two mixed states ρ1 and ρ2. Such states cannot be unambiguously
discriminated when ran ρ1 is contained in ran ρ2 or vice versa. By the unambiguity condition, ranM1 ⊂
ker ρ2 and ranM2 ⊂ ker ρ1. A trivial situation is when ker ρ1⊥ ker ρ2, in which case the optimal
POVM is the von Neumann measurement with M1 and M2 equal to the projectors on ker ρ2 and
ker ρ1, respectively. Then the minimal failure probability is P opt

0 = tr[(η1ρ1 + η2ρ2)Π0], Π0 being the
projector onto ran ρ1∩ ran ρ2. One can as before restrict the Hilbert space so that ran ρ1+ran ρ2 = H.
If ran ρ1 and ran ρ2 have co-dimension one in H, then M1 and M2 are of rank one and take the
form (65) with |ψ∗

1〉 ∈ ker ρ2, |ψ∗
2〉 ∈ ker ρ1, and |〈ψ∗

i |ψi〉|2 replaced by Ri = 〈ψ∗
i |ρi|ψ∗

i 〉. A simple
generalization of (70) then yields [135]

P opt
S,u ({ρi, ηi}) = P opt

S (Ri, ηi) ≡





η1R1 + η2R2 − 2
√
η1η2R1R2 cos θ

sin2 θ
if cos2 θ < min

{η1R1

η2R2
,
η2R2

η1R1

}

max{η1R1, η2R2} otherwise

(75)
with cos θ = |〈ψ∗

1 |ψ∗
2〉|. For kernels of dimensions d2 ≥ d1 > 1, by a standard linear algebra argument

one can construct two orthonormal bases {|ψ∗
2k〉}d1k=1 of ker ρ1 and {|ψ∗

1k〉}d2k=1 of ker ρ2 such that
〈ψ∗

1k|ψ∗
2l〉 = δkl cos θk, with θk ∈ [0, π/2]. Let us take Mi =

∑
kMik for i = 1, 2, with Mik =

mik|ψ∗
ik〉〈ψ∗

ik|. Optimizing P
{Mi}
S,u over the non-negative numbers mik under the constraint 1 −M1 −

M2 ≥ 0 reduces to the optimization problem for rank-one measurement operators studied before (in
fact, this constraint is equivalent to 1 − M1k − M2k ≥ 0 for k = 1, . . . , d1 and 1 − M1k ≥ 0 for
d1 < k ≤ d2). This gives the lower bound [135]

P opt
S,u ({ρi, ηi}) ≥

d1∑

k=1

P opt
S (Rik, ηi) + η1

∑

d1<k≤d2

R1k with Rik = 〈ψ∗
ik|ρi|ψ∗

ik〉. (76)

An upper bound can be obtained in terms of the fidelity between the states ρ1 and ρ2 defined by
F (ρ1, ρ2) = (tr(|√ρ1

√
ρ2|))2 (see Proposition 5.5.2 and Remark 7.4.4 below) [135],

P opt
S,u ({ρi, ηi}) ≤




1− 2

√
η1η2F (ρ1, ρ2) if F (ρ1, ρ2) <

ηmin

ηmax

ηmax(1− F (ρ1, ρ2)) otherwise.
(77)

A nice application of two mixed state discrimination is the state comparison problem [17]. Consider
two independent copies of a given system, the state of which is drawn from the pure state ensemble
{|ψi〉, 1/2}i=1,2. One would like to decide with the help of an appropriate measurement if the two
copies are in the same state or not, without further information on the actual state of each copies.
If |ψ1〉 and |ψ2〉 are not orthogonal, this can only be done with a probability of success PS,comp < 1.
This amounts to discriminate the two mixed states

ρeq =
1

2
|ψ1 ⊗ ψ1〉〈ψ1 ⊗ ψ1|+

1

2
|ψ2 ⊗ ψ2〉〈ψ2 ⊗ ψ2|

ρdiff =
1

2
|ψ1 ⊗ ψ2〉〈ψ1 ⊗ ψ2|+

1

2
|ψ2 ⊗ ψ1〉〈ψ2 ⊗ ψ1| . (78)

It is shown in [135] that for such mixed states of rank two, the lower and upper bounds in (76) and (77)
coincide. A simple calculation (see Remark 7.4.4 below) then gives the optimal success probability [17]

P opt
S,comp = 1− |〈ψ1|ψ2〉| . (79)
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5.3 Discrimination with least square measurements

How well does the least square measurement (Sec. 4.3) in discriminating ambiguously quantum states?
More precisely, let

P lsm
S,a ({ρi, ηi}) =

∑

i

ηi tr(ρiM
lsm
i ) (80)

be the success probability in discriminating the states ρi by performing the least square measurement
{M lsm

i } associated to {ρi, ηi}. We would like to compare P lsm
S,a with the optimal success probability.

Let us first observe that if ρi = M(|i〉〈i|), M being a quantum operation on B(H) and {|i〉}ni=1

a fixed orthonormal basis of H, then PS,a({ρi, ηi}) is related to the entanglement fidelity defined in
Sec. 4.2. Recall that any ensemble {ρi, ηi}mi=1 with m ≤ n states can be obtained in this way from an
operation M : B(H) → B(H) (since m ≤ n we can identify here the pointer space HP with a subspace
of H, see Sec. 3.4). To establish the relation with the average fidelity (49), consider a POVM {Mi}mi=1

with m measurement operators and let us associate to it the quantum operation R on B(H) defined
by R∗(|i〉〈j|) =Miδij . Then

P
{Mi}
S,a

(
{ρi, ηi}

)
=

m∑

i=1

ηi tr[R∗(|i〉〈i|)ρi] =
m∑

i=1

ηi〈i|R ◦M(|i〉〈i|)|i〉 = F e

(
{|i〉, ηi},R ◦M

)
(81)

thanks to the equality of the entanglement fidelity with the input-output fidelity for pure states. In
view of the one-to-one correspondence between POVMs withm ≤ n operators and quantum operations
on B(H) we obtain the following relation between P opt

S, a and the maximal fidelity over all recovery
operations R on B(H):

P opt
S, a ({ρi, ηi}mi=1) = max

R

{
F e({|i〉, ηi}mi=1,R ◦M)

}
, m ≤ n . (82)

Furthermore, the optimal measurement operators are given in terms of the optimal recovery operation
Ropt byMopt

i = (Ropt)∗(|i〉〈i|). According to Proposition 4.2.1, takingR to be the transpose operation
RM,ρin of M for the state ρin =

∑
i ηi|i〉〈i| gives an entanglement fidelity larger than the square of the

right-hand side of (82). But the measurement associated to RM,ρin is the least square measurement,
i.e. M lsm

i = R∗
M,ρin

(|i〉〈i|) (see Sec. 4.3). As a result, Proposition 4.2.1 yields the following inequality.

Corollary 5.3.1. If m ≤ n = dimH, then

P opt
S,a ({ρi, ηi}mi=1) ≤

(
P lsm
S,a ({ρi, ηi}mi=1)

) 1
2
. (83)

Thus, if the error probability for discriminating {ρi, ηi} using the least square measurement is
small, then it is at most twice the minimal error probability P opt

err,a = 1−P opt
S,a , up to a small correction

of the order of (P lsm
S,a )

2. Small error probabilities occur for almost orthogonal states. Therefore, for
such states least square measurements are nearly optimal [71, 19].

It is worth mentioning that least square measurements are also asymptotically optimal for dis-
criminating ambiguously equiprobable linearly independent pure states [78]. In addition, they opti-
mally discriminate equiprobable states drawn from a symmetric ensemble, like for instance the states
ρi = U i−1ρ1(U

i−1)∗ related between themselves through conjugations by powers of a single unitary
operator U satisfying Um = ±1 (see [15, 16, 41, 54] and references therein). Necessary and suffi-
cient conditions for the optimality of least square measurements in state discrimination have been
investigated in [57, 138].
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5.4 General results on ambiguous discrimination

Let {ρi, ηi}mi=1 be an ensemble of m states of a system with a n-dimensional Hilbert space H. Hereafter
we assume that ηi > 0 for all i = 1, . . . ,m, so thatm is the actual number of states to discriminate. We
denote by ρ̃i = ηiρi the unnormalized states with trace equal to the prior probability ηi. To shorten
notation, the dependence of the success probability PS on the ensemble is not written explicitly. The
following proposition contains one of the few results in ambiguous discrimination applying to arbitrary
ensembles.

Proposition 5.4.1. [77, 171, 55] The optimal success probability in ambiguous state discrimination
is given by

P opt
S,a = inf

Υ≥ρ̃i

{
tr(Υ)

}
, (84)

where the infimum is over all self-adjoint operators Υ satisfying Υ ≥ ρ̃i for any i = 1, . . . ,m. More-
over, the POVM {Mopt

i }mi=1 is optimal if and only if the operator Υopt =
∑

i ρ̃iM
opt
i satisfies the two

conditions

(i) Υopt is self-adjoint;

(ii) Υopt ≥ ρ̃i for any i = 1, . . . ,m.

In such a case, the infimum in the right-hand side of (84) is attained for Υ = Υopt.

The fact that (ii) is sufficient to ensure the optimality of {Mopt
i } is obvious from the relation

P opt
S,a − P

{Mi}
S,a =

m∑

i=1

tr[(Υopt − ρ̃i)Mi] . (85)

The necessary and sufficient conditions (i) and (ii) are due to Holevo [77], who derived them by
considering a specific one-parameter family {Mi(ε)} of POVMs such that Mi(0) = Mopt

i and by

exploiting the fact that ∂P
{Mi(ε)}
S,a /∂ε = 0 for ε = 0 (see [74], chapter 4). Yuen, Kennedy, and Lax

[171] proposed another derivation based on a duality argument in vector space optimization. We shall
present below the related proof of Eldar, Megretski and Verghese [55].

Let us note that (i) and (ii) imply

(Υopt − ρ̃i)M
opt
i =Mopt

i (Υopt − ρ̃i) = 0 , i = 1, . . . ,m . (86)

In fact, since
∑

i tr[(Υ
opt − ρ̃i)M

opt
i ] = 0 and Υopt − ρ̃i ≥ 0 by (ii), one deduces that |(Υopt −

ρ̃i)
1/2(Mopt

i )1/2|2 = 0 (recall that A ≥ 0 and tr(A) = 0 imply A = 0). One concludes from this
equality that (Υopt − ρ̃i)M

opt
i = 0. It is easy to see by eliminating Υopt that (86) is equivalent to

Mopt
i (ρ̃i − ρ̃j)M

opt
j = 0 , i, j = 1, . . . ,m . (87)

The condition (87) automatically implies that Υopt is self-adjoint. Hence a necessary and sufficient
condition for {Mopt

i } to be optimal is given by conditions (ii) and (87).
Except in special cases such as ensembles of equiprobable states related by a symmetry [15, 16,

54, 41], it is difficult in practice to obtain the optimal measurement and success probability from the
above necessary and sufficient conditions. Nevertheless, the formulas (84) and (86) are helpful for
computing these quantities numerically. For indeed, the minimization task in (84) is simpler than the
maximization in (64) and can be solved efficiently with the help of convex semidefinite programs [55].
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Proof. The main idea is to show that the minimization problem in (84) is dual to the maximization
problem in (64). More precisely, there exists a convex set Γ ⊂ B(H)s.a. such that

P
{Mi}
S,a ≤ tr(Υ) , ∀ {Mi} POVM, ∀ Υ ∈ Γ , (88)

and the maximum of the left-hand member is equal to the minimum of the right-hand member,
i.e. P opt

S,a = minΥ∈Γ tr(Υ). The set Γ is defined by

Γ =
{
Υ ∈ B(H)s.a. ; Υ ≥ ρ̃i , i = 1, . . . ,m

}
. (89)

Then tr(Υ)−P {Mi}
S,a =

∑
i tr[(Υ− ρ̃i)Mi] ≥ 0 for any Υ ∈ Γ, so that (88) holds true. Let us now define

the following convex subset Ω of the real vector space B(H)s.a. × R:

(B,x) ∈ Ω ⇔ B =
m∑

i=1

Bi − 1 , x = r −
m∑

i=1

tr(Biρ̃i) with Bi ≥ 0 and r > P opt
S,a . (90)

This space is endowed with the scalar product 〈(B,x) , (C, y)〉 = tr(BC) + xy. Since Ω is convex and
does not contain (0, 0), by the separating hyperplane theorem one can find a non-vanishing vector
(Υa, a) ∈ B(H)s.a. ×R such that 〈(Υa, a) , (B,x)〉 ≥ 0 for any (B,x) ∈ Ω, that is

tr
[
Υa

( m∑

i=1

Bi − 1
)]

+ a
(
r −

m∑

i=1

tr(Biρ̃i)
)
≥ 0 . (91)

Taking Bi = t|ϕ〉〈ϕ| if i = k and zero otherwise, with |ϕ〉 ∈ H and t > 0, and letting t → ∞, we
obtain 〈ϕ|Υa|ϕ〉 − a〈ϕ|ρ̃k|ϕ〉 ≥ 0. But |ϕ〉 and k are arbitrary, hence

Υa ≥ aρ̃i , i = 1, . . . ,m . (92)

Similarly, taking Bi = 0 for all i and r → P opt
S,a , (91) yields

aP opt
S,a ≥ tr(Υa) . (93)

From the same choice of Bi and r → ∞ one gets a ≥ 0. If a = 0 then Υa ≥ 0 and tr(Υa) = 0 by (92) and
(93). This would imply Υa = 0, in contradiction with (Υa, a) 6= (0, 0). Thus a > 0. The self-adjoint
operator Υopt = Υa/a satisfies Υopt ≥ ρ̃i for all i (i.e. Υopt ∈ Γ) and tr(Υopt) ≤ P opt

S,a , see (92) and

(93). The converse of the last inequality follows from (88). Whence P opt
S,a = tr(Υopt) = minΥ∈Γ tr(Υ),

as claimed in the proposition. This identity implies
∑

i tr[(Υ
opt − ρ̃i)M

opt
i ] = 0 if {Mopt

i } is an
optimal POVM. But all traces in the sum are non-negative, thus they vanish and (86) is satisfied by
the arguments given above to derive this equation. It results from (86) that Υopt =

∑
i ρ̃iM

opt
i =∑

iM
opt
i ρ̃i. This concludes the proof. ✷

Let us consider the success probability

P opt v.N.
S,a ({ρi, ηi}) = max

{Πi}

{ m∑

i=1

ηi tr(Πiρi)

}
, (94)

where the maximum is over all von Neumann measurements {Πi}mi=1. A natural question is whether
this probability may be equal to P opt

S,a , i.e. whether the states ρi may be discriminated optimally with
a von Neumann measurement. We have already argued above that this is not always the case, even
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for pure states. A simple consequence of Proposition 5.4.1 is that the equality holds for linearly
independent states. The states ρi are called linearly independent if their eigenvectors |ζij〉 with non-

zero eigenvalues form a linearly independent family {|ζij〉}j=1,...,ri
i=1,...,m in H (here ri is the rank of ρi). We

say that they span the Hilbert space H if H = span{|ζij〉}j=1,...,ri
i=1,...,m . Without loss of generality one can

restrict H to a subspace H′ spanned by the ρi.

Corollary 5.4.2. [55] Let {|ψi〉, ηi}mi=1 be an ensemble of pure states spanning H. Then the optimal
measurement operators Mopt

i in ambiguous state discrimination are of rank one. More generally, for
any ensemble {ρi, ηi}mi=1 spanning H, the optimal measurement operators have ranks rank(Mopt

i ) ≤
rank(ρi) for all i = 1, . . . ,m.

Corollary 5.4.3. [56] Let {ρi, ηi}mi=1 be an ensemble of linearly independent states spanning H. Then
an optimal measurement in ambiguous state discrimination is a von Neumann measurement with
orthogonal projectors Mopt

i = Πopt
i of rank ri = rank(ρi). In particular, the probabilities (64) and (94)

are equal.

Proof. Let us setNopt
i = Υopt−ρ̃i. The relation (86) implies ranMopt

i ⊂ kerNopt
i , hence rank(Mopt

i ) ≤
dim(kerNopt

i ). Since the rank of the sum of two matrices is smaller or equal to the sum of their ranks,
rank(Υopt) ≤ rank(Nopt

i ) + ri and thus dim(kerNopt
i ) ≤ dim(kerΥopt) + ri. But kerΥ

opt ⊂ [ran(ρi)]
⊥

for all i according to the condition (ii) of Proposition 5.4.1. Consequently, if the states ρi span H then
kerΥopt = {0}. This shows that rank(Mopt

i ) ≤ ri. If furthermore the ρi are linearly independent, then∑
i ri = n = dimH. Introducing the spectral decomposition Mopt

i =
∑

k |µ̃ik〉〈µ̃ik| with unnormalized
vectors |µ̃ik〉, k = 1, . . . , ri, and noting that the sum

∑
i,k |µ̃ik〉〈µ̃ik| = 1 contains at most n terms, it

follows that {|µ̃ik〉} is an orthonormal basis of H. Thus Mopt
i are orthogonal projectors of rank ri. ✷

5.5 Bounds on the maximal success probability

We now establish some inequalities satisfied by P opt
S for any number m of states to discriminate. A

review of various upper bounds for ambiguous discrimination can be found in [132]. We only discuss
here the bounds involving the fidelity

F (ρ, σ) = ‖√ρ
√
σ‖21 =

(
tr[(

√
σρ

√
σ)

1
2 ]
)2

. (95)

The properties of this fidelity will be analyzed in the forthcoming Sec. 7. Let us only mention here
that F (ρ, σ) is symmetric under the exchange of ρ and σ (actually,

√
σρ

√
σ and

√
ρ σ

√
ρ have the

same non-zero eigenvalues) and reduces for pure states ρψ = |ψ〉〈ψ| and σφ = |φ〉〈φ| to the square
modulus of the scalar product 〈ψ|φ〉, i.e. F (ρψ, σφ) = |〈ψ|φ〉|2. More generally, F (ρ, σ) can be seen as
a measure of non-orthogonality of ρ and σ.

The following lower and upper bounds on the maximum success probability P opt
S,a for ambiguous

state discrimination are taken from Refs. [19] and [112], respectively11.

Proposition 5.5.1. (Barnum and Knill [19], Montanaro [112]). For any ensemble {ρi, ηi}mi=1, one
has

1−
∑

i>j

√
ηiηjF (ρi, ρj) ≤ P opt

S,a ({ρi, ηi}) ≤ 1−
∑

i>j

ηiηjF (ρi, ρj) . (96)

11 The upper bound is established in [19] (and is often reported in subsequent works) with an unnecessary extra factor
of two in front of the sum (after correcting the obvious misprints in this reference).
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The inequalities (96) make quantitative the intuitive fact that the more pairwise orthogonal are
the states ρi, the larger is the success probability to discriminate them, and conversely.

Proof. Let ρi = AiA
∗
i , the operators Ai being, for instance, given by (56). Given a POVM {Mi} with

Kraus operators Ri (i.e. Mi = R∗
iRi), we set

Sij =
√
ηjRiAj , Bij =

√
ηiηjA

∗
iAj . (97)

We view S = (Sij)
m
i,j=1 and B = (Bij)

m
i,j=1 as m×m matrices with values in B(H), which are related

by S∗S = B ≥ 0 (this follows from
∑

iR
∗
iRi = 1). Observe that

P
{Mi}
S,a =

∑

j

ηj tr(Mjρj) = 1−
∑

i 6=j

ηj tr(Miρj) = 1−
∑

i 6=j

‖Sij‖22 (98)

and
ηiηjF (ρi, ρj) = ηiηj‖

√
ρi
√
ρj‖21 = ηiηj‖U∗

i
√
ρi
√
ρjUj‖21 = ‖Bij‖21 , (99)

where ‖ · ‖1,2 are the trace and Hilbert Schmidt norms. We have used in (99) the polar decomposition
Ai =

√
ρiUi and the unitary invariance of these norms. The main idea to prove the first inequality

in (96) is to bound from below the optimal success probability P opt
S,a by the success probability P lsm

S,a

for discriminating the states with the least square measurement [19]. For the latter, the matrix S in

(97) is the square root of B (in fact, according to (57), Slsm
ij =

√
ηiηjA

∗
i ρ

−1/2
out Aj so that Slsm ≥ 0,

and it has been argued above that |S|2 = B). For instance, if the ρi are pure states |ψi〉, B and
Slsm can be identified with the scalar product matrices (〈ψ̃i|ψ̃j〉)mi,j=1 and (〈µ̃i|ψ̃j〉)mi,j=1, respectively,

with |ψ̃i〉 =
√
ηi|ψi〉 and |µ̃i〉 =

√
ηiρ

−1/2
out |ψi〉, the latter being the vectors describing the least square

measurement (Sec. 4.3). The identity Slsm =
√
B then becomes evident from the definition of a

POVM12. Therefore, in view of (98), P opt
S,a ≥ P lsm

S,a = 1 − ∑
i 6=j ‖(

√
B)ij‖22. The lower bound in (96)

comes from the following norm inequality proven in Appendix B: for any fixed j = 1, . . . ,m,

∑

i,i 6=j

‖(
√
B)ij‖22 ≤

1

2

∑

i,i 6=j

‖Bij‖1 , (100)

where the last sum is related to the fidelities by (99).
It remains to establish the upper bound. With the notation above, this bound takes the form

1

2

∑

i 6=j

‖Bij‖21 ≤
∑

i 6=j

‖Sij‖22 . (101)

Fixing j again and introducing the notation ‖ · ‖1/2 as in (2) (note that this is not a norm), if one can
show that ∥∥∥

∑

i,i 6=j

|Bij |2
∥∥∥

1
2

≤
∑

i,i 6=j

(
‖Sij‖22 + ‖Sji‖22

)
(102)

then the required inequality (101) will be proven. Actually, by the inverse Minkowski inequality (B1)
in Appendix B one finds

∑
i ‖Bij‖21 =

∑
i ‖|Bij |2‖1/2 ≤ ‖

∑
i |Bij|2‖1/2. In order to show (102), let us

12 This remarkable identity has been singled out for pure states in [72]. The authors of this reference suggest to use
it as a definition of the least square measurement.
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introduce the following (m− 1)× (m− 1) matrices with values in B(H):

C(j) =
∑

i,i 6=j

(Sji)
∗ ⊗ |i〉〈1| , D(j) = Sjj ⊗ |1〉〈1|

E(j) =
∑

i 6=j

∑

k 6=j

(Ski)
∗ ⊗ |i〉〈k| , F (j) =

∑

k,k 6=j

Skj ⊗ |k〉〈1|
(103)

(here |i〉〈k| stands for the matrix with vanishing entries except in the ith raw and kth column, which
has a unit entry). An explicit calculation leads to

∥∥C(j)D(j) + E(j)F (j)
∥∥2
1
=

∥∥∥
∑

i,i 6=j

|Bij|2
∥∥∥

1
2

,
∥∥C(j)

∥∥2
2
=

∑

i,i 6=j

‖Sji‖22 ,
∥∥F (j)

∥∥2
2
=

∑

k,k 6=j

‖Skj‖22 .

(104)
Furthermore,

∥∥C(j)
∥∥2
2
+

∥∥D(j)
∥∥2
2
+

∥∥E(j)
∥∥2
2
+

∥∥F (j)
∥∥2
2
=

∑

i,k

‖Sik‖22 =
∑

k

ηk tr(ρk) = 1 . (105)

We can now take advantage of the norm inequality (B4) of Appendix B. Because of (105), this gives

∥∥C(j)D(j) +E(j)F (j)
∥∥2
1
≤

∥∥C(j)
∥∥2
2
+

∥∥F (j)
∥∥2
2
. (106)

We plug the equalities (104) into this result to obtain (102). This concludes the proof. ✷

Let us now turn to unambiguous discrimination. The following easy-to-derive bound generalizes
the upper line in (77).

Proposition 5.5.2. [59] The maximum success probability for unambiguous state discrimination is
bounded by

P opt
S,u ({ρi, ηi}) ≤ 1−

(
2m

m− 1

∑

i>j

ηiηjF (ρi, ρj)

) 1
2

. (107)

Proof. The failure probability P0 = 1− PS,u satisfies

P 2
0 =

( m∑

i=1

ηi tr(M0ρi)

)2

≥ m

m− 1

∑

i 6=j

ηiηj tr(M0ρi) tr(M0ρj) ≥
m

m− 1

∑

i 6=j

ηiηj
∣∣tr(Uij

√
ρiM0

√
ρj)

∣∣2 ,

(108)
where Uij are arbitrary unitary operators and the first and second bounds follow from the Cauchy-
Schwarz inequality. Expressing M0 as 1 − ∑

iMi and using ranMi ⊂ ker ρj for i 6= j, one gets
tr(Uij

√
ρiM0

√
ρj) = tr(Uij

√
ρi
√
ρj). Using the formula F (ρi, ρj) = maxU | tr(U√

ρi
√
ρj)|2 and maxi-

mizing over all unitaries Uij, one obtains (107). ✷

One infers from the last two propositions and the Cauchy-Schwarz inequality that

Corollary 5.5.3. The minimal failure probabilities P opt
err,a = 1− P opt

S,a and P opt
0 for discriminating m

states ambiguously and unambiguously satisfy P opt
0 ≥ 2P opt

err,a/(m− 1).

In particular, as noted in [26], for two states P opt
0 is at least twice larger than P opt

err,a.
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5.6 The Holevo bound

Let us come back to the issue of encoding an input message A in an ensemble {ρi, ηi} of quantum
states and transmitting it to a receiver. From an information point of view, it makes sense to optimize
the measurement in such a way as to maximize the mutual information between the input message
A and the output message B reconstructed by the receiver (that is, B is the set of measurement
outcomes). This mutual information is defined as [143]

IA:B = H(A) +H(B)−H(A,B) , (109)

where H(A) = −
∑

i ηi ln ηi is the Shannon entropy of the input message, H(B) = −
∑

j pj ln pj is
the Shannon entropy of the measurement outcomes B with probabilities pj =

∑
i ηi tr(Mjρi), and

H(A,B) = −∑
i,j pij ln pij is the Shannon entropy of the joint process (A,B) with probabilities

pij = ηipj|i = ηi tr(Mjρi), see (63). One can show from the concavity of the logarithm that IA:B ≥ 0
and IA:B = 0 if and only if A and B are independent.

The conditional Shannon entropies are defined by

H(B|A) = −
∑

i

ηi
∑

j

pj|i ln pj|i , H(A|B) = −
∑

j

pj
∑

i

ηi|j ln ηi|j , (110)

where pj|i = tr(Mjρi) is the conditional probability of the measurement outcome j given the state ρi
and ηi|j the conditional (a posteriori) probability that the state is ρi given the outcome j. The latter
is given by the Bayes rule ηi|j = ηipj|i/pj. The conditional entropy H(A|B) represents the lack of
knowledge of the receiver on the state of the ensemble that was sent to him, after he has performed
the measurement. In general the measurement producing the lowest value of H(A|B) is not a von
Neumann measurement [50]. Thanks to the well-known relation H(A,B) = H(A) + H(B|A) =
H(B) + H(A|B), the mutual information can be expressed in terms of these conditional entropies
as [143],

IA:B = H(A)−H(A|B) = H(B)−H(B|A) . (111)

As H(A|B) ≥ 0 one has IA:B ≤ H(A), with equality if and only if B is a function of A. This means
that if IA:B is maximal, i.e. IA:B = H(A), the receiver can reconstruct without any error the message
A from his measurement outcomes. As stressed at the beginning of this section, this is never the case
if A is encoded using non-orthogonal states ρi. Hence IA:B < H(A) for non-orthogonal states. The
maximum

max
POVM {Mi}

{
IA:B

}
(112)

measures the maximal amount of information accessible to the receiver, that is, how well can he
reconstruct the message. The determination of the optimal measurement maximizing IA:B appears
to be a more difficult task than the minimization of the probability of error in state discrimination.
However, one can place an upper bound on the maximal information (112) by means of the Holevo
inequality

IA:B ≤ χHolevo = S(ρ)−
∑

i

ηiS(ρi) , ρ =
∑

i

ηiρi , (113)

where S(ρ) = − tr(ρ ln ρ) is the von Neumann entropy of ρ. The proof of this important result
relies on the monotonicity of the quantum mutual information under certain quantum operations (see
Remark 10.3.3 below). The positive number χHolevo is called the Holevo quantity. We will show below
that χHolevo ≤ H({ηi}) with equality if and only if the ρi have orthogonal supports (see (121)). We
thus recover the aforementioned fact that for non-orthogonal states ρi the maximum (112) is smaller
than the entropy H(A) of the input message.
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6 Quantum entropies

In this Section we give the definitions and main properties of the von Neumann entropy, the cor-
responding relative entropy, and the quantum Rényi relative entropies. For classical systems these
entropies reduce to the Shannon entropy, the Kullback-Leibler divergence, and the Rényi divergences,
respectively, which are central objects in classical information theory. To begin with we recall in
Sec. 6.1 the standard properties of the von Neumann entropy. The most important result for our
purpose is the monotonicity of the corresponding relative entropy with respect to quantum operations
and the characterization of pairs of states which have the same relative entropy than their transformed
states under a given operation. The proof of this result, which will be used later in Sec. 10, is given
in Sec. 6.2. We finally present in Sec. 6.3 the quantum version of the Rényi divergences introduced
recently in [114, 166, 60]. This quantum version contains as special cases the von Neumann relative
entropy and the logarithm of the fidelity (95). The fidelity and the closely related Bures distance will
be the subject of Sec. 7. Together with the von Neumann relative entropy, it plays a major role in
our geometrical approach of quantum correlations (Sec. 11). The generalization of this approach to
the whole family formed by the relative Rényi entropies constitutes an interesting open problem that
will not be deeply explored in this article. The reader may thus skip Sec. 6.3 in a first reading.

6.1 The von Neumann entropy

The entropy H({pk}) = −∑
k pk ln pk introduced by Shannon in his two celebrated 1948 papers [143]

quantifies the amount of information at our disposal on the state of a classical system. It vanishes
when the state is perfectly known and takes its maximum value (equal to lnn if the system has n
distinct possible states) when one has no information on this state at all, that is, if all possible states
are equiprobable. The quantum analog of the Shannon entropy is the von Neumann entropy

S(ρ) = − tr(ρ ln ρ) . (114)

This is a unitary invariant quantity, i.e. S(UρU∗) = S(ρ) for U unitary. Moreover, S is additive for
composite systems, i.e. S(ρA ⊗ ρB) = S(ρA) + S(ρB) for any states ρA and ρB of the systems A and B.
Another important property of S is its strictly concavity13, i.e. for any states ρ0, ρ1 and 0 ≤ η ≤ 1 it
holds S((1 − η)ρ0 + ηρ1) ≥ (1− η)S(ρ0) + ηS(ρ1), with equality if and only if ρ0 = ρ1 or η ∈ {0, 1}.

A much less trivial property of importance in quantum information theory is the so-called strong
subadditivity

S(ρAB) + S(ρBC)− S(ρABC)− S(ρB) ≥ 0 , (115)

where ρABC is a state of ABC with marginals ρAB = trC(ρABC), ρBC = trA(ρABC), and ρB = trAC(ρABC).
The inequality (115) was first proven by Lieb and Ruskai [99] by using a former work of Lieb [98] on the
concavity of the map ρ 7→ tr(K∗ρ1+βKρ−β) for −1 ≤ β ≤ 0 (see Lemma 6.3.2 below). Alternatively,
(115) is a direct consequence of the monotonicity of the relative entropy (Theorem 6.2.1 below), which
can be established by other means than Lieb’s concavity theorem. Choosing HB = C, the strong
subadditivity (115) implies that S is subadditive, i.e. S(ρAC) ≤ S(ρA) + S(ρC).

As is well know in statistical physics, the von Neumann entropy S(ρ) is the Legendre transform of
the free energy Φ(β,H) = −β−1 ln tr(e−βH). More precisely, one has (see [33], Theorem 2.13)

S(ρ) = inf
H∈B(H)s.a.

{
β tr(Hρ)− βΦ(β,H)

}
, Φ(β,H) = inf

ρ∈E(H)

{
tr(Hρ)− β−1S(ρ)

}
, (116)

13 This comes from the strict convexity of f(x) = x ln x. Actually, it is not hard to prove that if f is strictly convex
then the map ρ ∈ E(H) 7→ tr[f(ρ)] is strictly convex [33].
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and the last infimum is attained if and only if ρ is the Gibbs state ρβ = e−βH/ tr(e−βH). The free
energy is a concave function of the energy observable H.

The following identity will be used repeatedly in Secs. 9 and 10:

S(ρA) = S(ρB) if ρA and ρB are the reduced states of the pure state |ΨAB〉 of AB. (117)

It is a consequence of Theorem 2.2.1, since if |ΨAB〉 has Schmidt coefficients µi then S(ρA) = S(ρB) =
−∑

i µi lnµi.
A last identity worthwhile mentioning here is

S(ρ) = min
{|ψi〉,ηi}

H({ηi}) = min
{|ψi〉,ηi}

{
−

m∑

i=1

ηi ln ηi

}
, (118)

where the minimum is over all pure state decompositions of ρ. Furthermore, a decomposition minimizes
H({ηi}) if and only if it is a spectral decomposition of ρ. These statements can be justified as
follows14. Let {|k〉, pk}ri=1 be a spectral decomposition of ρ, with r = ran(ρ). An arbitrary pure
state decomposition {|ψi〉, ηi}mi=1 of ρ has the form

√
ηi|ψi〉 =

∑
k uik

√
pk|k〉, where (uik) is a m×m

unitary matrix and m ≥ r (see (16)). Setting pk = 0 for r < k ≤ m one gets ηi =
∑

k |uik|2pk. Since
f(x) = x lnx is strictly convex, one finds

−H({ηi}) =
m∑

i=1

ηi ln ηi ≤
m∑

i,k=1

|uik|2pk ln pk =
r∑

k=1

pk ln pk = −S(ρ) , (119)

so that S(ρ) ≤ H({ηi}). By strict convexity, the inequality in (119) is an equality if and only if for
any i, there exists some ki ∈ {1, . . . , r + 1} such that uik = 0 when k /∈ Ii = {k = 1, . . . ,m; pk = pki}.
Thus S(ρ) = H({ηi}) if and only if

√
ηi|ψi〉 =

√
pki

∑

k∈Ii

uik|k〉 (120)

are eigenvectors of ρ with eigenvalue ηi = pki (if pki 6= 0). It remains to check that 〈ψi|ψj〉 = 0 when
pki = pkj 6= 0. This comes from the unitarity of (uik). This yields the desired result. The inequality
(119) can be easily generalized to get15

S(ρ) ≤ H({ηi}) +
∑

i

ηiS(ρi) (121)

for any ensemble {ρi, ηi} forming a convex decomposition of ρ. Moreover, one has equality if and only
if the ρi have orthogonal supports.

6.2 Relative entropy

A related quantity to the von Neumann entropy is the relative entropy introduced by Umegaki [158]
and later extended by Araki [10] in the von Neumann algebra setting,

S(ρ||σ) =
{
tr
(
ρ(ln ρ− lnσ)

)
if ker(σ) ⊂ ker(ρ)

+∞ otherwise.
(122)

Note that by taking σ = 1/n proportional to the identity operator, S(ρ||1/n) = lnn − S(ρ) is the
difference between the maximal and the von Neumann entropy of ρ. The relative entropy has the
following properties:

14 An alternative proof can be found in [117].
15 This follows from (118) by writing the spectral decompositions of the ρi (see [117], Sec. 11.3).
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(i) S(ρ||σ) ≥ 0 with equality if and only if ρ = σ;

(ii) unitary invariance S(UρU∗||UσU∗) = S(ρ||σ) for any unitary U ;

(iii) additivity for composite systems: S(ρA ⊗ ρB||σA ⊗ σB) = S(ρA||σA) + S(ρB||σB);

(iv) joint convexity: if 0 ≤ η ≤ 1 then S((1−η)ρ0+ηρ1||(1−η)σ0+ησ1) ≤ (1−η)S(ρ0||σ0)+ηS(ρ1||σ1).

The first property (i) follows from Klein’s inequality, which states that if f is continuous and strictly
convex, then tr[f(A)− f(B)− (A−B)f ′(B)] ≥ 0, with equality if and only if A = B. Its proof can be
found for instance in the excellent lecture notes of E.A. Carlen [33]. The properties (ii) and (iii) are
immediate consequences of the cyclicity of the trace and the relation ln(ρA⊗ρB) = ln ρA⊗1+1⊗ ln ρB,
as in the case of the von Neumann entropy. The last property (iv) can be deduced from the strong
subadditivity (115) [101, 102]. It will be proven in Sec. 6.3. Let us point out that (i) implies the
aforementioned subadditivity S(ρAC) ≤ S(ρA) + S(ρC) of the von Neumann entropy, with equality if
and only if ρAC = ρA ⊗ ρC is a product state (in fact, S(ρAC||ρA ⊗ ρC) = S(ρA) + S(ρC)− S(ρAC)).

Another fundamental property of S(ρ||σ) is its monotonicity with respect to CP trace-preserving
mappings. This monotonicity means that if one performs the same measurement on two states without
readout of the outcomes, the pair of post-measurement states has a lower relative entropy than the
pair of states before the measurement. This fact was first proven by Lindblad [102] (see also [10]
and [155]). Notice that unlike the relative entropy, the von Neumann entropy is not monotonous with
respect to non-projective measurements (see [117], Exercise 11.15). The following theorem provides a
necessary and sufficient condition on the two states such that the monotonicity of the relative entropy
is satisfied with equality. It is due to Petz [129].

Theorem 6.2.1. (Monotonicity of the relative entropy [129, 73]) For any quantum operation M :
B(H) → B(H′) one has S(ρ||σ) ≥ S(M(ρ)||M(σ)) for all states ρ, σ ∈ E(H). The inequality is an
equality if and only if there exists a quantum operation R : B(H′) → B(H) such that R ◦M(σ) = σ
and R ◦M(ρ) = ρ. This quantum operation is the transpose operation R = RM,σ defined in (45).

Let us recall from Sec. 4.1 that the transpose operation RM,σ is the quantum operation with
Kraus operators

Ri =
√
σA∗

iM(σ)−1/2 , (123)

where {Ai} are some Kraus operators for M. The conditions R ◦ M(σ) = σ and R ◦ M(ρ) = ρ,
which mean that ρ and σ can be recovered respectively from M(ρ) and M(σ) by means of the
same quantum operation R, is clearly sufficient to ensure the equality S(ρ||σ) = S(M(ρ)||M(σ)) if
monotonicity holds true. It is remarkable that this is also a necessary condition, with R = RM,σ the
approximate reversal of M introduced in the context of quantum error correction (Sec. 4).

We present below the derivation of this result given by Petz in Ref. [129], which also provides a
nice and simple proof of the monotonicity. A completely different proof of the monotonicity, based on
Lieb’s concavity theorem as in Ref. [102, 33, 60], will be given in Sec. 6.3 in the more general setting
of the Rényi entropies. It is noteworthy that Petz’s derivation does neither rely on the Stinespring
theorem nor on the Kraus decomposition (albeit it takes advantage of one of its consequence, namely,
the Kadison-Schwarz inequality). It makes use of the theory of operator convex functions and of
Araki’s relative modular operators [11]. Let M be a quantum operation B(H) → B(H′) and ρ and
σ be two states of E(H) such that ρ and M(ρ) are invertible. One can define two relative modular
operators by (see Sec. 2)

∆σ|ρ(B) = σBρ−1 , ∆M(σ)|M(ρ)(B
′) = M(σ)B′M(ρ)−1 , B ∈ B(H) , B′ ∈ B(H′) . (124)
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Proof. Let us set ρM = M(ρ) and σM = M(σ) and assume that ρ, σ, ρM, and σM are invertible.
In the whole proof these states are fixed, so to simplify notation we write ∆ instead of ∆σ|ρ and ∆M

instead of ∆σM|ρM . We set ξ = ρ
1
2 and ξM = ρ

1
2
M. One can view these two operators as unit vectors

in B(H) and B(H′), respectively, for the Hilbert-Schmidt scalar product 〈·, ·〉. The first observation is
that

S(ρ||σ) = 〈ξ , (ln ρ− lnσ)ξ〉 = −〈ξ , ln(∆)ξ〉 =
∫ ∞

0
dt

(〈
ξ , (∆ + t)−1ξ

〉
− (1 + t)−1

)
. (125)

The third equality can be established, for instance, with the help of the first identity in (A2) (see
Appendix A). Therefore, in order to prove that S(ρ||σ) ≥ S(ρM||σM), it suffices to show that for any
t > 0, 〈

ξM , (∆M + t)−1ξM
〉
≤

〈
ξ , (∆ + t)−1ξ

〉
. (126)

To this end, let us consider the operator CM defined by

CM(B′ξM) = M∗(B′)ξ , B ∈ B(H′) . (127)

Since {B′ξM;B′ ∈ B(H′)} is equal to16 B(H′) by the invertibility of ρM, (128) defines an operator
CM from B(H′) to B(H). Then

C∗
M∆CM ≤ ∆M . (128)

Actually, thanks to the Kadison-Schwarz inequality (30) and the relation (M∗(B′∗))∗ = M∗(B′), one
has

〈
CM(B′ξM) , ∆ CM(B′ξM)

〉
= tr

(
|M∗(B′∗)|2σ

)

≤ tr
(
M∗(B′B′∗)σ

)
=

〈
B′ξM , ∆MB′ξM

〉
. (129)

One shows similarly that ‖CM(B′ξM)‖2 ≤ ‖B′ξM‖2 for any B′ ∈ B(H′), hence ‖CM‖ ≤ 1.
We now use the fact that the function f(x) = (x + t)−1 is operator monotone-decreasing and

operator convex. The definitions of operator monotone and operator convex functions are given in
Appendix A. Together with the bound (128), this implies17

(∆M + t)−1 ≤ (C∗
M∆CM + t)−1 ≤ C∗

M(∆ + t)−1CM + t−1(1− C∗
MCM) . (130)

The last inequality follows by applying the Jensen-type inequality (A4) for the operator convex function
g(x) = (x + t)−1 − t−1 satisfying g(0) = 0 and the contraction CM. Since CM(ξM) = ξ by (127) and
M∗(1) = 1, the inequality (130) entails

〈
ξM , (∆M + t)−1ξM

〉
≤

〈
ξ , (∆ + t)−1ξ

〉
+ t−1

(
tr(ρM)− tr(ρ)

)
. (131)

The term proportional to t−1 vanishes because M is trace preserving, hence one obtains the desired
bound (126). We have thus proven the monotonicity of the relative entropy.

16 In the theory of C∗-algebras, if this equality is true upon completion of {B′ξM;B′ ∈ B′} for the Hilbert-Schmidt
norm one says that (B′ ∈ B′ 7→ LB′ , ξM) defines a cyclic representation of the algebra B′ on the Hilbert space B(H′) [29].

17 In [129] the last term in the right-hand side is omitted. This is a not correct as the Jensen-type inequality (A4)
cannot be applied for the function f(x) = (x+ t)−1, because it does not satisfy the condition f(0) ≤ 0. Fortunately, this
term disappears in (126) due to the trace-preserving property of M and the proof goes through.
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In addition to its simplicity, the above proof offers the advantage that it easily yields a necessary
and sufficient condition for having S(ρ||σ) = S(ρM||σM). Actually, this equality holds if and only
if (126) is an equality, i.e.

〈
ξM , (∆M + t)−1ξM

〉
=

〈
ξM ,

(
C∗
M(∆ + t)−1CM + t−1(1− C∗

MCM)
)
ξM

〉
(132)

for all t > 0. But for any operators X, Y , and Z with Z invertible and X ≤ Y , 〈Z,XZ〉 = 〈Z, Y Z〉
implies XZ = Y Z. Hence we can infer from (130) and (132) that

(∆M + t)−1ξM = C∗
M(∆ + t)−1ξ , t > 0 , (133)

where we have used the identity C∗
MCM(ξM) = ξM (in fact, the scalar product 〈CM(B′ξM) , CMξM〉

is equal to 〈B′ξM , ξM〉 for any B′ ∈ B(H′)). Therefore,

∥∥C∗
M(∆ + t)−1ξ

∥∥2
2
=

〈
(∆M + t)−2ξM, ξM

〉
=

〈
C∗
M(∆ + t)−2ξ, ξM

〉
=

∥∥(∆ + t)−1ξ
∥∥2
2
, (134)

where the second equality is obtained by differentiating (133) with respect to t. Now, the identity
‖C∗(X)‖2 = ‖X‖2 for C a contraction implies that CC∗(X) = X (in fact, then the Cauchy-Schwarz in-
equality 〈X , CC∗(X)〉 ≤ ‖X‖2‖CC∗(X)‖2 ≤ ‖X‖22 is an equality, so that CC∗(X) must be proportional
to X). We conclude that

CM(∆M + t)−1ξM = CMC∗
M(∆ + t)−1ξ = (∆ + t)−1ξ (135)

for any t > 0. By means of the functional calculus, one deduces from this identity that

CM∆
− 1

2
M ξM = ∆− 1

2 ξ . (136)

In view of the definitions (124) and (127) and as ρ > 0, the last formula gives M∗(σ
− 1

2
M ξM) = σ−

1
2 ξ.

By multiplying by the adjoint and using the Kadison-Schwarz inequality, we arrive at

σ−
1
2ρ σ−

1
2 ≤ M∗(σ

− 1
2

M ρMσ
− 1

2
M ) , (137)

that is, ρ ≤ RM,σ(ρM) with RM,σ defined in (45). But tr[ρ] = tr[ρM] = tr[RM,σ(ρM)], whence
ρ = RM,σ(ρM). The other equality σ = RM,σ(σM) is obvious. Reciprocally, as stressed above, these
two identities imply S(ρ||σ) = S(ρM||σM) thanks to the monotonicity of the relative entropy and the
fact that RM,σ is a quantum operation. ✷

Let us end this subsection by pointing out that the strong subadditivity of the von Neumann
entropy, the joint convexity of the relative entropy, and its monotonicity can be deduced from each
other. For instance, the strong subadditivity (115) is a simple consequence of the monotonicity.
Actually, one checks that

S(ρAB) + S(ρBC)− S(ρABC)− S(ρB) = S(ρABC||ρA ⊗ ρBC)− S(MC(ρABC)||MC(ρA ⊗ ρBC)) (138)

with MC : ρ 7→ trC(ρ). It is easy to show that MC is a CP and trace-preserving map B(HABC) →
B(HAB), therefore (115) follows from Theorem 6.2.1. With the help of this theorem it is also possible
to characterize all states ρABC such that (115) becomes an equality [73].

Conversely, Lindblad [101, 102] proves the monotonicity inequality from the strong subadditivity.
The basic idea is to show that the strong subadditivity of the von Neumann entropy or the closely
related Lieb concavity theorem imply the joint convexity (iv) of the relative entropy. The corresponding
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arguments are given in Sec. 6.3.2 below. One can then deduce the monotonicity of the relative
entropy from its joint convexity (iv) with the help of Stinespring’s theorem as follows [153, 167, 60].
Recall that if µH is the normalized Haar measure on the group U(n) of n× n unitary matrices, then∫
dµH(U)UBU∗ = n−1 tr(B) for any B ∈ B(H) (in fact, all diagonal matrix elements of the left-

hand side in an arbitrary basis are equal, as follows from the left-invariance dµH(V U) = dµH(U)
for V ∈ U(n); as a result, this left-hand side is proportional to the identity matrix). We infer from
Stinespring theorem 3.2.2 that

M(ρ)⊗ (1/nE) =

∫

U(nE)
dµH(UE) (1 ⊗ UE)Uρ⊗ |ǫ0〉〈ǫ0|U∗(1⊗ U∗

E) (139)

with U unitary on HSE. Thanks to the additivity (iii), the joint convexity convexity (iv), and the
unitary invariance (ii), we get

S(M(ρ)||M(σ)) = S
(
M(ρ)⊗ (1/nE)

∣∣∣∣M(σ)⊗ (1/nE)
)

≤
∫

U(nE)
dµH(UE)S

(
(1⊗ UE)Uρ⊗ |ǫ0〉〈ǫ0|U∗(1⊗ U∗

E)
∣∣∣∣(1⊗ UE)Uσ ⊗ |ǫ0〉〈ǫ0|U∗(1⊗ U∗

E)
)

=

∫

U(nE)
dµH(UE)S(ρ||σ) = S(ρ||σ) . (140)

By the same argument, one can show a slightly more general result.

Proposition 6.2.2. Let f : E(H)× E(H) → R be a unitary-invariant jointly convex function for any
finite Hilbert space H, which satisfies f(ρ ⊗ τ, σ ⊗ τ) = f(ρ, σ) for all ρ, σ ∈ E(H) and τ ∈ E(H′).
Then f is monotonous with respect to quantum operations.

6.3 Quantum relative Rényi entropies

6.3.1 Definitions

In the classical theory of information, other entropies than the Shannon entropy play a role when
ergodicity breaks down or outside the asymptotic regime. The Rényi entropy depending on a parameter
α > 0 unifies these different entropies. In the quantum setting, it is defined as

Sα(ρ) = (1− α)−1 ln tr(ρα) . (141)

It is easy to show that Sα(ρ) converges to the von Neumann entropy S(ρ) when α→ 1 and that Sα(ρ)
is a non-increasing function of α.

A first definition of the quantum relative Réyni entropy is

S(n)
α (ρ||σ) = (α− 1)−1 ln(tr[ρασ1−α]) , α > 0 , α 6= 1 . (142)

This entropy appears naturally in the context of the quantum hypothesis testing (Sec. 8.1 below).
We shall discuss here a symmetrized version proposed recently by Müller-Lennert et al. [114] and by
Wilde, Winter, and Yang [166]. It is given by

Sα(ρ||σ) = (α − 1)−1 ln tr
[(
σ

1−α
2α ρ σ

1−α
2α

)α]
(143)

if α ∈ (0, 1) and tr(σρ) > 0 or if α > 1 and ker σ ⊂ ker ρ (if none of these conditions are satisfied,
one sets Sα(ρ||σ) = +∞). This relative entropy has been used in Ref. [166] to solve an important
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open problem related to the transmission of information in noisy quantum channels. It seems likely
that much more applications in quantum information theory will be encountered in the future. The
entropies Sα appeared recently as central objects in a very different context, namely, the quantum
fluctuation relations in out-of-equilibrium statistical physics [88, 89]. A nice feature of the family
{Sα}α>0 is that it contains the von Neumann relative entropy, the fidelity entropy, and the max-
entropy as special cases. Furthermore, Sα depends continuously and monotonously on α. The fidelity-
entropy is obtained for α = 1/2. It is given by S1/2(ρ||σ) = − lnF (ρ, σ), where F (ρ, σ) is the fidelity
(95). The max-entropy is defined by

S∞(ρ||σ) = lim
α→∞

Sα(ρ||σ) = ln ‖σ− 1
2ρσ−

1
2 ‖ , (144)

where ‖ · ‖ is the operator norm. The second equality follows from ‖A‖α → ‖A‖ as α → ∞ (see
Sec. 2.1). Finally, one recovers the von Neumann relative entropy (122) by letting α→ 1,

S(ρ||σ) = lim
α→1

Sα(ρ||σ) . (145)

To justify this statement, let us set A(α) = σ
1−α
2α ρσ

1−α
2α . Explicit calculations show that

d tr[A(α)α]

dα
= tr[A(α)α lnA(α)] + α tr

[
A(α)α−1 dA

dα

]

dA

dα
= − 1

2α2

(
ln(σ)A(α) +A(α) ln(σ)

)
. (146)

Consequently, Sα(ρ||σ) → (d ln tr[A(α)α]/dα)α=1 = tr(ρ ln ρ − ρ ln σ) as α → 1. Note that a similar

result holds for the unsymmetrized Rényi entropy (142), i.e. S(ρ||σ) = limα→1 S
(n)
α (ρ||σ). Let us also

emphasize that
Sα(ρ||σ) ≤ S(n)

α (ρ||σ) (147)

by the Lieb-Thirring trace inequality (B3).

For commuting matrices ρ =
∑
pk|k〉〈k| and σ =

∑
k qk|k〉〈k|, both Sα(ρ||σ) and S

(n)
α (ρ||σ) reduce

to the classical Réyni divergence

Sclas
α (p||q) = (α− 1)−1 ln

( n∑

k=1

pαk q
1−α
k

)
, (148)

which is non-negative for α > 0 by the Hölder inequality.

6.3.2 Main properties

It is shown in this subsection that the Rényi relative entropy Sα(ρ||σ) satisfies the same properties
(i-iv) as the von Neumann relative entropy in Sec. 6.2 for any α ∈ [1/2, 1]. For 0 < α < ∞ we define
the α-fidelity by

Fα(ρ||σ) = ‖ρ 1
2σ

β
2 ‖22α = ‖σ β

2 ρσ
β
2 ‖α = e−βSα(ρ||σ) with β =

1− α

α
. (149)

Here, we have used the notation ‖A‖2α = (tr[(A∗A)α])
1
2α even if this does not correspond to a norm

when 0 < α < 1/2.
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Theorem 6.3.1. For any α > 0, one has

(i) Sα(ρ||σ) ≥ 0 with equality if and only if ρ = σ;

(ii) Sα(ρ||σ) is unitary invariant;

(iii) Sα(ρ||σ) is additive for composite systems;

(iv) Fα(ρ||σ)α is jointly concave for α ∈ [1/2, 1) and jointly convex for α > 1. In particular, Sα(ρ||σ)
is jointly convex for α ∈ [1/2, 1];

(v) if α ≥ 1/2 then Sα(ρ||σ) ≥ Sα(M(ρ)||M(σ)) for any quantum operation M on B(H).

The statements (i-iii), as well as (iv-v) for a restricted range of α, namely α ∈ (1, 2], have been
established in [114, 166]. The justification of (iv-v) in full generality is due to Frank and Lieb [60].

Proof. The unitary invariance (ii) and additivity (iii) are evident and also hold for the α-fidelity.
We now argue that the non-negativity (i) and the monotonicity (iv) can be deduced from the con-
vexity/concavity property (iv). Thanks to Proposition 6.2.2, (iv) implies that if α ∈ [1/2, 1) then
Fα(M(ρ)||M(σ)) ≥ Fα(ρ||σ) for any quantum operation M, and the reverse inequality holds true if
α > 1. The monotonicity of Sα for α ≥ 1/2 then follows immediately (the case α = 1 is obtained by
continuity, see (145)). Let {|k〉} be an orthonormal basis of H andMΠ be the quantum operation (26)
associated to the von Neumann measurement {Πk = |k〉〈k|}. The monotonicity entails

Sα(ρ||σ) ≥ Sα(MΠ(ρ)||MΠ(σ)) = Sclas
α (p||q) , (150)

where p and q are the vectors with components pk = 〈k|ρ|k〉 and qk = 〈k|σ|k〉. Since the classical
Rényi divergence (148) is non-negative and vanishes if and only if p = q, we deduce from (150) that
Sα(ρ||σ) ≥ 0, with equality if and only if 〈k|ρ|k〉 = 〈k|σ|k〉 for all k. The orthonormal basis {|k〉}
being arbitrary, this justifies the assertion (i) for α ≥ 1/2. To show this assertion for α ∈ (0, 1/2), we
argue as in [114] that

Sα(ρ||σ) ≥ Sα(MΠ(ρ)||σ) = Sclas
α (p||q) (151)

with 0 < α < 1, MΠ being as before associated with the von Neumann {Πk = |k〉〈k|} but with {|k〉}
an orthonormal eigenbasis of σ. Actually, let α ∈ (0, 1) and let us set A(β) = σ

β
2 ρσ

β
2 with β = α−1−1.

By virtue of the Jensen type inequality (A8) of Appendix A, one has

(
MΠ(A(β))

)α ≥ MΠ

(
A(β)α

)
(152)

due to the operator concavity of f(x) = xα. Hence, by the trace-preserving property of MΠ and the

identity σ
β
2 MΠ(ρ)σ

β
2 = MΠ(A(β)),

Sα(ρ||σ) = (α− 1)−1 ln tr
[
MΠ

(
A(β)α

)]

≥ (α− 1)−1 ln tr
[(
MΠ

(
A(β)

))α]
= Sα(MΠ(ρ)||σ) . (153)

This proves (151) and thus the non-negativity of Sα for α ∈ (0, 1). Observe that Sα(ρ||σ) =
Sα(MΠ(ρ)||σ) if and only if (152) holds with equality, that is, 〈k|A(β)|k〉α = 〈k|A(β)α|k〉 for all
k. By the strict concavity of f(x) = xα, {|k〉} must then be an eigenbasis of A(β), and thereby also
of ρ. Thus ρ and σ commute and Sα(ρ||σ) coincides with the classical Rényi divergence Sclas

α (p||q).
By the aforementioned properties of Sclas

α (p||q), it follows from (151) that Sα(ρ||σ) = 0 implies p = q
and thus ρ = σ.
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It remains to show the statement (iv) of the theorem. Following [60], we obtain (iv) with the help
of a duality formula for Fα(ρ, σ) and of Lieb’s concavity and Ando’s convexity theorems. We omit
here the proof of these two important theorems, which can be found in [33] (see also [117] for the Lieb
theorem). The duality formula will be shown at the end this subsection.

Lemma 6.3.2. (Lieb’s concavity and Ando’s convexity theorem [8, 98]) For any K ∈ B(H) and any
β ∈ [−1, 1], the function (R,S) 7→ tr(K∗RqKS−β) on B(H)+ × B(H)+ is jointly concave in (R,S) if
−1 ≤ β ≤ 0 and 0 ≤ q ≤ 1 + β and is jointly convex in (R,S) if 0 ≤ β ≤ 1 and 1 + β ≤ q ≤ 2.

Lemma 6.3.3. (Duality formula for the α-fidelity [60]) If α ∈ (0, 1) (that is, β = α−1 − 1 > 0) then

Fα(ρ, σ)
α = inf

H≥0

{
α tr(Hρ) + (1− α) tr

[
(
√
Hσ−β

√
H)

− 1
β
]}

. (154)

If α > 1 (that is, −1 < β < 0), the same identity holds but with the infimum replaced by a supremum.

Given Lemma 6.3.3, if one can show that, for a fixed operator B ∈ B(H), the function

gB,β(σ) = tr
[
(B∗σ−βB)

− 1
β
]

(155)

is concave in σ when −1 ≤ β ≤ 1, β 6= 0, it will follow that Fα(ρ||σ)α is jointly concave for α ∈ [1/2, 1)
(i.e. 0 < β ≤ 1) and jointly convex for α > 1 (i.e. −1 < β < 0), thereby proving Theorem 6.3.1. We
first assume −1 ≤ β < 0. For any operator Y ≥ 0, let us set

hY (X) = tr(Y X1+β)− (1 + β) tr(X) (156)

with X ∈ B(H)+. Given two self-adjoint matrices Y and Z, it is known that (see [27], Problem
III.6.14)

n∑

i=1

yn−izi ≤ tr(Y Z) ≤
n∑

i=1

yizi , (157)

where y1 ≥ y2 ≥ · · · ≥ yn and z1 ≥ z2 ≥ · · · ≥ zn are the eigenvalues of Y and Z in non-increasing
order. Therefore,

sup
X≥0

{hY (X)} = max
x

{ n∑

i=1

(
yix

1+β
i − (1 + β)xi

)}
= −β

n∑

i=1

y
− 1

β

i = −β tr
(
Y − 1

β
)
, (158)

the maximum in the second member being over all vectors x ∈ R
n
+. Similarly, it follows from (157)

that if 0 < β ≤ 1 then infX≥0{hY (X)} = −β tr(Y − 1
β ). Plugging Y = B∗σ−βB into these identities,

one finds

gB,β(σ) = sup
X≥0

{
−β−1

(
tr(B∗σ−βBX1+β)− (1 + β) tr(X)

)}
, −1 ≤ β < 0 or 0 < β ≤ 1. (159)

Let us introduce the 2× 2 block matrices

K =

(
0 0
B∗ 0

)
, S =

(
σ 0
0 X

)
. (160)

A simple calculation gives

tr(B∗σ−βBX1+β) = trH⊗C2(K∗S1+βKS−β) . (161)
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By Lemma 6.3.2, the right-hand side of (161) is concave (respectively convex) in S when −1 ≤ β < 0
(respectively 0 < β ≤ 1). As a result, the left-hand side is jointly concave (convex) in (σ,X). But
the maximum over X of a jointly concave function f(σ,X) is concave in σ. Thanks to (159), we may
conclude that gB,β(σ) is concave in σ for all β ∈ [−1, 1], β 6= 0. The proof of Theorem 6.3.1 is now
complete. ✷

Let us come back to the duality formula (154). We observe in passing that this formula bears some
similarity with the variational formula (116) for the von Neumann entropy.

Proof of lemma 6.3.3. Since σ−
β
2Hσ−

β
2 has the same non-zero eigenvalues as

√
Hσ−β

√
H, the

quantity inside the infimum in (154) is equal to

g(H) = α tr(Hρ) + (1− α) tr
[
(σ−

β
2Hσ−

β
2 )−

1
β
]
. (162)

Differentiating the right-hand side with respect to the matrix elements of H in the some orthonormal
basis {|i〉} and using the relation ∂ tr[f(B)]/∂Bij = f ′(B)ji with f(x) a C

1-function, we get

∂g(H)

∂Hij
= α

(
ρ− σ−

β
2 (σ−

β
2Hσ−

β
2 )−

1
β
−1σ−

β
2

)
ji
. (163)

Hence g(H) has an extremum if and only if H = Ĥ = σ
β
2 (σ

β
2 ρσ

β
2 )α−1σ

β
2 ≥ 0. But

g(Ĥ) = tr[(σ
β
2 ρσ

β
2 )α] = Fα(ρ||σ)α . (164)

As B ∈ B(H)+ 7→ tr(Bp) is convex for p ≥ 1 or p ≤ 0, g(H) is convex if α ∈ (0, 1) (i.e. −β−1 < 0) and
concave if α > 1 (i.e. −β−1 > 1). It follows that g(Ĥ) is a minimum for α ∈ (0, 1) and a maximum
for α > 1. ✷

Let us point out that it follows from Lemma 6.3.2 that the normal-ordered Rényi entropy (142) is

also jointly convex for α ∈ (0, 1). Taking α → 1 and recalling that S
(n)
α (ρ||σ) → S(ρ||σ), this gives a

direct proof the joint convexity of the relative von Neumann entropy S(ρ||σ) from the Lieb concavity
theorem, as noted by Lindblad [101, 102]. Combined with Proposition 6.2.2, this leads to a completely
different justification of the monotonicity of S(ρ||σ) in Theorem 6.2.1 than that presented in Sec. 6.2.
It would be interesting to look for a generalization of the arguments of Petz in Sec. 6.2 to the case of
the α-entropies.

6.3.3 Monotonicity in α

As stated above, a very nice feature of the α-entropy (143) is that, like the classical Rényi divergence,
it is monotonous in α. This leads in particular to some bound between the relative von Neumann
entropy and the fidelity (see (199) below).

Proposition 6.3.4. [114] For any ρ, σ ∈ E(H), Sα(ρ||σ) is a non-decreasing function of α on (0,∞).

Proof. One first derive the following identity similar to (159):

(
gB,−α−1(σ)

) 1
α =

∥∥B∗σ1/αB
∥∥
α
= sup

τ≥0,tr(τ)=1
tr
(
B∗σ1/αB τ1−1/α

)
, α ≥ 1 . (165)

If 0 < α ≤ 1 the supremum has to be replaced by an infimum. When α ≥ 1 this identity is nothing
but a rewriting of the Hölder’s inequality (3). The derivation for α ∈ (0, 1) relies on (157) and follows
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the same lines as for the derivation of (159) (apart from the fact that we substituted β by −1/α),
but one must introduce a Lagrange multiplier to account for the constraint tr(τ) = 1. Applying the

relation (165) for B = σ−
1
2 ρ

1
2 and plugging the identity ‖σ β

2 ρσ
β
2 ‖α = ‖ρ 1

2σβρ
1
2 ‖α into (149), we are

led to

Sα(ρ||σ) = sup
τ∈E(H)

{
−β−1 lnFα(ρ||σ; τ)

}
, Fα(ρ||σ; τ) = tr

(
ρ

1
2σβρ

1
2 τ−β

)
=

〈
ξ , ∆β

σ|τξ
〉
, (166)

for any α > 0, α 6= 1. In the last identity ξ = ρ
1
2 and we have introduced the relative modular

operator, see (8). For any fixed τ ∈ E(H), one finds

d

dβ

(
−β−1 lnFα(ρ||σ; τ)

)
= − 1

β2Fα(ρ||σ; τ)
(
〈ξ , ∆β

σ|τ ln(∆
β
σ|τ )ξ〉 − 〈ξ , ∆β

σ|τξ〉 ln〈ξ , ∆
β
σ|τξ〉

)
. (167)

The Jensen inequality applied to the convex function f(x) = x lnx implies that the quantity inside
the parenthesis in the right-hand side is non-negative. Thus −β−1Fα(ρ||σ; τ) is a non-increasing
function of β. This is true for any density matrix τ , thus one infers from (166) that α 7→ Sα(ρ||σ) is
non-decreasing. ✷
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7 The Bures distance and Uhlmann fidelity

In this section we study the Bures distance on the set of quantum states E(H). This distance is
Riemannian and monotonous with respect to quantum operations. It is a simple function of the
fidelity (95). Its metric coincides with the quantum Fisher information quantifying the best achievable
precision in the parameter estimation problem discussed in Sec. 8.2. The material of this section (as
well as of Sec. 8) is completely independent from that of sections 9 and 10, so it is possible at this
point to proceed directly to Sec. 9. The reading of Secs. 7.1–7.4 is, however, recommended before
going through Sec. 11 devoted to the geometrical measures of quantum correlations, where the Bures
distance plays the key role. The section is organized as follows. Sec. 7.1 contains a short discussion on
contractive (i.e. monotonous) distances. It is argued there that the distances induced by the ‖·‖p-norm
are not contractive save for p = 1. The definition and main properties of the Bures distance are given
in Secs. 7.2–7.4. The Bures metric is determined in Sec.7.5. Finally, Sec. 7.6 contains the proof of an
important result of Petz on the characterization of all Riemannian contractive metrics on E(H) for
finite-dimensional Hilbert spaces H.

7.1 Contractive and convex distances

In order to quantify how far are two states ρ and σ it is necessary to define a distance on the set E(H)
of quantum states. One has a priori the choice between many distances. The most common ones are
the Lp-distances defined by (2). In quantum information theory it seems, however, natural to impose
the following requirement.

Definition 7.1.1. A distance d on the sets of quantum states is contractive if for any finite Hilbert
spaces H and H′, any quantum operation M : B(H) → B(H′), and any ρ, σ ∈ E(H), it holds

d(M(ρ),M(σ)) ≤ d(ρ, σ) . (168)

A contractive distance is in particular invariant under unitary conjugations, i.e.

d
(
UρU∗, Uσ U∗

)
= d(ρ, σ) if U is unitary (169)

(in fact, ρ 7→ UρU∗ is an invertible quantum operation on B(H)). For such a distance, if a generalized
measurement is performed on a system, two states are closer from each other after the measurement
than before it, and if the system is subject to a unitary evolution the distance between the time-evolved
states remains unchanged.

For p > 1, the distances dp (in particular, the Hilbert-Schmidt distance d2) are not contractive. A
counter-example for two qubits is obtained [122] by taking M(ρ) = A1ρA

∗
1 +A2ρA

∗
2 with

A1 = σ+ ⊗ 1 , A2 = σ+σ− ⊗ 1 , ρ =
1

2
⊗ σ+σ− , σ =

1

2
⊗ σ−σ+ (170)

(here σ+ = |1〉〈0| is the raising operator and σ− = σ∗+). Then ‖M(ρ) −M(σ)‖p = 21/p is larger than
‖ρ− σ‖p = 22/p−1.

Proposition 7.1.2. [136] The trace distance d1 is contractive.
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Proof. : Let R = ρ − σ = R+ − R− with R± = (|R| ± R)/2 = ±RP± ≥ 0 the positive and negative
parts of R (here P+ and P− are the spectral projectors of R on [0,∞) and (−∞, 0)). Then ‖R‖1 =
tr(R+ + R−) = 2 tr(R+) because tr(R) = tr(R+)− tr(R−) = 0. Since M is trace preserving and CP,
one has ‖M(R)‖1 = 2 tr[M(R)+] and M(R)+ = (M(R+)−M(R−))+ ≤ M(R+). Thus ‖M(R)‖1 ≤
2 tr[M(R+)] = 2 tr[R+] = ‖R‖1. ✷

A distance d on E(H) is jointly convex if for any state ensembles {ρi, pi} and {σi, pi} with the same
probabilities pi,

d
(∑

i

piρi,
∑

i

piσi

)
≤

∑

i

pid(ρi, σi) . (171)

Since they are associated to a norm, the distances dp are jointly convex for any p ≥ 1.

7.2 The Bures distance

We now introduce the Bures distance dB. This distance is contractive like d1. It was first considered
by Bures in the context of infinite products of von Neumann algebras [32] (see also [9]) and was later
studied in a series of papers by Uhlmann [154, 156, 157]. Uhlmann used it to define parallel transport
and related it to the fidelity generalizing the usual fidelity |〈ψ|φ〉|2 between pure states. Indeed, dB is
a extension to mixed states of the Fubini-Study distance on the projective space PH of pure states,

dFS
(
ρψ, σφ

)
= inf

|ψ〉,|φ〉

∥∥|ψ〉 − |φ〉
∥∥ =

(
2− 2|〈ψ|φ〉|

) 1
2 , (172)

where the infimum in the second member is over all representatives |ψ〉 of ρψ ∈ PH and |φ〉 of
σφ ∈ PH (i.e. ρψ = |ψ〉〈ψ| and σφ = |φ〉〈φ|). Observe that the third member is independent of these
representatives. For two mixed states ρ and σ in E(H), one can define analogously [156, 84]

dB(ρ, σ) = inf
A,B

d2(A−B) , (173)

where the infimum is over all Hilbert-Schmidt matrices A and B satisfying AA∗ = ρ and BB∗ =
σ. Such matrices are given by A =

√
ρV and B =

√
σW for some unitaries V and W (polar

decompositions). If ρ = ρψ and σ = σφ are pure states, then A = |ψ〉〈µ| and B = |φ〉〈ν| with
‖µ‖ = ‖ν‖ = 1, so that (173) reduces to the Fubini-Study distance (172).

For mixed states ρ and σ, the right-hand side of (173) is given by

(
2− 2 sup

U
Re tr(U

√
ρ
√
σ)
) 1

2 (174)

with a supremum over all unitaries U = WV ∗. This supremum is equal to ‖√ρ√σ‖1 and is attained

if and only if UU0|
√
ρ
√
σ| 12 = |√ρ√σ| 12 , where U0 is such that

√
ρ
√
σ = U0|

√
ρ
√
σ| (see Sec. 2.1).

Equivalently, the infimum in (173) is attained if and only if the parallel transport condition A∗B ≥ 0
holds. We obtain the following equivalent definition of dB.

Definition 7.2.1. For any states ρ, σ ∈ E(H),

dB(ρ, σ) =
(
2− 2

√
F (ρ, σ)

) 1
2 (175)

where the Uhlmann fidelity is defined by

F (ρ, σ) = ‖√ρ
√
σ‖21 =

(
tr
[
(
√
σρ

√
σ)

1
2
])2

. (176)
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The fidelity F (ρ, σ) is symmetric in (ρ, σ) and belongs to the interval [0, 1]. It is clearly a gener-
alization of the usual pure state fidelity F (|ψ〉, |φ〉) = |〈ψ|φ〉|2. If σφ is pure, then

F (ρ, σφ) = 〈φ|ρ|φ〉 (177)

for any ρ ∈ E(H).
It is immediate on (173) that dB is positive and symmetric, and dB(ρ, σ) = 0 if and only if ρ = σ.

The triangle inequality is more difficult to show. It can be established with the help of the following
astonishing theorem.

Theorem 7.2.2. (Uhlmann [154]) Let ρ, σ ∈ E(H) and |Ψ〉 be a purification of ρ on the space H⊗K,
with dimK ≥ dimH. Then

F (ρ, σ) = max
|Φ〉

|〈Ψ|Φ〉|2 (178)

where the maximum is over all purifications |Φ〉 of σ on H⊗K.

Proof. We give here a simple proof due to Josza [91]. Let us first assume K ≃ H. Let |Ψ〉 and |Φ〉 be
purifications of ρ and σ on H ⊗ H, respectively. As it has been noticed in Sec. 2.3, by the Schmidt
decomposition these purifications can always be written as

|Ψ〉 =
n∑

k=1

√
pk|k〉|fk〉 , |Φ〉 =

n∑

k=1

√
qk(U |k〉)|gk〉 , (179)

where ρ =
∑

k pk|k〉〈k| and σ =
∑

k qkU |k〉〈k|U∗ are spectral decompositions of ρ and σ, U is a unitary
operator on H, and {|fk〉}ni=1 and {|gk〉}ni=1 are two orthonormal bases of H. Defining the unitaries
V and W on H by |fk〉 = V |k〉 and |gk〉 =W |k〉 for any k = 1, . . . , n, we have

|Ψ〉 = √
ρ⊗ V |Σ〉 , |Φ〉 =

√
σ U ⊗W |Σ〉 with |Σ〉 =

n∑

k=1

|k〉|k〉 . (180)

The vector |Σ〉 is the vector associated to the identity operator on B(H) by the isomorphism (5). For
any X,Y ∈ B(H), one obtains by setting O = XT ⊗ Y in (6) and noting that tr(OR) = tr(XY ) that

tr(XY ) = 〈Σ|XT ⊗ Y |Σ〉 (181)

(here XT is the transpose of X in the basis {|k〉}). Introducing the unitary U0 = V ∗WUT , this gives

sup
|Φ〉

|〈Φ|Ψ〉| = sup
W

|〈Σ|U∗√σ√ρ⊗W ∗V |Σ〉| = sup
U0

| tr(√ρ
√
σ U∗

0 )| = ‖√ρ
√
σ‖1 . (182)

The last equality comes from (3). This proves the desired result. The supremum is achieved by
choosing |Φ〉 as in (179) with U = UT0 (W

∗)TV T , U0 being a unitary in the polar decomposition of√
ρ
√
σ.

If K has a dimension m larger than n, we extend ρ and σ to a space H′ ≃ K by adding to them
new orthonormal eigenvectors |k〉 and U |k〉 with zero eigenvalues pk = qk = 0, k = n+1, . . . ,m. This
does not change the fidelity F (ρ, σ), thus F (ρ, σ) = max|Φ′〉 |〈Ψ′|Φ′〉|2, where |Ψ′〉 is a purification of
ρ′ =

∑m
k=1 pk|k〉〈k| = ρ on H′ ⊗ H′, and similarly for |Φ′〉. But |Ψ′〉 and |Φ′〉 have the form (179),

hence they belong to H⊗K. ✷
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Let ρ, σ, and τ be three states of E(H) and |Ψ〉 be a purification of ρ on H ⊗ H. According to
Theorem 7.2.2, there exists a purification |Φ〉 of σ on H ⊗H such that F (ρ, σ) = |〈Ψ|Φ〉|2. One can
choose the arbitrary phase factor of |Φ〉 in such a way that 〈Ψ|Φ〉 ≥ 0, whence

√
F (ρ, σ) = 〈Ψ|Φ〉.

Similarly, there exists a purification |χ〉 of τ such that
√
F (σ, τ) = 〈Φ|χ〉 ≥ 0. In view of (175) and

(178),

dB(ρ, τ) ≤
(
2− 2|〈Ψ|χ〉|

) 1
2

≤
(
2− 2Re 〈Ψ|χ〉|

) 1
2 =

∥∥|Ψ〉 − |χ〉
∥∥

≤
∥∥|Ψ〉 − |Φ〉

∥∥+
∥∥|Φ〉 − |χ〉

∥∥ =
(
2− 2〈Ψ|Φ〉|

) 1
2 +

(
2− 2〈Φ|χ〉|

) 1
2 , (183)

showing that dB satisfies the triangle inequality dB(ρ, τ) ≤ dB(ρ, σ) + dB(σ, τ).

Corollary 7.2.3. The map (ρ, σ) 7→ dB(ρ, σ) defines a distance dB on quantum states, with values in
[0, 1]. This distance is contractive. Moreover, d2B is jointly convex.

Note that dB is not jointly convex. One gets a counter-example by choosing ρ0 = σ0 = |0〉〈0|,
ρ1 = |1〉〈1|, σ1 = |2〉〈2|, and p0 = p1 = 1/2, {|0〉, |1〉, |2〉} being an orthonormal family in H.

It is clear on (176) that F (ρ, σ) = 0 if and only if ρ and σ have orthogonal supports, ran ρ⊥ ranσ.
Therefore, two states ρ and σ have a maximal distance dB(ρ, σ) = 1 if they are orthogonal and thus
perfectly distinguishable.

Proof. We have already established above that dB satisfies all the axioms of a distance. To show the
contractivity, it is enough to check that for any quantum operation M : B(H) → B(H′) and any states
ρ, σ ∈ E(H),

F (M(ρ),M(σ)) ≥ F (ρ, σ) . (184)

This property of the fidelity is a consequence of the contractivity of the relative Rényi entropy for
α = 1/2 (Theorem 6.3.1(v)). It is, however, instructive to re-derive this result from Theorem 7.2.2.
According to this theorem, there exist some purifications |Ψ〉 and |Φ〉 of ρ and σ on H⊗K such that
F (ρ, σ) = |〈Ψ|Φ〉|2. Now, thanks to (34) one obtains some purifications |ΨM〉 = 1K ⊗ U |Ψ〉|ǫ0〉 of
M(ρ) and |ΦM〉 = 1K⊗U |Φ〉|ǫ0〉 of M(σ) on K⊗H′⊗H′

E
, with |ǫ0〉 ∈ HE and U : H⊗HE → H′⊗H′

E

unitary. Thus
F (M(ρ),M(σ)) ≥ |〈ΨM|ΦM〉|2 = |〈Ψ|Φ〉|2 = F (ρ, σ) . (185)

The joint convexity of d2B is a consequence of the bound18

√
F
(∑

i

piρi,
∑

i

qiσi

)
≥

∑

i

√
piqi

√
F (ρi, σi) , (186)

where {ρi, pi} and {σi, qi} are arbitrary ensembles in E(H). Note that the statement (186) is slightly
more general than the joint concavity of

√
F (ρ, σ) proven in Sec. 6.3 (Theorem 6.3.1(iv)). To show

18 Note that one cannot replace
√
F by F in this inequality, that is, F (ρ, σ) is not jointly concave (one can take the

same counter-example as that given above for dB). However, by a slight modification of the proof of Corollary 7.2.3 one
can show that ρ 7→ F (ρ, σ) and σ 7→ F (ρ, σ) are concave. In their book [117], Nielsen and Chuang define the fidelity as
the square root of (176). This must be kept in mind when comparing the results in this monograph with those of this
article.
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that (186) is true, we introduce as before some purifications |Ψi〉 of ρi and |Φi〉 of σi on H ⊗H such
that

√
F (ρi, σi) = 〈Ψi|Φi〉. Let us define the vectors

|Ψ〉 =
∑

i

√
pi|Ψi〉|ǫi〉 , |Φ〉 =

∑

i

√
pi|Φi〉|ǫi〉 (187)

in H ⊗ H ⊗ HE, where HE is an auxiliary Hilbert space and {|ǫi〉} is an orthonormal basis of HE.
Then |Ψ〉 and |Φ〉 are purifications of ρ =

∑
i piρi and σ =

∑
i qiσi, respectively. One infers from

Theorem 7.2.2 that
√
F (ρ, σ) ≥ |〈Ψ|Φ〉| =

∑

i

√
piqi〈Ψi|Φi〉 =

∑

i

√
piqi

√
F (ρi, σi) . (188)

This complete the proof of the corollary. ✷

Remark 7.2.4. A consequence of (47) and (177) and of the monotonicity of the fidelity F with
respect to partial trace operations (see (184)) is that the entanglement fidelity Fe(ρ,M) of a state ρ
with respect to a quantum operation M satisfies

Fe(ρ,M) ≤ F (ρ,M(ρ)) . (189)

Remark 7.2.5. As the fidelity satisfies F (ρ⊗ρ′, σ⊗σ′) = F (ρ, σ)F (ρ′, σ′), the Bures distance increases
by taking tensor products, dB(ρ⊗ρ′, σ⊗σ′) ≥ dB(ρ, σ) for any ρ, σ ∈ E(H), ρ′, σ′ ∈ E(H′), with equality
if and only if ρ′ = σ′. This has to be contrasted with the trace distance, which does not enjoy this
property.

In the two following subsections we collect some important properties of the Bures distance. We
refer the reader to the monographs [20, 117] for a list of names to which these properties should be
attached.

7.3 Bures distance and statistical distance in classical probability

The restriction of a distance d on E(H) to all density matrices commuting with a given state ρ0
defines a distance on the simplex Eclas = {p ∈ R

n
+;

∑
i pi = 1} of classical probabilities on the finite

space {1, 2, . . . , n}. In particular, if ρ and σ are two commuting states with spectral decompositions
ρ =

∑
k pk|k〉〈k| and σ =

∑
k qk|k〉〈k|, then

d1(ρ, σ) = d clas
1 (p,q) =

n∑

k=1

|pk − qk|

is the ℓ1-distance, and

dB(ρ, σ) = d clas
H (p,q) =

( n∑

k=1

(
√
pk −

√
qk)

2

)1
2

=
(
2− 2

n∑

k=1

√
pkqk

) 1
2

(190)

is the Hellinger distance. A distance closely related to d clas
H is the so-called statistical distance

Θ clas(p,q) = arccos(1 − d clas
H (p,q)2/2), i.e. the angle between the vectors x = (

√
pk)

n
k=1 and y =

(
√
qk)

n
k=1 on the unit sphere. Given two non-commuting states ρ and σ, one can consider the distance

d clas(p,q) between the outcome probabilities p and q of a measurement performed on the system in
states ρ and σ, respectively. It is natural to ask whether there is a relation between d(ρ, σ) and the
supremum of d clas(p,q) over all measurements.
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Proposition 7.3.1. For any ρ, σ ∈ E(H),

d1(ρ, σ) = sup
{Mi}

d clas
1 (p,q) , dB(ρ, σ) = sup

{Mi}
d clas
H (p,q) , (191)

where the suprema are over all POVMs {Mi} and pi = tr(Miρ) (respectively qi = tr(Miσ)) is the
probability of the measurement outcome i in the state ρ (respectively σ). Moreover, the suprema are
achieved for von Neumann measurements with rank-one projectors Mi = |i〉〈i|.

Proof. We leave the justification of the first identity to the reader. It can be obtained by following sim-
ilar arguments as in the proof of Proposition 7.1.2 (see [117]). Let us show the second identity. Given
a POVM {Mi}, by taking advantage of the definition (176) of the fidelity, the polar decomposition√
ρ
√
σ = U |√ρ√σ|, and the identity

∑
iMi = 1, one gets

√
F (ρ, σ) =

∑

i

tr(U∗√ρ
√
Mi

√
Mi

√
σ) ≤

∑

i

√
piqi . (192)

The upper bound comes from the Cauchy-Schwarz inequality. It remains to show that this bound can
be attained for an appropriate choice of POVM. The Cauchy-Schwarz inequality holds with equality
if and only if

√
Mi

√
ρU = λi

√
Mi

√
σ with λi ∈ C. Assuming σ > 0 and observing that

√
ρU =

σ−
1
2 |√ρ√σ|, this identity can be recast as

√
Mi(R− λi) = 0 with R = σ−

1
2 |√ρ

√
σ|σ− 1

2 . (193)

Let R =
∑

i ri|i〉〈i| be a spectral projection of the non-negative matrix R. Taking Mi to be the von
Neumann projector Mi = |i〉〈i| and λi = ri, we find that (193) is satisfied for all i. Thus

√
F (ρ, σ) is

equal to the right-hand side of (192). If σ is not invertible it can be approached by invertible density
matrices σε = (1− ε)σ + ε, ε > 0, and the result follows by continuity. ✷

Much as for the quantum relative Rényi entropies (Sec. 6.3), one may define another distance on
E(H) which also reduces to the Hellinger distance d clas

H for commuting matrices, by setting

dH(ρ, σ) = d2(
√
ρ,
√
σ) =

(
2− 2

√
F

(n)
1
2

(ρ||σ)
) 1

2
, (194)

where F
(n)
α (ρ||σ) is the fidelity associated to the normal-ordered α-entropy (142), namely,

F (n)
α (ρ||σ) =

(
tr
[
ρασ1−α

]) 1
α
= e−βS

(n)
α (ρ||σ) , β =

1− α

α
. (195)

This distance is sometimes called the quantum Hellinger distance. Thanks to Lieb’s concavity theorem

(Lemma 6.3.2), F
(n)
α (ρ||σ)α is jointly concave in (ρ, σ) for all α ∈ (0, 1). Consequently, the square

Hellinger distance dH(ρ, σ)
2 is jointly convex, just as dB(ρ, σ)

2. From Proposition 6.2.2 one then
deduces that dH is contractive. It is worth noting that dH does not coincide with the Fubini-study

distance (172) for pure states (in fact, one finds F
(n)
1/2(ρψ||σφ) = |〈ψ|φ〉|4). For any ρ, σ ∈ E(H), one

finds by comparing (173) and (194) that dB(ρ, σ) ≤ dH(ρ, σ).
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7.4 Comparison of the Bures and trace distances

The next result shows that the Bures and trace distances dB and d1 are equivalent and gives optimal
bounds of d1 in terms of dB.

Proposition 7.4.1. For any ρ, σ ∈ E(H), one has

dB(ρ, σ)
2 ≤ d1(ρ, σ) ≤ 2

{
1−

(
1− 1

2
dB(ρ, σ)

2
)2} 1

2
. (196)

The lower bound has been first proven by Araki [9] in the C∗-algebra setting. We shall justify it
from Proposition 7.3.1 as in Ref. [117]. The upper bound is saturated for pure states, as shown in the
proof below. Note that this bound implies that d1(ρ, σ) ≤ 2dB(ρ, σ).

Proof. We first argue that if ρψ = |ψ〉〈ψ| and σφ = |φ〉〈φ| are pure states, then d1(ρψ, σφ) =
2
√

1− F (ρψ, σφ) and thus the upper bound in (196) is an equality. Actually, let |φ〉 = cos θ|ψ〉 +
eiδ sin θ|ψ⊥〉, where θ, δ ∈ [0, 2π) and |ψ⊥〉 is a unit vector orthogonal to |ψ〉. Since ρψ − σφ has
non-vanishing eigenvalues ± sin θ, one has d1(ρψ, σφ) = 2| sin θ|. But F (ρψ, σφ) = cos2 θ, hence the
aforementioned statement is true. It then follows from Theorem 7.2.2 and from the contractivity of
the trace distance with respect to partial trace operations (Proposition 7.1.2) that for arbitrary ρ and
σ ∈ E(H),

d1(ρ, σ) ≤ 2
√

1− F (ρ, σ) . (197)

To bound d1(ρ, σ) from below, we use Proposition 7.3.1 and consider a generalized measurement {Mi}
such that

√
F (ρ, σ) =

∑
i

√
piqi with pi = tr(ρMi) and qi = tr(σMi). This yields

dB(ρ, σ)
2 =

∑

i

(
√
pi −

√
qi)

2 ≤
∑

i

|pi − qi| ≤ d1(ρ, σ) , (198)

where the last inequality comes from Proposition 7.3.1 again. ✷

The following bound on the relative entropy can be obtained from (149), (145), and Proposi-
tion 6.3.4

S(ρ||σ) ≥ −2 ln
(
1− 1

2
dB(ρ, σ)

2
)
≥ − ln

(
1− 1

4
d1(ρ, σ)

2
)
. (199)

Remark 7.4.2. By taking advantage of the inequality F (ρ, σ) ≥ tr(ρσ), which follows from (176) and
the norm inequality ‖A‖1 ≥ ‖A‖2, one can establish another bound on S(ρ||σ) in terms of the fidelity,
which reads [152]

S(ρ||σ) ≥ −S(ρ)− lnF (ρ, σ) . (200)

Remark 7.4.3. The formula

F (ρ, σ) =
1

4
inf
H>0

{
tr(Hρ) + tr(H−1σ)

}2
= inf

H>0

{
tr(Hρ) tr(H−1σ)

}
(201)

can be easily proven with the help of Lemma 6.3.3 and Theorem 7.2.2. The last expression is due to
Alberti [5].

Remark 7.4.4. We are now in position to show without much effort several results of Sec. 5.2.
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(a) The upper bound (77) on the optimal success probability P opt
S,u in unambiguous discrimination

of two mixed states can be established from Uhlmann’s theorem, formula (70), and the fact that
P opt
S,u ({ρi, ηi}) ≤ P opt

S,u ({|Ψi〉, ηi}), where |Ψi〉 is a purification of ρi for any i [135].

(b) It is instructive to derive in the special case of m = 2 states the lower bound on P opt
S,a given in

Proposition 5.5.1 by using the Helstrom formula (68), the fact that tr(|Λ|) ≥ ∑
i |〈i|Λ|i〉| for any

orthonormal basis {|i〉}, and Proposition 7.3.1 [26].

(c) The Uhlmann theorem gives an efficient way to calculate the fidelity between the two states (78)
(the result is F (ρeq, ρdiff) = |〈ψ1|ψ2〉|2).

7.5 Bures and quantum Hellinger metrics, quantum Fisher information

Recall that a Riemannian metric on E(H) is a map g which associates to each ρ ∈ E(H) a scalar
product gρ on the tangent space to E(H) at ρ. For any state ρ on H, this tangent space can be
identified with the (real) vector space B(H)s.a. of self-adjoint operators on H. A metric g defines
a Riemannian distance d, which is such that the square distance ds2 = d(ρ, ρ + dρ)2 between two
infinitesimally close states ρ and ρ+ dρ is given by

ds2 = gρ(dρ,dρ) . (202)

The Hilbert-Schmidt distance d2 is obviously Riemannian: its metric is constant and given by the
scalar product (1). In contrast, the trace distance d1 is not Riemannian.

Let us show that the Bures distance dB is Riemannian and determine its metric gB. It is convenient
to introduce a small parameter t ∈ R. According to Definition 7.2.1 one has

dB(ρ, ρ+ t dρ)2 = 2− 2 tr(A(t)) , A(t) =
(√
ρ(ρ+ tdρ)

√
ρ
) 1

2 . (203)

The scalar product (gB)ρ will be given in terms of the eigenvectors |k〉 and eigenvalues pk of ρ in the
spectral decomposition ρ =

∑
k pk|k〉〈k|. Using the notation Ȧ(t) = dA/dt, Ä(t) = d2A/dt2, and the

identity A(t)2 =
√
ρ(ρ+ tdρ)

√
ρ, one finds

Ȧ(0)A(0) +A(0)Ȧ(0) =
√
ρdρ

√
ρ

Ä(0)A(0) + 2Ȧ(0)Ȧ(0) +A(0)Ä(0) = 0 (204)

The first equation yields
(pk + pl)〈k|Ȧ(0)|l〉 =

√
pkpl〈k|dρ|l〉 . (205)

Since tr(dρ) = 0, it follows that tr[Ȧ(0)] = 0. Assume that A(0) = ρ is invertible. Multiplying the
second equation in (204) by A(0)−1 and taking the trace, one verifies that

tr[Ä(0)] = − tr
[
Ȧ(0)2A(0)−1

]
= −

n∑

k,l=1

p−1
k

∣∣〈k|Ȧ(0)|l〉
∣∣2 = −

n∑

k,l=1

pl|〈k|dρ|l〉|2
(pk + pl)2

. (206)

Thus, going back to (203) we arrive at

dB(ρ, ρ+ tdρ)2 = − tr[Ä(0)]t2 +O(t3) = (gB)ρ(dρ,dρ)t
2 +O(t3) (207)

with [84]

(gB)ρ(A,A) =
1

2

n∑

k,l=1

|〈k|A|l〉|2
pk + pl

, A ∈ B(H)s.a. , ρ > 0 . (208)
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The last formula defines a scalar product on B(H)s.a. by polarization, hence dB is Riemannian with
metric gB. One readily obtains from this metric the infinitesimal volume element. The volume of
E(H) and the area of its boundary are determined in [146].

Definition 7.5.1. Given a state ρ ∈ E(H) and an observable H ∈ B(H)s.a., the non-negative number

FQ(ρ,H) = 4(gB)ρ
(
−i[H, ρ],−i[H, ρ]

)
= 2

∑

k,l,pk+pl>0

(pk − pl)
2

pk + pl
|〈k|H|l〉|2 (209)

is called the quantum Fisher information of ρ with respect to H.

The quantity FQ(ρ,H) has been introduced by Braunstein and Caves [30] as a quantum analog
of the Fisher information in statistics. Similarly to the definition of the Bures distance in Sec. 7.2,
these authors related it to the metric – called the “distinguishability metric” by Wootters [168] –
extending the Fubini-Study metric to mixed states. For a pure state ρΨ = |Ψ〉〈Ψ|, the quantum
Fisher information reduces to the square quantum fluctuation of H, namely,

FQ(ρΨ,H) = 4〈(∆H)2〉Ψ = 4
(
〈Ψ|H2|Ψ〉 − 〈Ψ|H|Ψ〉2

)
. (210)

In general,
√

FQ(ρ,H) gives the speed at which a given state ρ separates from its time-evolved
state ρ(t) = e−itHρeitH under the dynamics specified by the Hamiltonian H. In fact, by plugging
dρ/dt = −i[H, ρ] into (207) one checks that

√
FQ(ρ,H) =

(
2
d2

dt2
dB(ρ, ρ(t))

2
∣∣∣
t=0

) 1
2

≈
√
2
δdB
δt

. (211)

We postpone the discussion on the statistical interpretation of FQ(ρ,H) to Sec. 8.2 below. It will be
argued there that FQ(ρ,H) measures the amount of quantum correlations in the state ρ that can be
used for improving precision in quantum metrology.

Let us now turn to the quantum Hellinger distance (194). We proceed to determine the metric
gα associated to the normal-ordered relative Rényi entropy (142), from which the quantum Hellinger
metric gH is obtained by setting α = 1/2. We demonstrate that the largest metric gα for α ∈ (0, 1) is
achieved for α = 1/2 and is equal to gH/2, a result that will be needed later on (Sec. 8.1). The metric
gα is defined by

S(n)
α (ρ+ tdρ||ρ) = (1− α)−1

(
1− F (n)

α (ρ+ tdρ||ρ)α
)
+O(t3)

= t2(1− α)−1(gα)ρ(dρ,dρ) +O(t3) , (212)

where F
(n)
α is the α-fidelity, see (195). To determine gα for all α ∈ (0, 1), we use (A1) in Appendix A

to write

Bα(t) = ρα − (ρ+ tdρ)α =
sin(απ)

π

∫ ∞

0
dxxα

(
1

x+ ρ+ tdρ
− 1

x+ ρ

)

=
sin(απ)

π

∫ ∞

0
dx xα

(
− t

x+ ρ
dρ

1

x+ ρ
+

t2

x+ ρ
dρ

1

x+ ρ
dρ

1

x+ ρ

)
+O(t3) . (213)

Introducing as before the spectral decomposition ρ =
∑

k pk|k〉〈k| and using known integrals, one finds

1− F (n)
α (ρ+ tdρ||ρ)α = tr[Bα(t)ρ

1−α]

= −tα
n∑

k=1

〈k|dρ|k〉+ t2
n∑

k,l=1

p1−αk (pαk − pαl )

(pk − pl)2
∣∣〈k|dρ|l〉

∣∣2 +O(t3) . (214)
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Because tr(dρ) = 0, the linear term in t vanishes as it should be. Plugging (214) into (212) one gets

(gα)ρ(A,A) =

n∑

k,l=1

cα(pk, pl)|〈k|A|l〉|2 , cα(p, q) =
(p1−α − q1−α)(pα − qα)

2(p − q)2
. (215)

It is easy to show that cα(p, q) ≤ c1/2(p, q) for any p, q > 0, hence

max
α∈(0,1)

(gα)ρ(A,A) =
(
g 1

2

)
ρ
(A,A) =

n∑

k,l=1

|〈k|A|l〉|2
2(
√
pk +

√
pl)2

, A ∈ B(H)s.a. , (216)

as claimed above. Furthermore, in view of (194) we deduce that the quantum Hellinger distance dH
is Riemannian and has a metric gH = 2g1/2.

7.6 Characterization of the Riemannian contractive distances

The complete characterization of Riemannian contractive distances on E(H) for finite Hilbert spaces
H has been given by Petz [128], following a work by Morozova and Chentsov [113]. Such distances
are induced by metrics g satisfying

gM(ρ)

(
M(A),M(A)

)
≤ gρ(A,A) , A ∈ B(H)s.a. , (217)

for any ρ ∈ E(H) and any quantum operation M : B(H) → B(H′).
In the classical setting, it is remarkable that the contractivity condition leads to a unique metric

(up to a multiplicative constant). Quantum operations correspond classically to Markov mappings
p 7→ Mclasp on the probability simplex Eclas = {p ∈ R

n
+;

∑
i pi = 1}, see (27), with stochastic

matrices Mclas having non-negative elements Mclas
ij such that

∑
iMclas

ij = 1 for any j = 1, . . . , n. The

contractive distances dclas on Eclas satisfy dclas(Mclasp,Mclasq) ≤ dclas(p,q) for any such matrices.
According to a result of Cencov [35], a Riemannian distance on Eclas with metric gclas is contractive if
and only if gclas

p
(a,a) = c

∑
k a

2
k/pk for any a ∈ R

n and some c > 0, that is, the infinitesimal distance
between a probability vector p and a neighboring vector p+ dp is proportional to

ds2Fisher =
n∑

k=1

dp2k
pk

. (218)

The associated metric is known as the Fisher metric and plays an important role in statistics. It
induces the Hellinger distance (190) up to a factor of one fourth.

Let us come back to the quantum case. Although gρ is in principle defined on the real vector space
B(H)s.a. (the tangent space of E(H)), one can extend it as a scalar product on the complex Hilbert
space B(H). Without loss of generality, one may require that this scalar product satisfies

gρ(A,B) = gρ(B
∗, A∗) = gρ(A∗, B∗) , A,B ∈ B(H) . (219)

(for instance, this is the case for the Hilbert-Schmidt product (1)). We first note that one can associate
to g a family {Kρ; ρ ∈ E(H)} of positive operators on the Hilbert space B(H) endowed with the scalar
product (1), by setting

gρ(A,B) =
〈
A,K−1

ρ (B)
〉

, A,B ∈ B(H) . (220)
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Let us write ρM = M(ρ). The monotonicity condition (217) reads M∗K−1
ρMM ≤ K−1

ρ , which means

that K1/2
ρ M∗K−1

ρMMK1/2
ρ is a contraction. This is equivalent to K

−1/2
ρM MKρM∗K−1/2

ρM being a con-
traction. Therefore g is contractive if and only if

MKρM∗ ≤ KM(ρ) (221)

for any ρ and M.

Lemma 7.6.1. [128] The contractivity condition (221) is fulfilled by the positive operators

Kρ = R
1
2
ρ f(∆ρ)R

1
2
ρ , (222)

where Rρ stands for the right multiplication by ρ (see (7)), ∆ρ = ∆ρ|ρ is the modular operator defined
in (8), and f : R+ → R is an operator monotone-increasing function with values in R+.

Proof. Let us recall that the modular operators ∆ρ and ∆ρM on B(H) are (self-adjoint and) positive.
In analogy with the proof of Theorem 6.2.1, we introduce the contraction CM defined by (127). It has
been observed in this proof that C∗

M∆ρCM ≤ ∆ρM . Since asking that a continuous function f : R+ → R

be operator monotone-increasing and non-negative is the same as asking that f be operator concave
(see Appendix A and [27], Theorem V.2.5), it follows from the Jensen-type inequality (A4) and the
monotonicity of f that

C∗
Mf(∆ρ)CM ≤ f(∆ρM) . (223)

Multiplying both sides by B′ρ
1
2
M and taking the scalar product by the same vector, this is equivalent

to 〈
B′ , MR

1
2
ρ f(∆ρ)R

1
2
ρM∗(B′)

〉
≤

〈
B′ , R

1
2
ρMf(∆ρM)R

1
2
ρM(B′)

〉
(224)

for any B′ ∈ B(H′). Thus the operator Kρ defined in (222) satisfies the contractivity condition (221).
✷

Formulas (220) and (222) yield a family of monotonous metrics, in one-to-one correspondence with

non-negative operator monotone functions f , given by gρ(A,B) = 〈Aρ− 1
2 , f(∆ρ)

−1(Bρ−
1
2 )〉 for any

A,B ∈ B(H). More explicitly, for any ρ with spectral decomposition ρ =
∑

k pk|k〉〈k| one finds

gρ(A,A) =

n∑

k,l=1

c(pk, pl)|〈k|A|l〉|2 , A ∈ B(H)s.a. , (225)

where c(p, q) is given by

c(p, q) =
pf(q/p) + qf(p/q)

2pqf(p/q)f(q/p)
(226)

and satisfies c(tp, tq) = t−1c(p, q) for any t ∈ R, t 6= 0, and c(p, p) = f(1)−1p−1. By using ∆ρ(B
∗) =

(∆−1
ρ (B))∗, it is easy to see that the condition (219) is satisfied if and only if f(x) = xf(x−1). In

particular, by choosing the following operator monotone functions (see Appendix A) :

fHarm(x) =
2x

x+ 1
≤ fKM(x) =

x− 1

lnx
≤ fH =

(1 +
√
x)2

4
≤ fB(x) =

x+ 1

2
(227)
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one is led to

cHarm(p, q) =
p+ q

2pq
≥ cKM(p, q) =

ln p− ln q

p− q
≥ cH(p, q) =

4

(
√
p+

√
q)2

≥ cB(p, q) =
2

p+ q
.

(228)
In view of (208) and (216), the last choice fB gives the Bures metrics and fH gives the Hellinger metric
up to a factor of one fourth. The second choice corresponds to the so-called Kubo-Mori (or Bogoliubov)
metric, which is associated to the relative von Neumann entropy. Actually, by substituting (215) into
(212) and taking α→ 1 one obtains

S(ρ+ dρ||ρ) = 1

2

n∑

k,l=1

cKM(pk, pl)
∣∣〈k|dρ|l〉

∣∣2 = 1

2
gKM(dρ,dρ) . (229)

According to the formula S(ρ+ tdρ) = S(ρ)− t tr(dρ ln ρ)− S(ρ+ tdρ||ρ), one also gets

gKM(dρ,dρ) = −d2S(ρ+ tdρ)

dt2

∣∣∣∣
t=0

, (230)

S being the von Neumann entropy (since S is concave, the second derivative in the right-hand side is
non-positive and defines a scalar product on B(H)). As stressed by Balian, Alhassid and Reinhardt [13],
this makes the Kubo-Mori metric quite natural from a physical viewpoint.

A result due to Kubo and Ando [96] states that there is a one-to-one correspondence between
operator monotone functions f and operator means, that is, maps m : (R,L) ∈ B(H)+ × B(H)+ 7→
m(R,L) ∈ B(H) satisfying

(a) if 0 ≤ R ≤ T and 0 ≤ L ≤ N then m(R,L) ≤ m(T,N) (monotonicity);

(b) C∗m(R,L)C ≤ m(C∗RC,C∗LC).

This correspondence is given by the formula

mf (R,L) = R
1
2 f(R− 1

2LR− 1
2 )R

1
2 . (231)

By taking fHarm and fB as in (227) one obtains the harmonic mean mHarm(R,L) = (R/2)−1+(L/2)−1

and the arithmetic mean mB(R,L) = (R+L)/2, respectively, and for f(x) =
√
x one gets the so-called

geometric mean (for more detail see e.g. [33]). The positive operators (222) can be written as

Kρ = mf (Rρ,Lρ) . (232)

The theory of Kubo and Ando shows that the harmonic mean mHarm and arithmetic mean mB are
respectively the smallest and largest symmetric operator means. Thus the Bures metric gB is the
smallest monotone metric among the family of metrics given by (220) and (222) with the normalization
gρ(1, 1) = tr(ρ−1). It turns out that this family contains all contractive metrics, that is, all such metrics
have the form (225).

Theorem 7.6.2. (Petz [128]) The distances with metrics g given by (225) are contractive for any
non-negative operator monotone-increasing function f(x) satisfying f(x) = xf(x−1). Conversely, any
continuous metric g : ρ 7→ gρ on E(H) may be obtained from (225) by a choice of a suitable function
f with these properties. In particular, there is a one-to-one correspondence between continuous con-
tractive metrics satisfying gρ(1, 1) = tr(ρ−1) and operator means. The Bures distance is the smallest
of all contractive Riemannian distances with metrics satisfying this normalization condition.
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This theorem is of fundamental importance in geometrical approaches to quantum information.

Proof. The first statement has been proven above. Conversely, let g be a continuous contractive metric
on E(H) and let us show that there exists an operator monotone function f : R+ → R+ such that
for any ρ ∈ E(H), gρ is given by (220) and (222) or, equivalently, by (225) and (226). We first note
that g being contractive it is in particular unitary invariant, i.e. gU∗ρU (U

∗AU,U∗BU) = gρ(A,B) for
any unitary U (see Sec.7.1). More generally, if the quantum operations M and T are such that ρ,
A, and B are invariant under T ◦M, then gM(ρ)(M(A),M(B)) = gρ(A,B). The main idea of the
proof is to combine this invariance property with the uniqueness of the contractive classical distance.
Denoting by (gρ)ij,kl = gρ(|i〉〈j|, |k〉〈l|) the matrix elements of the scalar product gρ in an orthonormal
eigenbasis {|k〉} of ρ, we need to prove that

(gρ)ij,kl = δikδjl c(pi, pj) (233)

where δik is the Kronecker symbol. To show that the matrix elements of gρ vanish for i 6= j and
(k, l) 6= (i, j), it suffices to establish that

gρ
(
|i〉〈j| + s|k〉〈l|, |i〉〈j| + s|k〉〈l|

)
= gρ

(
|i〉〈j| − s|k〉〈l|, |i〉〈j| − s|k〉〈l|

)
(234)

for s = 1 and s = i (the result then follows by polarization). If one of the indices i, j, k, and l is
different from the three others, say i /∈ {j, k, l}, this comes from the invariance of g under the unitary

U (i) =
∑

k u
(i)
k |k〉〈k| with u

(i)
k = −1 if k = i and 1 otherwise. Hence (gρ)ij,kl = 0 when i 6= j and

(i, j) 6= (k, l), (l, k). Similarly, by choosing u
(i)
k = i if i = k and 1 otherwise, this is also true for i 6= j

and (i, j) = (l, k). The only non-vanishing matrix elements of gρ are thus (gρ)ii,kk and (gρ)ij,ij for
i 6= j.

To determine (gρ)ii,kk we observe that the restriction of gρ to the space of matrices commut-
ing with ρ induces a contractive metric on the probability simplex Eclas, defined by gclas

p
(a,b) =

gρ(
∑

k ak|k〉〈k|,
∑

k bk|k〉〈k|) for any a,b ∈ Eclas. Indeed, one can associate a quantum operation M
to a stochastic matrix Mclas by defining M(|k〉〈l|) = δkl

∑
jMclas

jk |j〉〈j| (M has the Kraus form (31)

as Mclas
jk ≥ 0 and

∑
jMclas

jk = 1 for any k). Then M(ρ) =
∑

j(Mclasp)j |j〉〈j| where p is the vector of

eigenvalues of ρ, and (217) implies that gclas is contractive under Mclas. According to the uniqueness
of the contractive classical metrics, one has

(gρ)ii,kk = gclas
p

(δi, δk) = c
δik
pk

, (235)

with c > 0 and δi = (δil)
n
l=1.

We now turn to the matrix elements (gρ)ij,ij for i 6= j. By unitary invariance, it is enough to
determine (gρ)12,12. To this end, we consider the quantum operations M from the space B(H) of
n × n matrices to the space B(C3) of 3 × 3 matrices and T : B(C3) → B(H) with Kraus operators
{Ai}ni=2 and {Bi}ni=2, respectively, given by

A2 = B2 = |1〉〈1| + |2〉〈2| , Ai = |3〉〈i| , Bi =

√
pi√

1− p1 − p2
|i〉〈3| , i = 3, . . . , n . (236)

A simple calculation yields T ◦M(ρ) = ρ. As stressed above, one can deduce from the contractivity
of gρ that (gρ)12,12 = (gM(ρ))12,12, thereby showing that this matrix element depends on p1 and p2
only. By unitary invariance, (gρ)ij,ij only depends on pi and pj and one can set (gρ)ij,ij = c(pi, pj) for
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i 6= j, c(p, q) being independent of ρ. This complete the proof of (233), excepted that it remains to
justify that c(p, p) = c/p.

We proceed by showing that c(q, p) is given by (226) with f having the desired properties. Thanks
to (219), we know that c(p, q) is real and symmetric. One verifies that c(p, p) = c/p by the follow-
ing argument. Let us assume that ρ has a degenerate eigenvalue, say p1 = p2. Then ρ = UρU∗

for any unitary U acting trivially on span{|3〉, . . . , |n〉}. By unitary invariance, gρ(|ψ〉〈ψ|, |ψ〉〈ψ|) =
(gρ)11,11 = c/p1 for any |ψ〉 ∈ span{|1〉, |2〉}. Taking e.g. |ψ〉 = (|1〉+ |2〉)/

√
2 and using (233), we get

(gρ)12,12 = c(p1, p1) = c/p1. In order to establish that c(p, q) is homogeneous we consider the quantum
operations M : B(H) → B(H ⊗HE) and T : B(H ⊗HE) → B(H) defined by M(ρ) = ρ ⊗ 1/nE and
T (ρ̂) = trE(ρ̂) (here nE is the dimension of HE). Clearly, T ◦M = 1, thus by similar arguments as
above and by taking advantage of (233), one finds

c(pi, pj) = (gρ)ij,ij = gM(ρ)(M(|i〉〈j|),M(|i〉〈j|)) = n−1
E
c
( pi
nE
,
pj
nE

)
. (237)

As this is true for any positive integer nE and any state ρ, one concludes that c(tp, tq) = t−1c(p, q)
for all p, q ∈ [0, 1] and all rationals t with tp, tq ∈ [0, 1]. This is the point where we need the
continuity of the metric to make sure that c(p, q) is continuous. Then the equality holds for all real t.
Setting f(x) = 1/c(x, 1) and using the symmetry of c(p, q), one easily derives the identities (226) and
f(x−1) = x−1f(x). Furthermore, f(1)−1 = c(1, 1) = c.

To complete the proof, we have to show that f is operator concave. With this aim, let us consider
the inequality (221) which is equivalent to gρ being contractive. We choose M in this inequality to be
the partial trace operation T : ρ̂ 7→ trC2(ρ̂)⊗ 1/2 on B(H⊗C

2) and ρ̂ = (ρ0 ⊗ |0〉〈0| + ρ1 ⊗ |1〉〈1|)/2.
From (221) we find that for any A ∈ B(H),

〈
T ∗(A⊗ 1) , Kρ̂T ∗(A⊗ 1)

〉
≤

〈
A⊗ 1 , KT (ρ̂)(A⊗ 1)

〉
. (238)

But Kρ̂(A⊗ 1) = (Kρ0(A)⊗ |0〉〈0| +Kρ1(A)⊗ |1〉〈1|)/2. Accordingly, (238) reduces to

1

2

〈
A , (Kρ0 +Kρ1)A

〉
≤

〈
A , K(ρ0+ρ1)/2A

〉
, (239)

thereby showing that the map
ρ 7→ Kρ = f(LρR−1

ρ )Rρ (240)

is mid-point concave. By a standard argument based on a dyadic decomposition, it follows that
this map is concave [33]. Using the ∗-isomorphism between the C∗-algebras B(B(H)) and B(H ⊗H)
(Sec.2.1), this is equivalent to say that the map

A 7→ f
(
A⊗ (AT )−1

)
1⊗AT (241)

is concave. One easily deduces from this that the map (A,B) 7→ f(A ⊗ (BT )−1
)
1 ⊗ BT is jointly

concave. In particular, A 7→ f(A) is concave. This shows that f is operator concave. ✷
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8 State discrimination and parameter estimation in large systems

In this section we examine two problems related to the state discrimination talk discussed in Sec. 5,
namely, the quantum hypothesis testing and parameter estimation. In the first problem, one wants
to determine asymptotically the probability of error in discriminating two states when one has N
independent copies of those states, for N → ∞. In the second problem, the goal is to estimate as
precisely as possible a real parameter from measurements performed on a large number of particles in
a state depending smoothly on this parameter.

8.1 Quantum hypothesis testing: discriminating two states from many identical

copies

An important issue in classical information theory is to discriminate two probability measures p1 and
p2 on a measurable space (Ω,F), given the outcomes of N independent identically distributed (i.i.d.)
random variables, whose law is either p1 or p2. Since one has to decide among two hypothesis – the
first (second) one being that the observed data is distributed according to p1 (p2) – this discrimination
task bears the name of “hypothesis testing”. For a given test function, i.e. a random variable Mclas

with values in [0, 1], the probability of error is Perr,N = η1p
(N)
1 (Mclas) + η2p

(N)
2 (1 − Mclas), where

p
(N)
i = p⊗N

i is the N -fold product measure and ηi the prior probability attached to pi. It is easy to
convince oneself that the minimal error is achieved for the maximum likelihood test function defined
by19

Mopt
clas = 1

{η2ρ
(N)
2 −η1ρ

(N)
1 ≥0}

, (242)

ρ
(N)
i = dp

(N)
i /dµ(N) being the density of p

(N)
i with respect to the measure µ(N) = p

(N)
1 +p

(N)
2 = µ⊗N .

The corresponding error is

P opt
err,N ({p

(N)
i , ηi}) = min

0≤Mclas≤1

{∫

ΩN

dµ(N)
(
η1ρ

(N)
1 Mclas + η2ρ

(N)
2 (1−Mclas)

)}

=

∫

ΩN

dµ(N)min
{
η1ρ

(N)
1 , η2ρ

(N)
2

}
. (243)

One is typically interested in the limit of a large number of tests, i.e. N → ∞. One can show that
the error probability decays exponentially like P opt

err,N ∼ e−Nξ(p1,p2), with an exponent given by the
Chernoff bound [40]

ξ(p1,p2) = − lim
N→∞

1

N
lnP opt

err,N ({p
(N)
i , ηi}) = − inf

α∈(0,1)

{
ln

(∫

Ω
dµ ρα1 ρ

1−α
2

)}
, (244)

where we have set ρi = ρ
(1)
i . One recognizes in the infimum in the right-hand side the classical Rényi

divergence (148) multiplied by (α− 1).
In quantum mechanics, the hypothesis testing can be rephrased as the discrimination of two N -

fold tensor product states ρ⊗N1 and ρ⊗N2 . The corresponding minimal error probability is given by the
Helstrom formula (68),

P opt
err,N ({ρ⊗Ni , ηi}) =

1

2

(
1− tr |ΛN |

)
, ΛN = η1ρ

⊗N
1 − η2ρ

⊗N
2 , (245)

19 Here 1A stands for the indicator function on A ⊂ Ω, i.e. 1A(ω) = 1 if ω ∈ A and 0 otherwise.
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and the optimal measurement consists of the orthogonal projectors Mopt
± on the supports of the

positive and negative parts of ΛN . Note that if ρ1 and ρ2 commute then Mopt
− can be identified

with the maximum likelihood test function and one recovers the classical formula (243) from (245).
Surprisingly, the generalization of the Chernoff bound (244) to the quantum setting has been settled
out only recently. It has been highlighted in Sec. 6.3 that the Rényi divergences appearing in this
bound have several natural quantum extensions, according to the choice of operator ordering. It was
proven by Audenaert et al. [7] and by Nussbaum and Szkola [118] that the right extension is the

normal-ordered relative Rényi entropy S
(n)
α (ρ||σ) defined in (142).

Proposition 8.1.1. (Quantum Chernoff bound [7, 118]) One has

− lim
N→∞

1

N
lnP opt

err,N ({ρ⊗Ni , ηi}) = − inf
α∈(0,1)

{
ln
(
tr[ρα1ρ

1−α
2 ]

)}
= sup

α∈(0,1)

{
(1− α)S(n)

α (ρ1||ρ2)
}
. (246)

This limit defines a jointly convex function ξQ(ρ1, ρ2) with values in R+ ∪{+∞}, which is contractive
under quantum operations. Moreover, ξQ induces the quantum Hellinger metric up to a factor of one
half, that is, if ρ and ρ + dρ are infinitesimally close then ξQ(ρ + dρ, ρ) = gH(dρ,dρ)/2 is given by
(216).

The infimum in (246) is attained for a unique α ∈ (0, 1) satisfying tr(ρα1 ρ
1−α
2 (ln ρ1− ln ρ2)) = 0 [7].

Actually, for any fixed ρ and σ, the function α 7→ F
(n)
α (ρ||σ)α = tr[ρασ1−α] is convex (this is a simple

consequence of the convexity of α 7→ pαq1−α for p, q > 0) and F
(n)
α (ρ||σ) ≤ F

(n)
0,1 (ρ||σ) = 1 by the Hölder

inequality (3). Before entering into the proof, let us also mention that ξQ(ρ, σ) <∞ whenever ρ and σ
do not have orthogonal supports. If ρ = |ψ〉〈ψ| is pure, the quantum Chernoff bound is related to the

fidelity by ξQ(ρ, σ) = − lnF (ρ, σ) = − ln〈ψ|σ|ψ〉 (in fact, then F
(n)
α (ρ||σ)α = 〈ψ|σ1−α|ψ〉 is minimum

for α = 0).

Proof. To shorten notation we write P opt
eff ,N when referring to P opt

err,N ({ρ⊗N , η, σ⊗N , 1 − η}). The fact
that

lim sup
N→∞

1

N
lnP opt

eff ,N ≤ −ξQ(ρ, σ) = inf
α∈(0,1)

{
ln(tr[ρασ1−α])

}
(247)

follows from (245) and the trace inequality

1

2

(
tr(A) + tr(B)− tr |A−B|

)
≤ tr(AαB1−α) , (248)

where A and B are non-negative operators and α ∈ [0, 1]. This inequality has been first established
in [7]. A simple proof due to N. Ozawa is reported in Appendix B. The reverse inequality to (247) is
a consequence of the classical Chernoff bound. This can be justified as follows [118]. Let us observe
that the optimal measurement is a von Neumann measurement {Πopt, 1−Πopt} with Πopt a projector,
so that

P opt
err,N = 1− P opt

S,N = η tr
(
(1−Πopt)ρ⊗N

)
+ (1− η) tr

(
Πoptσ⊗N

)

=
∑

k,l

(
ηpk

∣∣〈Φl|(1−Πopt)|Ψk〉
∣∣2 + (1− η)ql

∣∣〈Ψk|Πopt|Φl〉
∣∣2
)
, (249)

where {|Ψk〉} and {|Φl〉} are orthonormal eigenbases of ρ⊗N and σ⊗N , respectively, and pk and ql are
the corresponding eigenvalues. We may without loss of generality assume that η ≤ 1/2. By using the
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inequality |a|2 + |b|2 ≥ |a+ b|2/2 one gets

P opt
err,N ≥ η

∑

k,l

1

2
min{pk, ql}

∣∣〈Φl|Ψk〉
∣∣2 . (250)

But ρ⊗N corresponds to N independent copies of the state ρ =
∑

k pk|ψk〉〈ψk|, hence its eigenvalues pk
and eigenvectors |Ψk〉 are products of N eigenvalues pk and N eigenvectors |ψk〉 of ρ, respectively, and
similarly for σ⊗N with the eigenvalues ql and eigenvectors |φl〉 of σ. This means that pk|〈Φl|Ψk〉|2 can
be viewed as the N -fold product of the probability π1 on {1, . . . , n}2 defined by (π1)kl = pk|〈φl|ψk〉|2.
Analogously, ql|〈Φl|Ψk〉|2 is the N -fold product of π2 with (π2)kl = ql|〈φl|ψk〉|2. Consequently, the

sum in (250) is the minimal error probability P opt
err,N ({π

(N)
i , 1/2}) for discriminating π1 and π2 with

equal prior probabilities (see (243)). One then deduces from the classical Chernoff bound (244) that

lim inf
N→∞

1

N
lnP opt

err ≥ inf
α∈(0,1)

{
ln

( n∑

k,l=1

(π1)
α
kl(π2)

1−α
kl

)}
= −ξQ(ρ, σ) . (251)

Together with (247) this proves the quantum Chernoff bound.
It is nevertheless instructive to show (251) directly from (250), without relying on the classical

result, by using the theory of large deviations for sums of i.i.d. random variables and the relative
modular operator ∆σ|ρ (see Sec. 2), which appears here quite naturally [87]. Indeed, let us set ξ = ρ

1
2

and note that for any real function f : (0,∞) → R, according to (8) and by the functional calculus, it
holds

〈ξ , f(∆σ|ρ) ξ〉 =
n∑

k,l=1

pkf
( ql
pk

)
|〈φl|ψk〉|2 . (252)

In particular, 〈ξ , ln(∆σ|ρ) ξ〉 = tr[ρ(lnσ − ln ρ)] = −S(ρ||σ), as already observed in Sec. 6.2. Let
mσ|ρ be the spectral measure of − ln∆σ|ρ with respect to the vector ξ. This is a probability measure
(ξ is normalized), which is related to the relative entropy by S(ρ||σ) =

∫
dmσ|ρ(t) t. Taking f(x) =

min{x, 1} = g(− ln x) with g(t) = min{e−t, 1} in (252), one finds

n∑

k,l=1

min{pk, ql}|〈φl|ψk〉|2 =
〈
ξ , g(− ln∆σ|ρ) ξ

〉
=

∫

R

dmσ|ρ(t) g(t) ≥ mσ|ρ(R−) . (253)

A similar inequality holds for the sum in the right-hand side of (250): it suffices to substitute ∆σ|ρ by

∆σ⊗N |ρ⊗N = ∆⊗N
σ|ρ . The spectral measure of − ln∆⊗N

σ|ρ is a product measure m
(N)
σ|ρ and thus − ln∆⊗N

σ|ρ

can be interpreted as a sum of i.i.d. random variables − ln∆
(ν)
σ|ρ with law mσ|ρ. The large deviation

principle ensures that if e′σ|ρ(0) < θ < e′σ|ρ(1) then [53]

lim
N→∞

1

N
ln

(
m

(N)
σ|ρ

(
−

N∑

ν=1

ln∆
(ν)
σ|ρ ≤ −θN

))
= − sup

α∈[0,1]

{
αθ − eσ|ρ(α)

}
(254)

is up to a minus sign the Legendre transform of

eσ|ρ(α) = ln

(∫

R

dmσ|ρ(t)e
−tα

)
= ln

(
〈ξ , ∆α

σ|ρ ξ〉
)
= ln

(
tr[ρ1−ασα]

)
. (255)
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If ρ 6= σ then e′σ|ρ(0) = −S(ρ||σ) < 0 and e′σ|ρ(1) = S(σ||ρ) > 0 (the second identity follows from the

first one by symmetry eσ|ρ(1 − α) = eρ|σ(α)). Thus the large deviation bound (254) holds for θ = 0.
Taking advantage of (250) and (253) one is led to

lim inf
N→∞

1

N
lnP opt

err,N ≥ lim inf
N→∞

1

N
ln

(∑

k,l

min{pk, ql}
∣∣〈Φl|Ψk〉

∣∣2
)

(256)

≥ lim
N→∞

1

N
ln

(
m

(N)
σ|ρ

(
−

N∑

ν=1

ln∆
(ν)
σ|ρ

≤ 0

))
= inf

α∈[0,1]

{
eσ|ρ(α)

}
= −ξQ(ρ, σ) ,

in agreement with (251). Note that these arguments justify in particular that the second member in
the classical Chernoff bound (244) is bounded from above by the third one, as a consequence of the
large deviation principle. Applying (247) for commuting matrices ρ and σ, this gives a full proof of
this classical bound.

The joint convexity of ξQ(ρ, σ) mentioned in the proposition results from the joint convexity of the

relative entropies S
(n)
α (ρ||σ) for α ∈ (0, 1), which follows from the Lieb concavity theorem, see Sec. 6.3.

One then gets the contractivity of ξQ with respect to quantum operations from Proposition 6.2.2.
This concludes the proof. ✷

Remark 8.1.2. The quantum Chernoff bound (246) can be generalized to the case where the two
states ρi,N ∈ E(H⊗N ) to discriminate are not product states (i.e. for dependent copies).

Actually, the large deviation principle used in the proof is not restricted to sums of i.i.d. random
variables. It must be assumed that the limit e(α) = limN→∞N−1 ln tr[ρα1,Nρ

1−α
2,N ] exists, is continuous

in α on [0, 1] and differentiable on (0, 1), and its right derivative e′(0) is smaller than its left derivative
e′(1) (see [87]).

Remark 8.1.3. In asymmetric hypothesis testing one is interested by the minimal error probability of
identifying the second state under the constraint that the error on the identification of the first state
is smaller than ε,

P asym
err,N,ε = min

0≤M≤1

{
tr[Mρ⊗N2 ] ; tr[(1−M)ρ⊗N1 ] ≤ ε

}
. (257)

The quantum Stein’s lemma [76, 121] shows that this probability decays exponentially with a rate given
by the relative von Neumann entropy, i.e.

− lim
N→∞

1

N
lnP asym

err,N,ε = S(ρ1||ρ2) . (258)

The limit one gets by replacing the fixed parameter ε > 0 by e−rN (that is, asking for an exponentially
decaying error on the identification of ρ1) is, in turn, given by the Hoeffding bound (see e.g. [87] for
more detail).

An interesting link between the quantum hypothesis testing and fluctuation theorems in quantum
statistical physics has been found by Jaks̆ić et al. [87]. They have shown that the quantum Chernoff
bound for discriminating the forward and backward time-evolved states ρ±T/2 as T → ∞ appears in
the large deviation principle for the full counting statistics of measurements of the energy/entropy
flow over the time interval [0, T ].
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8.2 Parameter estimation in quantum metrology

The parameter estimation problem is a kind of continuous version of quantum state discrimination,
in which the system state ρ(θ) depends on a continuous parameter θ. One aims at estimating this
unknown parameter with the highest possible precision ∆θ by performing measurements on ρ(θ). This
precision is limited by our ability to distinguish the states ρ(θ) for values of θ differing by ∆θ.

8.2.1 Phase estimation in Mach-Zehnder interferometers

An important example is phase estimation in the Mach-Zehnder interferometer represented in Fig. 2.
An input photon passes through a beam splitter [28] which transforms its state into a superposition
of two modes propagating along different paths. These two modes acquire distinct phases θ1 and θ2
during the propagation and are finally recombined in a second beam splitter to read out interference
fringes, from which the phase difference θ = θ1 − θ2 is inferred. The interferometric sequence can be
described by means of rotation matrices acting on the two-mode photon state. We shall assume at this
point that the reader is familiar with second quantization20. The generators of the aforementioned
rotations are the angular momentum operators Jx, Jy, and Jz related to the bosonic annihilation and
creation operators bj and b

∗
j of a photon in mode j = 1, 2 by Jx = (b∗1b2+b

∗
2b1)/2, Jy = −i(b∗1b2−b∗2b1)/2,

and Jz = (b∗1b1 − b∗2b2)/2 (Schwinger representation). These operators act on the bosonic Fock space
Fb(C

2) associated to the single photon space H ≃ C
2. The output state of the interferometer is given

in terms of the input state ρin by [172]

ρout(θ) = e−iθJnρine
iθJn , (259)

where θ is the phase to be estimated and Jn = nxJx + nyJy + nzJz the angular momentum in the
direction specified by the unit vector n ∈ R

3.
One can also realize a Mach-Zehnder interferometer with ultracold atoms forming a Bose-Einstein

condensate in an optical trap, instead of photons. Then the two modes correspond to two distinct
atomic energy levels and the total number of atoms Np = N1 +N2 in these modes is fixed. In such a
case the Hilbert space of the system has finite dimension Np+1 (one deals here with indistinguishable
particles). Atom interferometry in Bose-Einstein condensates is very promising due to the tunable
interactions between atoms, which make it possible to generate dynamically entangled states involving
a large number of particles21. We will see below that using such entangled states as inputs leads to
smaller errors ∆θ in the phase estimation than for separable inputs. For independent (i.e. separable)
particles the precision is of the order of (∆θ)SN ≈ 1/

√
Np (shot noise limit). Higher precisions than

(∆θ)SN have been reported experimentally [65, 133]. Important potential applications of these ultra-
precise interferometers include atomic clocks and magnetic sensors with enhanced sensitivities [163,
140].

8.2.2 Quantum Cramér-Rao bound

In the more general setting, the problem of estimating an unknown parameter θ from a θ-dependent
state evolution and measurements on the output states can be described as follows. For simplicity we
assume that the evolution is given by a self-adjoint operator H (equal to Jn in the above Mach-Zehnder
interferometer), i.e.

ρ(θ) = e−iθHρ eiθH , (260)

20 A good mathematical introduction to this formalism can be found in [29].
21 In contrast, because of the absence of direct interactions between photons it is difficult to generate large numbers

of photons having multipartite entanglement.
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Figure 2: In a Mach-Zehnder interferometer, the light entering in one of the two input modes is split
into two beams by a beam splitter (represented by the rectangle BS1 inclined by 45◦). The photons
in the first and second beams acquire some phase shifts θ1 and θ2, respectively. They then go through
a second beam splitter (rectangle BS2) and finally into the detectors D1 and D2, which count the
number of photons in the two output modes.

where ρ = ρ(0) = ρin is the input state. One performs generalized measurements given by a POVM
{Mi}mi=1 on the output state ρ(θ) = ρout. The probability to get the outcome i is pi|θ = tr[Miρ(θ)]
(Sec. 3.3). After N independent measurements22 on copies of ρ(θ) yielding the outcomes i1, i2, . . . , iN ,
the parameter θ is estimated by using a statistical estimator depending on these outcomes, that is, a
function θest(i1, i2, . . . , iN ). The precision of the estimation is defined by the variance

∆θ =

〈(∣∣∣∂〈θest〉θ
∂θ

∣∣∣
−1
θest − θ

)2〉 1
2

θ

, (261)

where 〈 · 〉θ denotes the average for the product probability measure {pi1|θ . . . piN |θ}mi1,...,iN=1 of the

independent outcomes. The factor |∂〈θest〉θ/∂θ|−1 is put in front of θest to remove some possible
differences in physical units between θ and its estimator θest (see [30]). We restrict our attention to
unbiased estimators satisfying |∂〈θest〉θ/∂θ|−1〈θest〉θ = θ. For a given input state ρ, one looks for the
smallest error ∆θ that can be achieved. This involves two different optimization steps, associated to
the optimization over (i) all possible estimators θest and (ii) all possible measurements. The step (i)
relies on a classical result in statistics known as the Cramér-Rao bound,

〈
(∆θest)

2
〉
θ
≥ 1

NF({pi|θ})
(∂〈θest〉θ

∂θ

)2
, (262)

22 In practice the experiment is repeated N times, starting from the same initial state ρ and in similar conditions, so
that the quantum evolution can be considered to be the same at each run.
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where ∆θest = θest − 〈θest〉θ and

F({pi|θ}) =
m∑

i=1

1

pi|θ

(∂pi|θ
∂θ

)2
(263)

is the Fisher information. The inequality (262) is saturated asymptotically for N → ∞ by the
maximum-likelihood estimator. The second optimization step (ii) has been solved in Ref. [30], leading
to the following important statement. Recall that the quantum Fisher information is defined as (see
Sec. 7.5)

FQ(ρ,H) = 4(gB)ρ(−i[H, ρ],−i[H, ρ]) = 4dB(ρ, ρ+ dρ)2 , (264)

where gB is the Bures metric and dρ = (∂ρ/∂θ)dθ = −i[H, ρ]dθ.

Proposition 8.2.1. (Braunstein and Caves [30]) The smallest error ∆θ that can be achieved in the
parameter estimation is

(∆θ)best =
1√

N
√

FQ(ρ,H)
, (265)

where N is the number of measurements and FQ(ρ,H) is the quantum Fisher information. Thus
∆θ ≥ (∆θ)best and the equality ∆θ = (∆θ)best can be reached asymptotically as N → ∞.

It is worth noting that (265) can be interpreted as a generalized uncertainty principle [30]. In fact,
if ρ = |Ψ〉〈Ψ| is a pure state, in view of the relation (210) between FQ(ρ,H) and the square fluctuation
〈(∆H)2〉Ψ of H, the bound ∆θ ≥ (∆θ)best can be written as

∆θ 〈(∆H)2〉
1
2
Ψ ≥ 1

2
√
N
. (266)

In this uncertainty relation H plays the role of the variable conjugated to the parameter θ.

Proof. We present here a direct proof of (265) based on the results of Sec. 7 (see [30] for an independent
proof). Before that, let us explain how the classical Cramér-Rao bound is derived. By differentiating
with respect to θ the identity

0 = 〈∆θest〉θ =
∑

i1,...,iN

pi1|θ . . . piN |θ∆θest(i1, . . . , iN ) (267)

one obtains

0 =
∑

i1,...,iN

pi1|θ . . . piN |θ

N∑

ν=1

∂ ln piν |θ

∂θ
∆θest(i1, . . . , iN )−

∂〈θest〉θ
∂θ

. (268)

Then the Cramér-Rao bound (262) readily follows from the Cauchy-Schwarz inequality. Of course,
the interesting point is that equality can be achieved in the limit N → ∞, but we will not dwell into
that. Going back to the quantum problem, we rearrange (262) as

(dθ)2

N
≤ (∆θ)2

m∑

i=1

(tr[Midρ(θ)])
2

tr[Miρ(θ)]
(269)

with dρ(θ) = (∂ρ/∂θ)dθ. Now, by using Proposition 7.3.1 and performing an expansion up to the
second order in dρ, one finds

FQ(ρ(θ),H)(dθ)2 = sup
{Mi}

{ m∑

i=1

(tr[Midρ(θ)])
2

tr[Miρ(θ)]

}
. (270)

68



Here, the supremum is over all POVMs {Mi} and we have used
∑

i tr[Midρ(θ)] = tr[dρ(θ)] = 0. But
FQ(ρ(θ),H) = FQ(ρ,H) as a consequence of (209), since ρ(θ) and ρ are related by a unitary evolution
generated by H. Comparing (269) and (270), we conclude that inf{Mi} ∆θ ≥ (∆θ)best, with equality
as N → ∞ for the maximum likelihood estimator, as stated in the proposition. ✷

Before proceeding to derive upper bounds on FQ(ρ,H), let us observe that the monotonicity of
the Bures metric gB implies [61]:

Corollary 8.2.2. The quantum Fisher information FQ(ρ,H) is convex in ρ.

Proof. Given two states ρ0 and ρ1 on H and η0, η1 ≥ 0, η0 + η1 = 1, we introduce the state ρ̂ =
η0ρ0 ⊗ |0〉〈0| + η1ρ1 ⊗ |1〉〈1| on H⊗ C

2 as in the proof of Theorem 7.6.2. From the expression of FQ
in the right-hand side of (209) one deduces that

FQ(ρ̂,H ⊗ 1) = η0FQ(ρ0,H) + η1FQ(ρ1,H) . (271)

Let T : σ̂ 7→ trC2(σ̂) denote the partial trace on C
2. Then T (ρ̂) = ρ = η0ρ0+η1ρ1 and T ([H⊗1, ρ̂]) =

[H, ρ]. As T is a quantum operation, it results from the contractivity of the Bures metric that

(gB)ρ̂
(
−i[H ⊗ 1, ρ̂],−i[H ⊗ 1, ρ̂]

)
≥ (gB)ρ

(
−i[H, ρ],−i[H, ρ]

)
. (272)

Collecting together (271) and (272) yields FQ(ρ,H) ≤ η0FQ(ρ0,H) + η1FQ(ρ1,H). ✷

8.2.3 Interferometer precision and inter-particle entanglement

We now show by relying on Proposition 8.2.1 that if the input state has Np particles in a maximally
entangled state, the precision (∆θ)best is smaller by a factor 1/

√
Np with respect to the precision

obtained with separable input states. The Hilbert space of the particles is H(Np) = H1 ⊗ · · · ⊗ HNp ,
Hν being the Hilbert space of the νth particle. Assuming that the particles do not interact between
themselves, the Hamiltonian reads

H =

Np∑

ν=1

1⊗ · · · ⊗Hν ⊗ · · · ⊗ 1 , (273)

where Hν acts on Hν . To simplify the discussion we suppose that the single particle Hamiltonians
Hν have the same highest eigenvalue λmax and the same lowest eigenvalue λmin. This is the case for
instance if H is the angular momentum Jn in the interferometer of Sec. 8.2.1 (then Hν = (nxσxν +
nyσyν + nzσzν)/2 with |n| = 1 and σxν , σyν , and σzν the three Pauli matrices acting on Hν ≃ C

2, so
that λmax = −λmin = 1/2). Let us recall that the quantum Fisher information FQ(|Ψ〉,H) of a pure
state |Ψ〉 is given by the square fluctuation 〈(∆H)2〉Ψ = 〈Ψ|H2|Ψ〉 − 〈Ψ|H|Ψ〉2 up to a factor of four
(see Sec. 7.5). We first observe that the maximum of 〈(∆Hν)

2〉ψν over all pure states |ψν〉 ∈ Hν is
equal to (∆h)2 = (λmax−λmin)

2/4, the maximum being attained when |ψν〉 = (|φν,max〉+|φν,min〉)/
√
2,

where |φν,max〉 and |φν,min〉 are the eigenvectors of Hν with eigenvalues λmax and λmin, respectively.
Let the Np particles be in a separable state ρsep and let {|Ψi〉, ηi} be a decomposition of ρsep into pure
product states |Ψi〉 = |ψi1〉 ⊗ · · · ⊗ |ψiNp〉 ∈ H(Np). A simple calculation gives [63]

FQ(|Ψi〉,H) = 4
〈
(∆H)2

〉
Ψi

= 4

Np∑

ν=1

〈(∆Hν)
2〉ψiν

≤ 4(∆h)2Np . (274)
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By applying Corollary 8.2.2 we get

ρsep separable ⇒ FQ(ρsep,H) ≤ 4(∆h)2Np . (275)

According to Proposition 8.2.1 the phase precision of the interferometer satisfies for separable inputs

∆θ ≥ (∆θ)SN =
1

2∆h
√
NNp

. (276)

This means that separable input states cannot do better than Np independent particles sent one-by-
one through the interferometer, henceforth producing an error of the order of 1/

√
Np. Note that (275)

provides a sufficient condition FQ(ρ,H) > 4(∆h)2Np for entanglement of ρ [130]. There are, however,
entangled states which do not satisfy this criterion [130]. Such entangled states are not useful for
interferometry, in the sense that they produce phase errors larger than the shot noise value (∆θ)SN.

We now argue that much higher Fisher informations, of the order of N2
p , can be achieved for

entangled states. By the same observation as above, 〈(∆H)2〉Ψ has a maximum given by the square
of the half difference of the maximal and minimal eigenvalues of H. For the Hamiltonian (273), one
immediately finds

FQ(|Ψ〉,H) ≤ 4(∆h)2N2
p . (277)

This upper bound is often called the Heisenberg bound in the literature. It is saturated for the entangled
states [63]

|Ψ±
ent〉 =

1√
2

(
|φ1,max〉|φ2,max〉 . . . |φNp,max〉 ± |φ1,min〉|φ2,min〉 . . . |φNp,min〉

)
. (278)

For large Np such states deserve the name of macroscopic superpositions, as they are formed by a
superposition of two macroscopically distinct states in which each particle is in the highest energy
eigenstate of the single particle Hamiltonian (for the first component of the superposition) or in the
lowest energy eigenstate (for the second component). If one uses these superpositions as input states of
the interferometer, an error of ∆θ = 1/(2∆h

√
NNp) = (∆θ)SN/

√
Np can be achieved asymptotically

for N → ∞ on the unknown phase. According to (265) and (277), this is the best possible precision.

70



9 Measures of entanglement in bipartite systems

Even if it would be better for many computational and communication tasks to work with maximally
entangled pure states, in practice the coupling of the system with its environment transforms such
states into non-maximally entangled mixed states because of the induced decoherence processes [31,
64, 70]. It is thus important to quantify the amount of entanglement in an arbitrary quantum state.
Unfortunately, this amount of entanglement is not a directly measurable quantity. It is quantified
by an entanglement measure, which vanishes if and only if the state is separable and cannot increase
under local operations on each subsystems and classical communication (entanglement monotonicity).
All measures satisfying these two requirements are not equivalent, i.e. a state ρ can be more entangled
than a state σ for one measure and less entangled for the other. In this section, we investigate the
properties of entanglement measures, give their general form for pure states, and study more especially
two of the most popular ones, the entanglement of formation and the concurrence. We restrict our
attention to bipartite entanglement (see [67, 82] for generalizations to entanglement in systems with
more than two parties).

9.1 Entanglement as correlations between local measurements

Let |Ψ〉 be a pure state of a bipartite system AB. In view of the discussion in Sec. 2.4, it seems natural
physically to characterize the entanglement in |Ψ〉 by maximizing the correlator GAB(|Ψ〉) in (17) over
all local observables A ∈ B(HA)s.a. and B ∈ B(HB)s.a. and to define

G(|Ψ〉) = max
A=A∗,‖∆A‖∞,Ψ≤1

max
B=B∗,‖∆B‖∞,Ψ≤1

{∣∣GAB(|Ψ〉)
∣∣} . (279)

One must face with some arbitrariness on the choice of the norm used to bound ∆A = A− 〈A⊗ 1〉Ψ
and ∆B = B − 〈1 ⊗ B〉Ψ. In order to obtain an entanglement measure with the required properties,
we take the Ψ-dependent norm ‖∆A‖∞,Ψ = maxi,j |〈αi|∆A|αj〉|, where {|αi〉} is an orthonormal
eigenbasis of the reduced state [ρΨ]A, and similarly for ‖∆B‖∞,Ψ with the eigenbasis {|βk〉} of [ρΨ]B.
These norms correspond to the infinity norms of the vectors in HAA and HBB associated to ∆A and
∆B via the isometry (5). By using the Schmidt decomposition (9) and setting Aij = 〈αi|A|αj〉 and
Bij = 〈βi|B|βj〉, one finds

GAB(|Ψ〉) = 〈∆A⊗∆B〉Ψ =

n∑

i=1

µi(∆A)ii(∆B)ii +

n∑

i 6=j

√
µiµjAijBij . (280)

The Cauchy-Schwarz inequality immediately yields

G(|Ψ〉) = max
‖∆a‖∞≤1

{
(∆a)2

}
+ C(|Ψ〉) , (281)

where the overline stands for the average with respect to the Schmidt coefficients µi (e.g. a =
∑

i µiai),
∆a = a− a with a = (A11, . . . , Ann), ‖∆a‖∞ = maxi |(∆a)i|, and

C(|Ψ〉) =
n∑

i 6=j

√
µiµj =

(
tr
(√

[ρΨ]A
))2

− 1 . (282)

Thus C(|Ψ〉) = 0 (similarly, G(|Ψ〉) = 0) is equivalent to µi = 0 save for one index i, that is, to |Ψ〉
being separable. Furthermore, C(|Ψ〉) ≤ n− 1 with equality if and only if µi = 1/n for all i, that is,
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if and only if |Ψ〉 is maximally entangled (Sec. 2.4)23. Finally, we note that G and C are invariant
under local unitaries, i.e. G(UA ⊗ UB |Ψ〉) = G(|Ψ〉) for any unitaries UA and UB on HA and HB. For
two qubits one obtains

G(|Ψ〉) = µ−1
max − 1 + C(|Ψ〉) , C(|Ψ〉) = 2

√
µ0µ1 (283)

with µmax = max{µ0, µ1}. It is easy to show that C(|Ψ〉) = |〈Ψ|σy ⊗ σyJ |Ψ〉|, where σy = i(|0〉〈1| −
|1〉〈0|) is the y-Pauli matrix and J the complex conjugation in the canonical basis. This quantity has
been first introduced by Wootters [169] and is known as the concurrence.

One may wonder how the correlator GAB could be generalized for mixed states. The first guess
would be to replace the expectation value 〈·〉Ψ by 〈·〉ρ = tr(ρ · ), but one easily sees that then G(ρ)
can be non-zero even for separable mixed states, because this correlator contains both the quantum
and classical (i.e. statistical) correlations in the density matrix ρ. Noting that

GAB(|Ψ〉) = 1

2

〈(
∆(A⊗ 1 + 1⊗B)

)2〉
Ψ
− 1

2

〈(
∆(A⊗ 1)

)2〉
Ψ
− 1

2

〈(
∆(1⊗B)

)2〉
Ψ
, (284)

it is tempting to define a correlator for ρ in terms of the quantum Fisher information (209), i.e. of the
Bures metric gB,

GAB(ρ) =
1

8

(
FQ(ρ,A⊗ 1 + 1⊗B)−FQ(ρ,A⊗ 1)−FQ(ρ, 1⊗B)

)

= Re
{
(gB)ρ

(
−i[A⊗ 1, ρ],−i[1 ⊗B, ρ]

)}
.

By inspection on (210), GAB(ρ) reduces for pure states to the previous correlator. However, the
maximum of |GAB(ρ)| over all A and B does not fulfill the axioms of an entanglement measure. We
will see in Sec. 9.4 another way to define the concurrence C for mixed states, by using on a convex
roof construction.

9.2 LOCC operations

The main physical postulate on entanglement measures is that they must be monotonous with respect
to certain state transformations. Such transformations that cannot increase entanglement are called
Local Operations and Classical Communication (LOCC) and can be described as follows [23, 82].
Let us consider an entangled state ρ shared by two observers Alice and Bob. Alice and Bob can
perform any quantum operations MA : B(HA) → B(H′

A
) and MB : B(HB) → B(H′

B
) on their

respective subsystems A and B. Here, the final spaces H′
A
and H′

B
may include local ancillae, or may

be some subspaces of HA and HB, respectively. The corresponding transformations on the system
AB are called local quantum operations. They are of the form Mloc = MA ⊗ MB and are given by
families {Ai ⊗ Bj} of Kraus operators, where Ai and Bj are local observables on A and B. Local
operations are performed physically by coupling each subsystem to a local ancilla and by making joint
unitary evolutions and von Neumann measurements on the subsystem and its ancilla (see Sec. 3.2).
Such processes can clearly not increase the amount of entanglement between A and B. In addition
to performing local generalized measurements, Alice and Bob can communicate their measurement
outcomes to each other via a classical communication channel (two-way communication). No transfer
of quantum systems between them is allowed. Thanks to classical communication, the observers
can increase the classical correlations between A and B, but not the AB-entanglement. A LOCC

23 This last property is not true if one uses the operator norm instead of ‖ · ‖∞,Ψ in (279), except in the two-qubit
case n = 2.
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operation is a quantum operation on B(HAB) obtained through a succession of the aforementioned
actions of Alice and Bob, taken in arbitrary order. For example, if Alice performs a measurement on
A and Bob a measurement on B depending on Alice’s outcome i (one way communication), the post-
measurement state in the absence of readout is

M1−way(ρ) =
∑

i

1⊗M(i)
B
(Ai ⊗ 1ρA∗

i ⊗ 1) . (285)

This defines a LOCC operation with Kraus operators Ai⊗B(i)
j , where

∑
iA

∗
iAi =

∑
j(B

(i)
j )∗B

(i)
j = 1.

Any LOCC operation can be obtained by composing local operations Mloc with the maps

MA
LOCC(ρ) =

∑

i

(
Ai⊗ 1 ρA∗

i ⊗ 1
)
⊗ |κi〉〈κi| , MB

LOCC(ρ) =
∑

j

(
1⊗Bj ρ 1⊗B∗

j

)
⊗ |ǫj〉〈ǫj | , (286)

where
∑

iA
∗
iAi =

∑
j B

∗
jBj = 1 and {|κi〉} (respectively {|ǫj〉}) is an orthonormal basis for Bob’s

ancilla (respectively Alice’s ancilla) [82]. A strictly larger but much simpler class of transformations,
known as the separable quantum operations [160], is the set of all operations with Kraus operators
Ai ⊗Bi, i.e.

Msep(ρ) =
∑

i

Ai ⊗BiρA
∗
i ⊗B∗

i (287)

with Ai ∈ B(HA,H′
A
), Bi ∈ B(HB,H′

B
), and

∑
iA

∗
iAi ⊗ B∗

iBi = 1. The local operations and maps
(286) being separable, any LOCC operation is separable. A result from Ref. [24] shows, however, that
certain separable operations are not LOCCs.

It is clear that the set SAB of separable states is invariant under separable operations. It is also true
that every separable state can be converted into any other separable state by a separable operation.
Actually, any separable state can be obtained from the classical state ρclas =

∑
jk pjk|j〉〈j| ⊗ |k〉〈k|

by such an operation (take Aijk =
√
ηi|ψi〉〈j| and Bijk = |φi〉〈k| with ηi, |ψi〉, and |φi〉 as in (19)).

Furthermore, an arbitrary state ρ can be transformed into a classical state ρclas by a measurement in
the product basis {|j〉|k〉}, which is a local operation.

When one restricts LOCC transformations to pure states, a great simplification comes from the
following observation. If the space dimensions of A and B are such that nA ≥ nB, any measure-
ment by Bob can be simulated by a measurement by Alice followed by a unitary transformation by
Bob conditioned to Alice’s outcome (such a conditioning is allowed as Alice and Bob can communicate
classically). In fact, let {|αi〉}nA

i=1 and {|βi〉}nB

i=1 be orthonormal eigenbasis of the reduced states [ρΨ]A
and [ρΨ]B, and let Bi be the Kraus operators describing Bob’s measurement. Consider the measure-
ment done by Alice with Kraus operators Ai =

∑
j,l(Bi)lj |αl〉〈αj |, where (Bi)lj = 〈βl|Bi|βj〉. The

unnormalized post-measurement states

|Φ̃i〉 = 1⊗Bi|Ψ〉 =
∑

j,l

√
µj(Bi)lj |αj〉|βl〉 , |Φ̃′

i〉 = Ai ⊗ 1|Ψ〉 =
∑

j,l

√
µj(Bi)lj |αl〉|βj〉 (288)

have the same Schmidt coefficients because trB(|Φ̃i〉〈Φ̃i|) and trA(|Φ̃′
i〉〈Φ̃′

i|) are related by an isometry

HA → HB. Thus |Φ̃′
i〉 = Ui ⊗ Vi|Φ̃i〉 for some local unitaries Ui on HA and Vi on HB. Consequently,

Bob performing the measurement {Bi} is equivalent to Alice performing the measurement {U∗
i Ai}

and Bob performing the unitary transformation V ∗
i when Alice gets the outcome i. Applying this

result to all Bob’s measurements, we conclude that a LOCC acting on a pure state |Ψ〉 may always be
simulated by a one-way communication protocol involving only three steps: (1) Alice first performs
a generalized measurement on subsystem A; (2) she sends her measurement result to Bob; (3) Bob
performs a unitary evolution on B conditional to Alice’s result.
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Based on this observation, we say that a pure state |Ψ〉 ∈ HAB can be transformed by a LOCC
into the pure state |Φ〉 ∈ HAB if there are families of Kraus operators {Ai} on HA and unitaries {Vi}
on HB such that all unnormalized conditional states Ai ⊗ Vi|Ψ〉 are proportional to |Φ〉, irrespective
of the measurement outcome i. Note that this is equivalent to MLOCC(|Ψ〉〈Ψ|) being equal to |Φ〉〈Φ|,
with MLOCC the LOCC operation with Kraus family {Ai ⊗ Vi}. One defines in this way an order
relation on the set of pure states. Nielsen [116] discovered a nice relation between this order and the
theory of majorization for n-dimensional vectors [27]. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be
two vectors in R

n. We denote by x↓ the vector formed by the components of x in decreasing order,
and similarly for y↓. One says that x is majorized by y and write x ≺ y if

∑k
i=1 x

↓
i ≤

∑k
i=1 y

↓
i for any

k = 1, . . . , n, with equality instead of inequality for k = n.

Proposition 9.2.1. (Nielsen [116]) A pure state |Ψ〉 of the bipartite system AB can be transformed
into another pure state |Φ〉 of AB by a LOCC if and only if µΨ ≺ µΦ, where µΨ and µΦ are the
vectors formed by the Schmidt coefficients of |Ψ〉 and |Φ〉, respectively.

A detailed proof of this result can be found in [117] (Sect. 12.5), so we omit it here. This proof
relies on the following theorem: if λH and λK are vectors formed by the eigenvalues of two Hermitian
matrices H and K, respectively, then λH ≺ λK if and only if H =

∑
i ηiUiKU

∗
i with {ηi} a set of

probabilities and Ui some unitary matrices.

Remark 9.2.2. Even if |Ψ〉 cannot be transformed into |Φ〉 by a LOCC, it may still happen that
|Ψ〉 ⊗ |κ〉 can be transformed into |Φ〉 ⊗ |κ〉 by a LOCC (here the state of the ancilla does not change
during the transformation, i.e. it acts as catalysts in chemical reactions) [90].

9.3 Axioms on entanglement measures

We are now in position to formulate the physical postulates on entanglement measures [23, 160, 161].

Definition 9.3.1. An entanglement measure of a bipartite system AB is a function E : E(HAB) → R

such that

(i) E(ρ) = 0 if and only if ρ is separable;

(ii) E is convex;

(iii) E cannot increase under LOCCs, i.e. if MLOCC is a LOCC operation then E(MLOCC(ρ)) ≤
E(ρ).

As any two separable states can be transformed one into each other by means of a LOCC operation,
the monotonicity (iii) implies that E is constant on the set of separable states SAB. Taking this
constant equal to zero yields ρ ∈ SAB ⇒ E(ρ) = 0, so that only the reverse implication is needed
in (i). Furthermore, any state ρ can be converted into a separable state by a LOCC, thus E(ρ) is
minimum for separable states and E(ρ) ≥ 0. The convexity condition (ii) is motivated by the following
observation [161]. Assume that Alice and Bob share m pairs of particles in the states ρ1, . . . , ρm. By
classical communication, they can agree to keep the ith pair with probability ηi, thus preparing the
ensemble {ρi, ηi}mi=1. By erasing the information about which state ρi was kept, the state becomes
ρ =

∑
ηiρi (see Sec. 2.3). The inequality E(ρ) ≤ ∑

i ηiE(ρi) means that this local loss of information
does not increase the average entanglement.

It results from the monotonicity (iii) that entanglement measures are invariant under conjugations
by local unitaries, i.e. E(UA ⊗ UB ρU

∗
A
⊗ U∗

B
) = E(ρ). For pure states |Ψ〉, this implies that E(|Ψ〉)
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only depends on the Schmidt coefficients µi of |Ψ〉. Consequently, E(|Ψ〉) = f([ρΨ]A) is a unitary-
invariant function of the reduced state [ρΨ]A = trB(|Ψ〉〈Ψ|) (or, equivalently, of [ρΨ]B = trA(|Ψ〉〈Ψ|)).
Given that a pure state is separable if and only if it has a single non-vanishing Schmidt coefficient,
one deduces from axiom (i) that f(ρA) vanishes if and only if ρA is of rank one. The result below
due to Vidal [161] characterizes all entanglement measures on pure states satisfying a slightly stronger
condition than (iii). This shows in particular that there are many measures of entanglement fulfilling
the three physical requirements (i-iii) of Definition 9.3.1, given by concave functions f .

Proposition 9.3.2. (Vidal [161]) Let f : E(HA) → R be concave, unitary invariant, and such that
f(ρA) = 0 if and only if ρA is a pure state. Then

Ef (|Ψ〉) = f([ρΨ]A) (289)

defines an entanglement measure on the set of pure states of AB, which satisfies the monotonicity
condition

(iii’)
∑

i piE(|Φi〉) ≤ E(|Ψ〉), where pi = ‖Ai ⊗Bi|Ψ〉‖2 and |Φi〉 = p
−1/2
i Ai⊗Bi|Ψ〉 and the probabil-

ities and conditional states of a separable measurement with Kraus operators Ai ⊗Bi.

Conversely, any entanglement measure on pure states fulfilling (iii’) is given by (289) for some function
f satisfying the above assumptions.

It should be noted that asking E(|Φi〉) ≤ E(|Ψ〉) for all outcomes i would put a too strong condition
on E. Indeed, local measurements can in principle create entanglement on some conditional states,
but not on average (see below).

Proof. Let f be like in the proposition. We have already argued above that Ef fulfills axiom (i), and
(ii) is empty because of the restriction to pure states. Recall that for such states any measurement on
B can be simulated by a measurement on A followed by a unitary operation on B conditioned to the
measurement result. Hence it suffices to show the monotonicity (iii’) for Bi = Vi unitary. Let us set
ρB|i = trA(|Φi〉〈Φi|). Then {V ∗

i ρB|iVi, pi} is a pure state decomposition of [ρΨ]B, i.e.
∑

i piV
∗
i ρB|iVi =

[ρΨ]B. This can be interpreted by saying that a local measurement on A does not modify the state of
B when B has no information on the measurement outcomes24. The concavity and unitary invariance
of f imply ∑

i

piEf (|Φi〉) =
∑

i

pif(V
∗
i ρB|iVi) ≤ f([ρΨ]B) = Ef (|Ψ〉) . (290)

This shows (iii’). Thus Ef is an entanglement measure.
Reciprocally, let E be an entanglement measure on pure states satisfying (iii’). From the discussion

before the proposition we know that E(|Ψ〉) = f([ρΨ]A) = f([ρΨ]B) for some unitary-invariant function
f vanishing on pure states only. It remains to show that f is concave. We may assume that the space
dimensions of A and B are such that nA ≤ nB (otherwise one can exchange the role of A and B in the

arguments below). Let ρA be an arbitrary state of A and σ
(1)
A

, σ
(2)
A

be such that ρA = p1σ
(1)
A

+ p2σ
(2)
A

with p1 + p2 = 1. As nA ≤ nB, one may find a purification |Ψ〉 of ρA on HAB (Sec. 2.3). If one
can exhibit a measurement on B with outcome probabilities pi and conditional states |Φi〉 having

24 If this would not be true, information could be sent faster than light in contradiction with Einstein’s principle of
relativity [127].

75



marginals trB(|Φi〉〈Φi|) = σ
(i)
A

for i = 1, 2, then the concavity of f can be deduced from (iii’) thanks
to the bound

f(ρA) = E(|Ψ〉) ≥ p1E(|Φ1〉) + p2E(|Φ2〉) = p1f(σ
(1)
A

) + p2f(σ
(2)
A

) . (291)

The measurement we are looking for is just the square root measurement associated to {σ(i)
A
, pi}

(Sec. 4.3). Indeed, let {|αj〉}nA

j=1 and {|βk〉}nB

k=1 be eigenbases of [ρΨ]A and [ρΨ]B and M lsm
i , i = 1, 2,

be the operators on HB with matrix elements given by (compare with (57))

〈βj |M lsm
i |βl〉 =

{
pi〈αl|ρ

− 1
2

A
σ
(i)
A
ρ
− 1

2
A

|αj〉 if j, l = 1, . . . , nA

0 otherwise.
(292)

If nB > nA we add a third measurement operator, equal to the projector onto span{|βk〉;nA < k ≤ nB}.
ThenM lsm

1 +M lsm
2 +M lsm

3 = 1. With the help of the Schmidt decomposition (9) one finds that 〈Ψ|1⊗
M lsm
i |Ψ〉 equals pi for i = 1, 2 and zero for i = 3, and the conditional state |Φi〉 = p

−1/2
i 1⊗

√
M lsm
i |Ψ〉

has marginal trB(|Φi〉〈Φi|) = σ
(i)
A

for i = 1, 2. This concludes the proof. ✷

Proposition 9.3.2 can be partially justified with the help of Proposition 9.2.1. More precisely, the
latter implies that Ef (|Ψ〉) ≥ Ef (|Φ〉) if |Φ〉〈Φ| = MLOCC(|Ψ〉〈Ψ|), that is, if there exists a LOCC
measurement on |Ψ〉 with all conditional states |Φi〉 equal to |Φ〉. This comes from the fact that, by
unitary invariance, f([ρΨ]A) is a symmetric function of the eigenvalues (µΨ)1, . . . , (µΨ)n of [ρΨ]A. But
concave symmetric functions f : Rn → R are Schur-concave, i.e. x ≺ y ⇒ f(x) ≥ f(y) (see [27],
Theorem II.3.3).

Many entanglement measures satisfying the axioms (i-iii) of Definition 9.3.1 have been defined in
the literature. Their restrictions to pure states are all given by (289) for specific concave functions f .
We present in the next subsection a few of these measures, namely, the entanglement of formation, the
concurrence, and the Schmidt number. An integer-valued entanglement measure has been introduced
in [139] by using a symplectic geometry approach, but this goes beyond the scope of this article.

9.4 Entanglement of formation

9.4.1 Entanglement of formation for pure states

A natural choice for the function f is the von Neumann entropy. We set

EEoF(|Ψ〉) = S
(
[ρΨ]A

)
= S

(
[ρΨ]B

)
= −

∑

i

µi lnµi . (293)

Then EEoF(|Ψ〉) = 0 if and only if |Ψ〉 is separable and EEoF(|Ψ〉) is maximum (and equal to lnn
with n = min{nA, nB}) if and only if |Ψ〉 is maximally entangled. Since the von Neumann entropy is
concave, Proposition 9.3.2 ensures that EEoF is an entanglement measure on pure states.

An important result due to Bennett et al. [22] relates EEoF(|Ψ〉) to entanglement distillation
and entanglement cost, which consist in the following problems. The EPR two-qubit state |Φ+〉 =
(|0〉|0〉 + |1〉|1〉)/

√
2 ∈ C

4 corresponds to an e-bit of information shared by Alice and Bob. One such
e-bit is required, for instance, if Alice wants to teleport an unknown quantum state to Bob [117].
Entanglement distillation is the transformation of N copies of |Ψ〉 onto M < N copies of |Φ+〉. It was
demonstrated by Bennett et al. that in the large N limit, EEoF(|Ψ〉) is equal to the maximal rate of
distillation M/N , the maximum being over all LOCC operations. Stated differently, EEoF(|Ψ〉) is the

76



highest number of e-bits per input copy of |Ψ〉 that can be distilled from |Ψ〉 via LOCCs. Conversely,
EEoF(|Ψ〉) is the smallest number of e-bits per unit copy of |Ψ〉 from which |Ψ〉 may be obtained via
LOCCs. The precise mathematical statement is given in the proposition below.

Proposition 9.4.1. (Bennett et al. [22])

EEoF(|Ψ〉)
ln 2

= sup
{
r ; lim

N→∞

(
inf

LOCC

∥∥M(N)
LOCC(|Ψ⊗N 〉〈Ψ⊗N |)− |Φ⊗rN

+ 〉〈Φ⊗rN
+ |

∥∥
1

)
= 0

}
(294)

= inf
{
r ; lim

N→∞

(
inf

LOCC

∥∥|Ψ⊗N 〉〈Ψ⊗N | −M(N)
LOCC(|Φ⊗rN

+ 〉〈Φ⊗rN
+ |)

∥∥
1

)
= 0

}
. (295)

Let us stress that these identities are no longer valid for mixed states: then the right-hand sides
of (294) and (295) are, in general, not equal. They define two measures of entanglement called the
distillable entanglement and the entanglement cost (see [82] and references therein). The fact that
these quantities coincide with EEoF(|Ψ〉) for pure states basically indicates that, among all the possible
entanglement measures, only one (namely EEoF(|Ψ〉)) becomes relevant asymptotically when dealing
with many copies of |Ψ〉.

Proof. A simple and illuminating proof due to Nielsen [116] is based on Proposition 9.2.1 and the
Shannon equipartition theorem. It runs as follows. Let µi be the Schmidt coefficients of |Ψ〉. Consider
N i.i.d. random variables with distribution {µi} and values in I = {1, . . . , n}. The joint probabilities
of these random variables are p(i) = µi1 . . . µiN with i = (i1, . . . , iN ) ∈ IN . Given ε > 0, the “most
likely set” AN,ε ⊂ IN is by definition the set of all i ∈ IN such that 2−N(H+ε) ≤ p(i) ≤ 2−N(H−ε), H
being the Shannon entropy of {µi}, which is defined here by using the binary logarithm (in our case,
H = EEoF(|Ψ〉)/ ln 2). The Shannon equipartition theorem [143] tells us that AN,ε has probability
PN,ε > 1− ε and cardinality |AN,ε| satisfying (1− ε)2N(H−ε) ≤ |AN,ε| ≤ 2N(H+ε) for sufficiently large
N . The idea of Nielsen’s proof is to approximate

|Ψ⊗N 〉 =
∑

i∈IN

√
p(i) |αi1〉 . . . |αiN 〉 ⊗ |βi1〉 . . . |βiN 〉

≃ |ΦN,ε〉 =
∑

i∈AN,ε

√
q(i) |αi1〉 . . . |αiN 〉 ⊗ |βi1〉 . . . |βiN 〉 (296)

with q(i) = p(i)/PN,ε and |αi〉, |βi〉 as in Theorem 2.2.1. Observe that the fidelity |〈Ψ⊗N |ΦN,ε〉|2 = PN,ε
is almost one for small ε. For any A ⊂ |AN,ε|, one has

(1− ε)|A| 2−2Nε

|AN,ε|
≤

∑

i∈A

q(i) ≤ |A| 22Nε
(1− ε)|AN,ε|

. (297)

The second inequality implies that q = (q(i))i∈AN,ε
≺ (2−M , . . . , 2−M , 0, . . . , 0) with

M = ln2(|AN,ε|(1− ε))− 2Nε . (298)

By Proposition 9.2.1, this means that |ΦN,ε〉 can be transformed by a LOCC into the M -qubit state

|Φ⊗M
+ 〉 =

∑

j∈{0,1}M

2−
M
2 |j1〉 . . . |jM 〉 ⊗ |j1〉 . . . |jM 〉 . (299)
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We conclude that for N sufficiently large there exists a LOCC operation M(N,ε)
LOCC from B(H⊗N

AB
) into

B(C⊗2M ) such that

∥∥M(N,ε)
LOCC(|Ψ⊗N 〉〈Ψ⊗N |)− |Φ⊗M

+ 〉〈Φ⊗M
+ |

∥∥
1

≤
∥∥|Ψ⊗N 〉〈Ψ⊗N | − |ΦN,ε〉〈ΦN,ε|

∥∥
1

≤ 2
(
1−

∣∣〈Ψ⊗N |ΦN,ε〉
∣∣2) 1

2 ≤ 2
√
ε (300)

(we have used Propositions 7.1.2 and 7.4.1 to get the first and second inequalities, respectively). In
addition, the distillation rate M/N is bounded from below by H − 3ε + 2N−1 ln(1 − ε). Taking e.g.
ε = 1/

√
N , this proves that EEoF(|Ψ〉) ≤ ED(|Ψ〉), where ED(|Ψ〉) denotes the right-hand side of

(294).
Similarly, the first inequality in (297) implies that |ΦN,ε〉 can be obtained asymptotically by trans-

forming M ′ copies of |Φ+〉 with LOCCs, more precisely it shows the existence of a LOCC operation

M(N,ε) ′

LOCC such that ∥∥|Ψ⊗N 〉〈Ψ⊗N | −M(N,ε) ′

LOCC(|Φ⊗M ′
+ 〉〈Φ⊗M ′

+ |
∥∥
1
≤ 2

√
ε (301)

for N large enough, with
M ′ = ln2(|AN,ε|/(1 − ε)) + 2Nε . (302)

The production rate M ′/N is bounded from above by H + 3ε −N−1 ln(1 − ε). This establishes that
EEoF(|Ψ〉) ≥ EC(|Ψ〉), where EC(|Ψ〉) denotes the right-hand side of (295). But ED(|Ψ〉) ≤ EC(|Ψ〉),
as otherwise one could transform asymptotically by a LOCC r′N e-bits into rN e-bits with r′ < r,
which is impossible. Hence EEoF(|Ψ〉 = ED(|Ψ〉) = EC(|Ψ〉). ✷

9.4.2 Convex roof constructions

The extension of EEoF to mixed states is done via a convex roof construction [23].

Definition 9.4.2. The entanglement of formation of a mixed state ρ ∈ E(HAB) is

EEoF(ρ) = min
{|Ψi〉,ηi}

{∑

i

ηiEEoF(|Ψi〉)
}
, (303)

where the minimum is over all pure state decompositions ρ =
∑

i ηi|Ψi〉〈Ψi| of ρ.

Proposition 9.4.3. (Vidal [161]) EEoF(ρ) is an entanglement measure with values in the interval
[0, ln n]. It satisfies the monotonicity condition (which is stronger than (iii))

(iii”)
∑

i piEEoF(p
−1
i M(i)

loc(ρ)) ≤ EEoF(ρ) with pi = tr[M(i)
loc(ρ)], for any family of CP local maps M(i)

loc

with Kraus operators {Aij ⊗Bik}j,k such that
∑

i,j,kA
∗
ijAij ⊗B∗

ikBik = 1.

Note that the maps M(i)
loc are not required to be trace preserving (but tr[M(i)

loc(ρ)] ≤ 1). Modulo
a state normalization, they describe wavepacket reduction processes, see (37).

Proof. One has clearly 0 ≤ EEoF(ρ) ≤ lnn. We now argue that EEoF satisfies all the axioms (i-iii)
of an entanglement measure. In fact, EEoF is convex by construction. Moreover, it follows from the
aforementioned properties of EEoF(|Ψ〉) and the definition of mixed state entanglement (Sec. 2.4) that
EEoF(ρ) = 0 if and only if ρ ∈ SAB. Finally, the monotonicity with respect to LOCC operations
is a consequence of the convexity and can be shown as follows. Let ρ =

∑
i ηi|Ψi〉〈Ψi| be the pure
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state decomposition minimizing the average entanglement in the right-hand side of (303). Let M be a
separable operation with Kraus operators Aj⊗Bj. We denote by ηj|i = ‖Aj⊗Bj|Ψi〉‖2 the probability
of outcome j given that the state is |Ψi〉. From the convexity of EEoF and its monotonicity (iii’) for
pure states (which holds by Proposition 9.3.2) one finds

EEoF

(
M(ρ)

)
≤

∑

i

ηiEEoF

(
M(|Ψi〉〈Ψi|)

)
≤

∑

ij

ηiηj|iEEoF

(
η
− 1

2

j|i Aj ⊗Bj |Ψi〉
)

≤
∑

i

ηiEEoF(|Ψi〉〈Ψi|) = EEoF(ρ) . (304)

Thus EEoF is an entanglement measure. A similar reasoning shows that EEoF satisfies (iii”). ✷

More generally, one can construct entanglement measures by extending to mixed states any entan-
glement measure on pure states via a convex roof construction analog to (303). One gets in this way
a family of measures Ef depending on the choice of the function f in Proposition 9.3.2. Conversely,
any entanglement measure E satisfying the axiom (iii”) above coincides with Ef on pure states for
some function f fulfilling the assumptions of Proposition 9.3.2 [161]. In particular, this suggests to
define the concurrence for mixed states as

C(ρ) = min
{|Ψi〉,ηi}

{∑

i

ηiC(|Ψi〉)
}
, (305)

where C(|Ψi〉) is given by (282). It is known that ρA 7→ ‖ρA‖1/2 = (tr[ρ
1/2
A

])2 is concave (see (B1) in
Appendix B), whence C(ρ) is an entanglement measure. Another measure of entanglement of common
use for pure states is the Schmidt number obtained by choosing f(ρA) = 1/ tr(ρ2

A
) in Proposition 9.3.2.

As stated above, (iii”) means that separable measurements cannot increase the average entan-
glement, but entanglement can increase if one considers conditional expectations over subgroups of

outcomes, i.e. one may have EEoF(p
−1
i M(i)

loc(ρ)) ≥ EEoF(ρ) for some i. An example is given by the
qutrit-qutrit system in the state

ρ =
1

2
|Φ+〉〈Φ+|+

1

2
|2〉〈2| ⊗ |2〉〈2| , |Φ+〉 =

1√
2

(
|0〉|0〉 + |1〉|1〉

)
. (306)

Assume that Alice and Bob perform each a von Neumann measurement with projectors Π1 onto
span{|0〉, |1〉} and Π2 onto C|2〉. The conditional states ρAB|11 = |Φ+〉〈Φ+| and ρAB|22 = |2〉〈2|⊗ |2〉〈2|
have entanglement of formations ln 2 and 0, respectively. The first value is larger than EEoF(ρ), which
is equal to ln 2/2 according to the following result.

Corollary 9.4.4. Let ρ1 and ρ2 be two states on HAB with bi-orthogonal supports ran ρi ⊂ VA
i ⊗ VB

i ,
where VA

i ⊂ HA and VB
i ⊂ HB are such that VA

2 = (VA
1 )

⊥ and VB
2 = (VB

1 )
⊥. Let ρ = η1ρ1 + η2ρ2 with

ηi ≥ 0, η1 + η2 = 1. Then EEoF(ρ) = η1EEoF(ρ1) + η2EEoF(ρ2).

Proof. The inequality EEoF(ρ) ≤ η1EEoF(ρ1) + η2EEoF(ρ2) follows from convexity. The reverse in-
equality is a consequence of the monotonicity property (iii”) applied to the maps

M(i)
loc(ρ) = πAi ⊗πBi ρ πAi ⊗πBi , i = 1, 2 , M(3)

loc(ρ) = πA1 ⊗πB2 ρ πA1 ⊗πB2 +πA2 ⊗πB1 ρ πA2 ⊗πB1 , (307)

where πAi and πBi are the projectors onto VA
i and VB

i , respectively. ✷
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It is worth realizing the link between EEoF(ρ) and the classical mutual information IX:Y , where
X = {ηi} is associated to a pure state decomposition {|Ψi〉, ηi} of ρ and Y to the outcomes of a local
measurement on A (Sec. 5.6). Indeed, the maximum of IX:Y over all pure state decompositions and
all POVMs on A is bounded by

max
{|Ψi〉,ηi},{MA

i }

{
IX:Y

}
≤ S(ρA)− EEoF(ρ) . (308)

This inequality is a direct consequence of the Holevo bound (113) and the definition (303) of EEoF(ρ).

9.4.3 The Wootters formula for two qubits

The main problem with the convex-roof construction (303) is that finding the pure state decomposi-
tion minimizing the average entanglement is a non-trivial task. Nevertheless, an astonishing formula
enabling to evaluate EEoF(ρ) explicitly for two qubits was found by Wootters [169]. It reads

EEoF(ρ) = h(C(ρ)) (309)

where C(ρ) is given by (305) and h : [0, 1] → [0, ln n] is the convex increasing function

h(C) = −1 +
√
1− C2

2
ln
(1 +

√
1− C2

2

)
− 1−

√
1− C2

2
ln
(1−

√
1− C2

2

)
. (310)

The main point is that C(ρ) can be calculated explicitly as follows. Let λ1 ≥ λ2 ≥ λ3 ≥ λ4 be the
square roots of the eigenvalues of ρσy ⊗ σy ρ σy ⊗ σy (here σy is the y-Pauli matrix and ρ = JρJ the
complex conjugate of ρ in the canonical basis). Then

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} . (311)

For pure states this yields C(|Ψ〉) = |〈Ψ|σy ⊗ σyJ |Ψ〉|2, in agreement with the result of Sec. 9.1. The
proof of (309) is somehow tricky but relies on simple linear algebra arguments (see [169]).

9.5 Maximally entangled states

One may expect intuitively that the most entangled states are extremal states in E(HAB), that is,
they are the pure maximally entangled states described in Sec. 2.4. If one uses as a criterion for
being mostly entangled the property of having the highest entanglement of formation, this is indeed
correct when the dimensions of HA and HB are such that nA/2 < nB < 2nA. When nB ≥ 2nA, convex
combinations of pure maximally entangled states with reduced B-states living on orthogonal subspaces
of HB are also maximally entangled (a similar statement holds of course by exchanging A and B).

Proposition 9.5.1. Assume that n = nA ≤ nB and let r = 1, 2, . . . be such that rnA ≤ nB < (r+1)nA.
Then the states ρ ∈ E(HAB) having a maximal entanglement of formation EEoF(ρ) = lnn are convex
combinations of the r orthogonal maximally entangled states

|k〉 = n−
1
2

n∑

i=1

|α(k)
i 〉 ⊗ |β(k)i 〉 , k = 1, . . . , r , (312)

with 〈α(k)
i |α(k)

j 〉 = δij and 〈β(k)i |β(l)j 〉 = δklδij .
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Proof. Let ρ be a state with EEoF(ρ) = lnn. According to Definition 9.4.2 and given that EEoF(|Ψ〉) ≤
lnn with equality if and only if |Ψ〉 is maximally entangled, this means that any pure state decompo-
sition of ρ is made of maximally entangled states. This is the case in particular for the spectral decom-
position ρ =

∑
k pk|k〉〈k|, from which one can obtain all other pure state decompositions {|Ψi〉, ηi} by

the formula
√
ηi|Ψi〉 =

∑
k uik

√
pk|k〉 with ηi =

∑
k |uik|2pk (see (16)). Let us set Dkl = trB(|k〉〈l|).

We would like to show that Dkl = n−1δkl if pkpl 6= 0. We already know that Dkk = 1/n if pk 6= 0, since
|k〉 is maximally entangled. By plugging the above expression of

√
ηi|Ψi〉 into trB(|Ψi〉〈Ψi|) = 1/n,

one is led to ∑

k,l,k 6=l

√
pkpluikuilDkl = 0 . (313)

This equality holds for any i and any unitary matrix (uik), hence
√
pkplDkl = 0 if k 6= l and the

above claim is true. One deduces from Dkk = 1/n that the eigenvectors |k〉 with eigenvalues pk > 0

have Schmidt decompositions given by (312). For k 6= l, Dkl = 0 is then equivalent to V(k)
B

⊥V(l)
B

with V(k)
B

= span{|β(k)i 〉}ni=1 ⊂ HB. If nB < (r + 1)n then at most r subspaces V(k)
B

may be pairwise
orthogonal. Thus at most r eigenvalues pk are non-zero. ✷
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10 The quantum discord

The quantum discord was introduced by Ollivier and Zurek [120] and Henderson and Vedral [75] as
an indicator of the “degree of quantumness” of mixed states. For pure states it coincides with the
entanglement of formation. Certain separable mixed states have, however, a non-zero discord. These
states are obtained by preparing locally mixtures of non-orthogonal states, which cannot be perfectly
discriminated by local measurements. Such separable states cannot be classified as “classical” and
actually contain quantum correlations that are not captured by the entanglement measures reviewed in
Sec. 9. Apart from this observation, a motivation for the quantum discord came out in the last decade
from the claim that it could play the role of a resource in certain quantum algorithms and quantum
communication protocols [49, 97, 123, 107, 66, 47]. In particular, it has been suggested [49, 97, 123]
that the discord might capture the quantum correlations at the origin of the quantum speedup in
the deterministic quantum computation with one qubit (DQC1) of Knill and Laflamme [93]. The
DQC1 algorithm computes the trace of a 2N × 2N unitary matrix exponentially faster than all known
classical algorithms. The entanglement produced during the computation with (N + 1) qubits is
bounded independently of N , for any bipartition of the (N + 1) qubits [48]. This means that the
total amount of bipartite entanglement is a negligible fraction of the maximal entanglement possible.
However, a non-vanishing quantum discord between the control qubit and the N target qubits appears
during the computation [49], save for particular unitaries [46]. The DCQ1 algorithm is singled out
by the fact that it uses mixed states, the N target qubits being initially in a Gibbs state at infinite
temperature. In contrast, for quantum computations using pure states, Jozsa and Linden [92] have
shown that in order to offer an exponential speedup over classical computers, the computation must
produce entanglement which is not restricted to qubit blocks of fixed size as the problem size increases.

The definition of the quantum discord is given in Sec. 10.1. We then characterize the states with
vanishing discord in Sec. 10.2 and exhibit some important properties of the discord in Sec. 10.3.
The so-called monogamy relation linking the discord and the entanglement of formation in tripartite
systems is stated and proven in Sec. 10.4.

10.1 Definition of the quantum discord

Let us first consider some classical discrete random variables A and B with joint probabilities pij and
marginals pA(i) =

∑
j pij and pB(j) =

∑
i pij. The correlations between A and B are measured by

the mutual information IA:B = H(A) +H(B)−H(A,B). We recall from Sec. 5.6 that

IA:B = H(B)−H(B|A) , (314)

where H(B|A) =
∑

i pA(i)H(B|i) is the conditional entropy, see (110). This conditional entropy
describes the amount of information on B left after the value A = i has been measured, averaged over
all possible outcomes i.

In the quantum setting, the analog of the random variables A and B is a bipartite quantum system
AB in a state ρ. The marginals are the reduced states ρA = trB(ρ) and ρB = trA(ρ). The generalization
of the mutual information reads

IA:B(ρ) = S(ρA) + S(ρB)− S(ρ) , (315)

where S(·) is the von Neumann entropy (114). Similarly to the classical case, one has IA:B(ρ) ≥ 0 and
IA:B(ρ) = 0 if and only if ρ is a product state, i.e. ρ = ρA ⊗ ρB (this is nothing but the subadditivity
property of S, see Sec. 6.1). It is easy to verify that IA:B(ρ) is related to the relative entropy (122) by

IA:B(ρ) = S(ρ||ρA ⊗ ρB) . (316)
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By the monotonicity of the relative entropy (Theorem 6.2.1), IA:B(Mloc(ρ)) ≤ IA:B(ρ) for any local
operation Mloc = MA⊗MB, where the operations MA : B(HA) → B(H′

A
) and MB : B(HB) → B(H′

B
)

may have different initial and final spaces (for instance, MA can be the partial trace over a part of
A).

However, there is no quantum analog of the identity (314). Let us define a conditional entropy of
B given a von Neumann measurement {πAi } on A by SB|A(ρ|{πAi }) =

∑
i ηiS(ρB|i), where

ρB|i = η−1
i trA(π

A
i ⊗ 1 ρ) , ηi = tr(πAi ⊗ 1 ρ) . (317)

Here ηi is the probability of the measurement outcome i and ρB|i = trA(ρAB|i) is the corresponding
conditional state of B (see Sec. 3). The ensemble {ρB|i, ηi} defines a convex decomposition of ρB
(i.e. ρB =

∑
i ηiρB|i) describing a state preparation of the subsystem B realized by the measurement on

A. The quantum version of the right-hand side of (314) is the maximal reduction of entropy of B due
to a von Neumann measurement on A,

Jv.N.
B|A (ρ) = S(ρB)−min

{πA
i }

{∑

i

ηiS(ρB|i)

}
, (318)

the minimum being over all orthonormal families of projectors on HA. This quantity represents the
classical correlations between A and B (see the discussion after Proposition 10.1.2 below). Note that
Jv.N.
B|A (ρ) places an upper bound on the classical mutual information between the ensemble {ρB|i, ηi}

and the outcome probabilities when performing measurements on B to discriminate the states ρB|i
(Sec. 5.6). Actually, Jv.N.

B|A (ρ) coincides with the corresponding Holevo quantity (113). By con-

cavity of the von Neumann entropy, one has Jv.N.
B|A (ρ) ≥ 0. Furthermore, (121) entails Jv.N.

B|A (ρ) ≤
max{πA

i }
H({ηi}).

It also follows from the concavity of S that the minimum in (318) is achieved for rank-one pro-
jectors. In fact, by decomposing each projector πAi of rank ri as a sum of ri rank-one projectors πAik,
one finds that ρB|i =

∑
k(ηik/ηi)ρB|ik is a convex combination of the states ρB|ik = η−1

ik trA(π
A
ik ⊗ 1 ρ)

if ηi =
∑

k ηik > 0. Thereby
∑

i ηiS(ρB|i) ≥
∑

ik ηikS(ρB|ik).
Ollivier and Zurek [120] and Henderson and Vedral [75] proposed in two independent works pub-

lished in 2001 to characterize the amount of non-classicality in the state ρ by forming the difference
between the total correlations given by IA:B(ρ) and the classical correlations given by Jv.N.

B|A (ρ).

Definition 10.1.1. The quantum discord of the bipartite system AB in state ρ is

δv.N.A (ρ) = IA:B(ρ)− Jv.N.
B|A (ρ) = S(ρA)− S(ρ) + min

{πA
i }

{∑

i

ηiS(ρB|i)

}
. (319)

In [75], the minimization is done over generalized measurements given by POVMs {MA
i } on HA,

instead of von Neumann measurements. The conditional states and outcome probabilities are then
(Sec. 3)

ρB|i = η−1
i trA(M

A
i ⊗ 1 ρ) , ηi = tr(MA

i ⊗ 1 ρ) . (320)

We denote the corresponding discord by δA(ρ). As in the case of von Neumann measurements, the
minimum is achieved for rank-one measurement operators MA

i . In general, the inequality δA(ρ) <
δv.N.
A

(ρ) is strict25. Nevertheless, by the Neumark extension theorem, δA coincides with δv.N.
A

up to an

25 See e.g. [68, 62] for a comparison of the von Neumann and POVM discords for two qubits.
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enlargement of the space HA. More precisely, by plugging MA
i = 〈ǫ0|ΠAE|ǫ0〉 (see Remark 3.3.3) into

(320) and using the additivity of S under tensor products, a simple calculation gives

δA(ρ) = δv.N.AE (ρ⊗ |ǫ0〉〈ǫ0|) , (321)

the right-hand side being independent of the ancilla state |ǫ0〉 ∈ HE.
The discords δv.N.

A
(ρ) and δA(ρ) thus measure the amount of total correlations between A and B

which cannot be accessed by local measurements on the subsystem A. Note that they are asymmetric
under the exchange A ↔ B. One can define similarly the discords δv.N.

B
(ρ) and δB(ρ) by performing

the measurements on the subsystem B.
For pure states ρΨ = |Ψ〉〈Ψ|, the mutual information IA:B(ρΨ) is equal to 2S([ρΨ]B), see (117),

and the measurement minimizing the conditional entropy of B is the measurement in the eigenbasis
{|αi〉} of the reduced state [ρΨ]A. In fact, according to (9) the corresponding post-measurement states
ρB|i = |βi〉〈βi| are pure and thus have zero entropy. Then (318) yields JB|A(ρΨ) = S([ρΨ]B). As a
result, the discords coincide for pure states with the entanglement of formation,

δA(|Ψ〉) = δv.N.A (|Ψ〉) = δB(|Ψ〉) = δv.N.B (|Ψ〉) = EEoF(|Ψ〉) . (322)

For mixed states, it was pointed out in [120] that if the measurement operators MA
i are of rank

one then

∑

i

ηiS(ρB|i) = S
(
MA ⊗ 1(ρ)

)
− S

(
[MA ⊗ 1(ρ)]A

)
= −IA:B

(
MA ⊗ 1(ρ)

)
+ S(ρB) , (323)

where MA is the quantum operation on A associated to the measurement. Actually, consider the
family of Kraus operators for MA given by {Ai = |i〉〈µ̃i|}, where |µ̃i〉 are unnormalized vectors such
that MA

i = |µ̃i〉〈µ̃i| and {|i〉} is an orthonormal basis of a pointer space HP. Then MA ⊗ 1(ρ) =∑
i ηi|i〉〈i| ⊗ ρB|i and the reduced state [MA ⊗ 1(ρ)]A =

∑
i ηi|i〉〈i| has entropy −∑

i ηi ln ηi. A
simple calculation yields the first equality in (323). The second equality is clear once one notices that
[MA ⊗ 1(ρ)]B = ρB.

Therefore, by combining (318), (319), and (316) one obtains the following result.

Proposition 10.1.2. [105] The discord δ(ρ) = IA:B(ρ) − JB|A(ρ) is the minimal difference of mutual
information of AB before and after a measurement on A, i.e.

JB|A(ρ) = max
{MA

i }

{
IA:B(MA ⊗ 1(ρ))

}
, (324)

where the maximum is over all POVMs on A with rank-one operators MA
i and MA is the associated

quantum operation on B(HA). As a result,

δA(ρ) = min
{MA

i }

{
S
(
ρ||ρA ⊗ ρB

)
− S

(
MA ⊗ 1(ρ)||MA(ρA)⊗ ρB)

)}
. (325)

Similarly, Jv.N.
B|A (ρ) is given by maximizing IA:B(MπA ⊗ 1(ρ)) over all von Neumann measurements

MπA on A of the form (26) with rank-one projectors πAi .

Observing that a measurement on A with no readout removes the quantum correlations between
A and B, the right-hand side of (324) can be interpreted as the amount of classical correlations
between the two subsystems. These subsystems are not correlated classically, i.e. JB|A(ρ) = 0, if
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and only if ρ = ρA ⊗ ρB is a product state. This result holds for Jv.N.
B|A (ρ) as well. Actually, by

(324), JB|A(ρ) = 0 is equivalent to MA ⊗ 1(ρ) being a product state for any collection of operators

MA
i = |µ̃i〉〈µ̃i| forming a POVM. This implies ηiρB|i = 〈µ̃i|ρ|µ̃i〉 = ηiρB for all i (see the discussion

before Proposition 10.1.2). Choosing the |µ̃i〉 to be the eigenvectors of the observable A, one obtains
that 〈A⊗B〉ρ = 〈A⊗ 1〉ρ〈1⊗B〉ρ for any A ∈ B(HA)s.a. and B ∈ B(HB)s.a., with 〈·〉ρ = tr(·ρ).

Let us emphasize that finding the optimal measurement which maximizes the post-measurement
mutual information, and hence calculating the discords δv.N.

A
(ρ) and δA(ρ), is a difficult problem in

general. Even for two qubits, this problem has been solved so far for a restricted family of states
only, namely, the states ρ with maximally mixed marginals ρA = ρB = 1/2 [104]. In other cases26 the
discords must be evaluated numerically (however, δA(ρ) can be determined analytically for low-rank
density matrices with the help of the monogamy relation, see Sec. 10.4 and [110]).

10.2 The A-classical states

The monotonicity property of the relative entropy and formula (325) imply that δA(ρ) is non-negative.
The states with vanishing discord can be determined with the help of Theorem 6.2.1, leading to the
following result27.

Proposition 10.2.1. The quantum discord is non-negative and δA(σ) = 0 if and only if

σ =

nA∑

i=1

qi|ϕi〉〈ϕi| ⊗ σB|i , (326)

where {|ϕi〉}nA

i=1 is an orthonormal basis of HA, σB|i are some (arbitrary) states of B depending on the
index i, and qi ≥ 0 are some probabilities,

∑
i qi = 1.

The non-negativity of δA(ρ) means that one cannot gain more information on a bipartite system
AB by performing a measurement on the subsystem A than the entropy of A, namely, S(ρAB) −∑
ηiS(ρAB|i) ≤ S(ρA) for any ρAB ∈ E(HAB). The important point is that if ρAB is not of the form

(326), then any measurement on A gives less information on AB than S(ρA). Stated differently, one
can not retrieve all the information on A by a local measurement, because of the presence of quantum
correlations between A and B.

Proof. It remains to show the second affirmation. It is easy to convince oneself that the states
(326) have a vanishing discord. In fact, one finds IA:B(σ) = S(σB) −

∑
i qiS(σB|i) ≤ Jv.N.

B|A (σ) (the
inequality follows by noting that σB|i and qi are the conditional state and outcome probability for a

measurement on A in the basis {|ϕi〉}). Hence δA(σ) = δv.N.
A

(σ) = 0 as a consequence of the non-
negativity of δA. Reciprocally, let σ ∈ E(HAB) be such that δv.N.

A
(σ) = 0. As we shall see below it is

enough to work with the von Neumann discord, the result for δA will then follow from (321). According
to (325) and Theorem 6.2.1, δv.N.

A
(σ) = 0 if and only if there exists a von Neumann measurement MA

on A with rank-one projectors πAi = |ϕi〉〈ϕi| such that σ = RAMA⊗1(σ), whereRA = RMA⊗1,σ0 is the

26 An incorrect work [6] claiming to extend the result of Ref. [104] to the larger family of the so-called X-states
has generated a profusion of articles. Comparing with numerical evaluations, the result of [6] apparently gives good
approximations of the discord for randomly chosen X-states (see the discussion in [110]).

27 In Ref. [120], the authors argue that the non-negativity of δv.N.
A (ρ) is a direct consequence of (323) and the concavity

of S(ρ)−S(ρA) with respect to ρ. I do not see how such a claim could be justified and believe that the simplest proof of
Proposition 10.2.1 is to rely on Theorem 6.2.1. Alternatively, the non-negativity of the discord can be justified with the
help of the strong subadditivity of the von Neumann entropy (which is closely related to Theorem 6.2.1, see Sec. 6.2),
as shown in Ref. [106].
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transpose operation of MA ⊗ 1 for the state σ0 = σA ⊗ σB. Without loss of generality we may assume
ηi = 〈ϕi|σA|ϕi〉 > 0 for all i. Thanks to (123) and to the identity MA ⊗ 1(σ0) =

∑
i ηi|ϕi〉〈ϕi| ⊗ σB,

the transpose operation RA has Kraus operators Ri = η
−1/2
i

√
σA|ϕi〉〈ϕi| ⊗ 1. We now argue that this

implies that σ = M̂A ⊗ 1(σ) with M̂A the von Neumann measurement with projectors π̂Ak onto the
subspaces span{|ϕi〉; i ∈ Ik}, where {I1, . . . , Id} is a partition of {1, . . . , nA}. Actually, the condition
σ = RAMA ⊗ 1(σ) reads

〈ϕi|σ|ϕj〉 =
nA∑

l=1

η−1
l (

√
σA)il(

√
σA)lj〈ϕl|σ|ϕl〉 , i, j = 1, . . . , nA (327)

with (
√
σA)ij = 〈ϕi|

√
σA|ϕj〉 ∈ R. Let us set σB|i = η−1

i 〈ϕi|σ|ϕi〉 and ηl|i = |(√σA)il|2/ηi. This defines
respectively a state on HB and a probability distribution for any fixed i. With this notation, (327)
can be rewritten for i = j as

σB|i =

nA∑

l=1

ηl|iσB|l , i = 1, . . . , nA . (328)

Let Ii = {j;σB|j = σB|i} ⊂ {1, . . . , nA}. Clearly, the sets Ii are either equal or disjoint. Hence one can
extract from them a partition {Ii1 , Ii2 , . . . , Iid} of {1, . . . , nA}. We claim that (328) implies ηl|i = 0 for
l /∈ Ii. This is a consequence of the following lemma.

Lemma 10.2.2. Let x = (x1, . . . , xd) be a vector of X d with distinct components xk, where X is a
real vector space, and {ξk|m}dk=1 be some probability distributions such that ξk|m = 0 ⇔ ξm|k = 0 and
the components of x have convex decompositions

xm =
d∑

k=1

ξk|mxk ∀ m = 1, . . . , d . (329)

Then ξk|m = δkm for any k,m = 1, . . . , d.

We postpone the proof of this result to the next paragraph. By rewriting (328) as

σB|im =

d∑

k=1

ξk|mσB|ik with ξk|m = |Iim |−1
∑

(l,i)∈Iik×Iim

ηl|i , (330)

one concludes from Lemma 10.2.2 that ξk|m = 0 for k 6= m, i.e. ηl|i = (
√
σA)il = 0 for any (i, l) such

that l /∈ Ii. One then obtains from (327)

σ =

nA∑

i,j=1

∑

l∈Ii∩Ij

(
√
σA)il(

√
σA)lj |ϕi〉〈ϕj | ⊗ σB|l =

d∑

k=1

∑

i,j∈Iik

(σA)ij |ϕi〉〈ϕj | ⊗ σB|ik . (331)

This gives

σ =

d∑

k=1

π̂Ak σAπ̂
A
k ⊗ σB|ik , π̂Ak =

∑

i∈Iik

|ϕi〉〈ϕi| . (332)

The last expression is of the form (326) (note that the vectors |ϕi〉 in the latter formula are the
eigenvectors of π̂Ak σAπ̂

A
k , so that they are in general linear combinations of the vectors |ϕi〉 defined
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above). To get the result for the discord δA we take advantage of (321). From the foregoing result,
δA(σ) = 0 is equivalent to σ ⊗ |ǫ0〉〈ǫ0| being of the form (326) for some orthonormal basis {|ϕAE

i 〉} of
HAE. This straightforwardly implies |ϕAE

i 〉 = |ϕi〉|ǫ0〉 with {|ϕi〉} an orthonormal basis of HA. ✷

Proof of Lemma 10.2.2. One proceeds by induction on d. The result is trivial for d = 2. Let us
assume that it holds true for d ≥ 2 and that one can find a vector x ∈ X d+1 and some probabilities
{ξk|m}d+1

k=1 like in the lemma such that ξk0|k0 < 1 for some k0 ∈ {1, . . . , d+1}. We are going to show that
this leads to a contradiction. By plugging xk0 = (1 − ξk0|k0)

−1
∑

k 6=k0
ξk|k0xk into the p other convex

decompositions, one gets xm =
∑

k 6=k0
ζk|mxk for k 6= k0, with ζk|m = ξk|m + (1 − ξk0|k0)

−1ξk0|mξk|k0 .
As {ζk|m}k 6=k0 is a probability distribution satisfying ζk|m = 0 ⇔ ζm|k = 0, by the induction hypothesis
one has ζk|m = δkm for any k,m ∈ {1, . . . , d + 1} \ {k0}. Now ξm0|k0 > 0 for some index m0 6= k0
(because ξk0|k0 < 1). One deduces from the above identities and the hypothesis on ξk|m that the only
non-vanishing probabilities are ξk0|m0

, ξm0|k0 , and ξk|k, k = 1, . . . , p+1. The problem then reduces to
the case p = 2. Thus ξk0|k0 = ξm0|m0

= 1, in contradiction with our assumption. ✷

Definition 10.2.3. The zero-discord states of the form (326) are called the A-classical states. We
denote by CA the set of all A-classical states. Similarly, CB is the set of all B-classical states, namely,
the states with vanishing B-discord. A classical state is a state which is both A- and B-classical. We
write CAB = CA ∩ CB.

Our terminology can be justified by noting that if AB is in a state of the form (326) then the
subsystem A is in one of the orthogonal states |ϕi〉 with probability qi, whence A behaves as a classical
system being in state i with probability qi. Alternatively, a state σ is A-classical if and only if there
exists a von Neumann measurement on A with rank-one projectors πAi = |ϕi〉〈ϕi| which does not
perturb it in the absence of readout, i.e. σ = M{πA

i }
⊗1(σ). The unfortunate name “classical-quantum

states” has become popular in the literature to refer to the A-classical states, the B-classical states
being called “quantum-classical”. Using the spectral decompositions of the σB|i’s, any A-classical state
σA−cl ∈ CA can be decomposed as

σA−cl =

nA∑

i=1

nB∑

j=1

qij|ϕi〉〈ϕi| ⊗ |χj|i〉〈χj|i| , (333)

where qij ≥ 0,
∑

i,j qij = 1 and, for any i, {|χj|i〉}nB

j=1 is an orthonormal basis of HB (note that the
|χj|i〉 need not be orthogonal for distinct i’s). A classical state σclas ∈ CA ∩ CB possesses an eigenbasis
{|ϕi〉 ⊗ |χj〉}nA,nB

i=1,j=1 of product vectors. It is fully classical, in the sense that any quantum system in
this state can be “simulated” by a classical apparatus being in the state (i, j) with probability qij.

Let us point out that CA, CB, and CAB are not convex. Their convex hull is the set SAB of separable
states. It is also important to realize that for pure states, A-classical, B-classical, classical, and
separable states all coincide. Actually, according to (333) the pure A-classical (and, similarly, the pure
B-classical) states are product states. In contrast, one can find mixed separable states which are not
A-classical. An example for two qubits is

ρ =
1

4

(
|+〉〈+| ⊗ |0〉〈0| + |−〉〈−| ⊗ |1〉〈1| + |0〉〈0| ⊗ |−〉〈−|+ |1〉〈1| ⊗ |+〉〈+|

)
(334)

with |±〉 = (|0〉 ± |1〉)/
√
2. It is clear that ρ ∈ SAB, but ρ is neither A-classical nor B-classical. A

schematic picture of the sets SAB, CA, CB, and CAB for a general bipartite system AB is displayed in
Fig. 3.
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10.3 Properties of the quantum discord

10.3.1 Invariance and monotonicity properties

Unlike entanglement measures, the quantum discord is not monotonous with respect to LOCCs. In
particular, local operations on the measured subsystem A can create discord. For instance, consider
the classical state

σ =
1

2

(
|0〉〈0| ⊗ |0〉〈0| + |1〉〈1| ⊗ |1〉〈1|

)
(335)

of two qubits. One can transform this state by a local operation MA on A into

ρ = MA ⊗ 1(σ) =
1

2

(
|0〉〈0| ⊗ |0〉〈0| + |+〉〈+| ⊗ |1〉〈1|

)
, (336)

where MA has Kraus operators A0 = |0〉〈0| and A1 = |+〉〈1|. The final state ρ has less total
correlations than σ, its mutual information IA:B(ρ) = −p ln p − (1 − p) ln(1 − p) being smaller than
IA:B(σ) = ln 2 (here p = 1/2 +

√
2/4). However, it has a positive discord δA(ρ) > δA(σ) = 0. This

means that the loss of classical correlations JB|A(σ)−JB|A(ρ) is larger than the loss of total correlations
IA:B(σ)− IA:B(ρ).

In contrast, as far as local operations on B are concerned everything goes as expected, as shown
by the following result.

Proposition 10.3.1. The quantum discord δA and classical correlations JB|A(ρ) are invariant with
respect to unitary conjugations UA : ρA 7→ UAρAU

∗
A

on A and monotonous with respect to quantum
operations MB on B, namely,

δA(UA ⊗ 1(ρ)) = δA(ρ) , δA(1⊗MB(ρ)) ≤ δA(ρ)
JB|A(UA ⊗ 1(ρ)) = JB|A(ρ) , JB|A(1⊗MB(ρ)) ≤ JB|A(ρ)

(337)

and similarly for δv.N.
A

and Jv.N.
B|A .

Proof. The unitary invariance is trivial. The monotonicity of JB|A(ρ) with respect to operations on B

comes from the monotonicity of the relative entropy and the formula

JB|A(ρ) = max
{MA

i }

{∑

i

ηiS(ρB|i||ρB)
}
, (338)

which is a consequence of the definition (318) and of ρB =
∑

i ηiρB|i. A simple justification of the
monotonicity of δA with respect to operations on B uses the following reasoning [131]. Let us consider
a generalized measurement {MA

i } on A with associated quantum operation MA. By invoking the
Stinespring theorem, one can represent MA as MA⊗1(ρ) = trE(σABE) with σABE = UAEρ⊗|ǫ0〉〈ǫ0|U∗

AE

pertaining to an enlarged space HABE and UAE a unitary on HAE. Thanks to the additivity and unitary
invariance of the von Neumann entropy and to the relation trAE(σABE) = ρB, one finds

IA:B(ρ) = IAE:B(σABE) , IA:B(MA ⊗ 1(ρ)) = IA:B(σAB) . (339)

Plugging these expressions into (325) gives the following expression of δA(ρ) in terms of the conditional
mutual informations

δA(ρ) = min
{MA

i }

{
IAE:B(σABE)− IA:B(σAB)

}
= min

{MA
i }

{
IAB:E(σABE)− IA:E(σAE)

}
. (340)

The monotonicity of δA then follows from the monotonicity of the mutual information with respect to
local operations (Sec. 10.1). ✷
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10.3.2 States with the highest discord

As stated at the beginning of this section, the quantum discord δA(ρ) is an indicator of the degree
of quantumness of ρ. It is thus natural to ask whether the “ most quantum” states having the
highest discord are the maximally entangled states characterized in Proposition 9.5.1. The answer is
affirmative when nA ≤ nB.

Proposition 10.3.2. For any state ρ of the bipartite system AB, one has

δA(ρ) ≤ δv.N.A (ρ) ≤ S(ρA) ≤ lnnA . (341)

If nA ≤ nB then the maximal value of δA(ρ) over all states ρ ∈ E(HAB) is equal to lnnA and δA(ρ) =
lnnA if and only if ρ has highest entanglement of formation. Thus, the states ρent with highest discord
are the maximally entangled states given by Proposition 9.5.1, which satisfy

δA(ρent) = δv.N.A (ρent) = EEoF(ρent) = lnnA . (342)

The statements in this proposition are probably well known in the literature, although I have not
found an explicit reference.

Proof. Let ρ =
∑

k pk|k〉〈k| be the spectral decomposition of ρ and r = rank(ρ). As mentioned earlier,
the von Neumann measurement minimizing the conditional entropy

∑
i ηiS(ρB|i) consists of rank-one

projectors πAi = |ϕi〉〈ϕi|. The conditional states (317) take the form

ρB|i =

r∑

k=1

pk|i|φki〉〈φki| with pk|i =
pkηi|k

ηi
and

√
ηi|k|φki〉 = 〈ϕi|k〉 ∈ HB , (343)

where ηi|k = ‖〈ϕi|k〉‖2 is the probability of outcome i given the state |k〉 and pk|i is the “a posteriori”
probability that the state is |k〉 given the measurement outcome i (Bayes rules). Since {|φki〉, pk|i} is
a pure state decomposition of ρB|i, the formula (118) yields

∑

i

ηiS(ρB|i) ≤
∑

i

ηiH({pk|i}) . (344)

The right-hand side is the classical conditional entropy given the measurement outcomes, see (110).
By the non-negativity of the classical mutual information, it is bounded from above by the Shannon
entropy H({pk}) = −

∑
k pk ln pk = S(ρ). Hence δv.N.

A
(ρ) ≤ S(ρA) by (319). But S(ρA) ≤ lnnA, thus

we have proven (341).
Let us assume that δA(ρ) = S(ρA). We know from Sec. 6.1 that a necessary and sufficient condition

for (344) to be an equality is that {|φki〉, pk|i} be a spectral decomposition of ρB|i, for any i. Setting
Dkl = trB(|k〉〈l|) as in the proof of Proposition 9.5.1, one gets

√
ηi|lηi|k〈φli|φki〉 = 〈ϕi|Dkl|ϕi〉 = 0

if k 6= l and pk|ipl|i > 0. Since δA(ρ) = S(ρA), (344) holds with equality for any orthonormal
basis {|ϕi〉} and thus Dkl = 0 for such k and l. In addition, the conditional entropy in the right-
hand side of (344) is equal to its upper bound H({pk}) = S(ρ). This can happen only if pk|i = pk,
i.e. ηi|k = 〈ϕi|Dkk|ϕi〉 = ηi, for all i and k (indeed, the mutual information vanishes for independent
random variables only). Hence δA(ρ) = S(ρA) if and only if Dkk is independent of k and Dkl = 0
when k 6= l and pkpl > 0. Suppose now that δA(ρ) = lnnA. Then δA(ρ) = S(ρA) = lnnA and the
foregoing conditions on Dkl are fulfilled. In addition, ρA =

∑
pkDkk = 1/nA, whence Dkk = 1/nA for

89



all k with pk > 0. One concludes that the eigenvectors |k〉 are as in Proposition 9.5.1 by following the
same steps as in the proof of this proposition. ✷

Note that when nA > nB, δA(ρ) is strictly smaller than lnnA for any ρ ∈ E(HAB). In fact, in that
case rank(Dkk) ≤ nB < nA by the Schmidt decomposition (9), and the necessary condition Dkk = 1/nA
for having δA(ρ) = lnnA cannot be fulfilled.

10.3.3 Monotonicity when disregarding a part of the measured subsystem

We close this review of the properties of the discord by a simple remark concerning tripartite systems
ABC. If such a system is in the state ρABC, it is easy to show that

JB|AC(ρABC) ≥ JB|A(ρAB) . (345)

This means that if B is coupled to both A and C, the gain of information on B from joint measurements
on A and C is larger than the gain of information by measuring A only and ignoring C, as this sounds
reasonable. A similar bound exists for the total correlations: by (316) and the monotonicity of the
relative entropy (or, equivalently, the strong subadditivity of S),

IAC:B(ρABC) ≥ IA:B(ρAB) . (346)

Remark 10.3.3. The Holevo bound (113) can be derived by using the monotonicity of the quantum
mutual information under operations acting on one subsystem (Sec. 10.1) and the property (346).

Sketch of the proof [117]. Given an ensemble {ρi, ηi}mi=1 of states on HA and a family {Aj}pj=1 of
Kraus operators describing the measurement on A, consider the state ρARP =

∑
i ηiρi⊗|νi〉〈νi|⊗ |0〉〈0|

on HARP, where R and P are auxiliary systems with orthonormal bases {|νi〉}mi=1 and {|j〉}p−1
j=0 . These

systems represent a register of the state preparation and a pointer for the measurement, respectively.
Let MAP be the quantum operation on B(HAP) with Kraus operators Aj ⊗ Uj, Uj being the unitary
on HP defined by Uj |l〉 = |l + j〉 for any l = 0, . . . , p − 1 (the addition is modulo p). It is an easy
exercise to show that the Holevo bound (113) is equivalent to IR:P([MAP⊗1(ρARP)]RP) ≤ IAP:R(ρARP).

10.4 Monogamy relation

Consider a tripartite system ABC in a pure state |ΨABC〉. If B and C are entangled, is there a limit
on the amount of entanglement B can have with A? In other words, can entanglement be freely
shared between different subsystems? A negative answer to the last question has been highlighted
in [44], where it is shown that when A, B, and C are qubits, the sum C(ρAB)

2 +C(ρBC)
2 of the square

concurrences is smaller or equal to 4 det(ρB). It is instructive to consider the limiting case where B and
C are maximally entangled. Then, if one also assumes that rnB ≤ nC < (r + 1)nB with 1 ≤ r ≤ nA,
A and B cannot be entangled and even have vanishing discords δA(ρAB) = δB(ρAB) = 0. In fact, the
state of BC being maximally entangled, one has ρBC =

∑
k pk|k〉〈k| for some orthogonal maximally

entangled states |k〉 satisfying Dkl = trC(|k〉〈l|) = n−1
B
δkl (see Proposition 9.5.1). Hence the pure state

of ABC is |ΨABC〉 =
∑

k

√
pk|αk〉|k〉 with {|αk〉} an orthonormal family of HA (Sec. 2.3). Consequently,

ρAB = (
∑

k pk|αk〉〈αk|)⊗ (1/nB) is a product state and thus a classical state.
The proposition below exhibits an astonishing bound, called the monogamy relation, between the

entanglement of formation of ρBC and the POVM-discord of ρAB measuring A.
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ρ

CA C
ABS

CAB

B

Figure 3: Schematic view of the set of quantum states EAB = E(HAB) of a bipartite system AB. The
subset CAB of classical states (in magenta) is the intersection of the subsets CA and CB of A- and
B-classical states (in red and blue). The convex hull of CA (or CB) is the subset SAB of separable states
(gray square). All these subsets intersect the border of EAB (pure states of AB) at the pure product
states, represented by the four vertices of the square. The maximally mixed state ρAB = 1/(nAnB)
lies at the center (cross). The two points at the left and right extremities of the ellipse represent the
maximally entangled pure states, which are the most distant states from SAB (and also from CA, CB,
and CAB). The closest distances of a state ρ to SAB (black line) and of ρ to CA (red line) define the
square roots of the geometric measure of entanglement EBu(ρ) and of the geometric discord DA(ρ),
respectively. Note that this picture is for illustrative purposes and does not reflect all geometrical
aspects (in particular, CA, CB, and CAB typically have a lower dimensionality than EAB and SAB).
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Proposition 10.4.1. (Koashi and Winter [94]) Let ABC be a tripartite system in the state ρABC. Let
ρAB = trC(ρABC) and ρBC = trA(ρABC) denote the reduced states of the bipartite systems AB and BC,
respectively. Then

EEoF(ρBC) ≤ S(ρB)− JB|A(ρAB) = δA(ρAB) + S(ρAB)− S(ρA) . (347)

Moreover, the inequality is an equality if ρABC is a pure state.

The inequality (347) tells us that the more classically correlated are A and B, the less B can be
entangled to a third system C. If nB ≤ nC and B and C are maximally entangled, i.e. EEoF(ρBC) =
ln(nB), then this inequality entails JB|A(ρAB) = 0 (since S(ρB) ≤ ln(nB)). Thus A and B are not
correlated classically, in agreement with the above statement that ρAB is a product state.

The entropy difference SB|A(ρAB) = S(ρAB) − S(ρA) in the right-hand side of (347) is called the
conditional von Neumann entropy. It is known that SB|A(ρAB) ≥ 0 if ρAB is separable [79, 36]. Thanks
to the subadditivity of S one has −S(ρB) ≤ SB|A(ρAB) ≤ S(ρB) (the first inequality is obtained
by considering a purification of ρAB on HABC and using the subadditivity for ρBC together with the
identities S(ρBC) = S(ρA) and S(ρC) = S(ρAB)). The quantity −SB|A(ρAB) is the coherent information
introduced by Schumacher and Nielsen in the context of the quantum channel capacity [142].

Two consequences of the claim that (347) is an equality for tripartite systems ABC in pure states
deserve further comments. First, one easily deduces from this claim and the identity (117) that [58]

EEoF(ρAB) + EEoF(ρBC) = δA(ρAB) + δC(ρBC) . (348)

Hence the sum of all entanglement of formations describing the bipartite entanglement shared by B is
equal to the sum of the corresponding quantum discords with measurements on the other subsystems.
Second, if B is a qubit and ρAB is of rank two, then ρAB admits a purification |ΨABC〉 on HAB ⊗ C

2

(see (12)) and the entanglement of formation of the two-qubit state ρBC can be computed with the
help of the Wootters formula (309). One may in this way determine δA(ρAB) via (347).

Proof. We first assume that ABC is in a pure state |ΨABC〉. Let {Mopt
A,i } be an optimal measurement

on A maximizing the gain of information on B, that is, such that JB|A(ρAB) = S(ρB)−
∑

i η
opt
i S(ρopt

B|i ),

where ηopti and ρopt
B|i

are the outcome probabilities and conditional states of B for this measurement.

Without loss of generality one may assume thatMopt
A,i = |µ̃opti 〉〈µ̃opti | are of rank one (see the discussion

after (318)). Since ρAB = trC(|ΨABC〉〈ΨABC|), one has ηopti = tr(ρABM
opt
A,i ⊗ 1) = ‖〈µ̃opti |ΨABC〉‖2.

Moreover, the post-measurement conditional state of BC is the pure state

|ΨBC|i〉 = (ηopti )−
1
2 〈µ̃opti |ΨABC〉 (349)

and the conditional state of B is ρopt
B|i = trC(|ΨBC|i〉〈ΨBC|i|). The ensemble {|ΨBC|i〉, ηopti } gives a

pure state decomposition of ρBC. Actually, let us consider the post-measurement state of ABC in the
absence of readout, ρ′

ABC
= Mopt

A
⊗ 1(|ΨABC〉〈ΨABC|). The measurement being performed on A, it

does not change the state of BC, i.e.

ρBC = ρ′BC =
∑

i

ηopti |ΨBC|i〉〈ΨBC|i| . (350)

From the definition (303) of the entanglement of formation one has

EEoF(ρBC) ≤
∑

i

ηopti S(ρopt
B|i ) = S(ρB)− JB|A(ρAB) . (351)
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Conversely, let {|ΨBC,i〉, ηi} be a pure state decomposition of ρBC which achieves the minimum in the
definition of the entanglement of formation. Let us show that there exists a generalized measurement
{MA

i } on A such that ηi is the probability of outcome i and |ΨBC,i〉 the corresponding conditional
state of BC, i.e.

trA(M
A
i ⊗ 1|ΨABC〉〈ΨABC|) = ηi|ΨBC,i〉〈ΨBC,i| . (352)

In fact, let us observe that |Ψ′
ABCE

〉 = ∑
i

√
ηi|ΨBC,i〉|φi〉 is a purification of ρBC on HABCE for some

ancilla E, where {|φi〉} is an orthonormal family of HAE. Given an arbitrary state |ǫ0〉 ∈ HE, |ΨABC〉|ǫ0〉
is also a purification of ρBC on the same space. As a result, there is a unitary UAE on HAE such that
|Ψ′

ABCE
〉 = 1⊗ UAE|ΨABC〉|ǫ0〉 (see Sec. 2.3). Define

MA
i = 〈ǫ0|U∗

AE|φi〉〈φi|UAE|ǫ0〉 (353)

(note the analogy with (41)). Then (352) is satisfied. Let ρB|i = trC(|ΨBC,i〉〈ΨBC,i|) be the post-
measurement states of B, so that EEoF(|ΨBC,i〉) = S(ρB|i). Since by assumption EEoF(ρBC) =∑

i ηiEEoF(|ΨBC,i〉), one infers from the definition (318) of the classical correlations that

JB|A(ρAB) ≥ S(ρB)−
∑

i

ηiS(ρB|i) = S(ρB)− EEoF(ρBC) . (354)

Together with (351) this proves that

EEoF(ρBC) = S(ρB)− JB|A(ρAB) . (355)

Let us now turn to the case of a tripartite system ABC in a mixed state ρABC. Consider a purifica-
tion |ΨABCE〉 of ρABC in the Hilbert space HABC ⊗ HE. Thanks to (345) one then has JB|A(ρAB) ≤
JB|AE(ρABE). The inequality (347) then follows by applying (355) with A → AE. ✷
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11 Distance and entropic measures of quantum correlations

In this section we study the measures of entanglement and quantum correlations based on the Bures
distance and the relative entropies. First, we introduce in Sec. 11.1 the geometric measure of entan-
glement, defined as the minimal square distance between the state ρ and a separable state, as well
as similar measures obtained by replacing the square distance by relative entropies. We define analo-
gously in Sec. 11.2 the geometric discord as the minimal square distance between ρ and an A-classical
state. We show there that this discord is related to a quantum state discrimination task and determine
the closest A-classical states to ρ in terms of the corresponding optimal measurements.

11.1 Geometric and relative-entropy measures of entanglement

11.1.1 Definition and main properties

From a geometrical point of view, it is natural to quantify the amount of entanglement in a state ρ of
a bipartite system AB by the distance d(ρ,SAB) of ρ to the subset SAB ⊂ E(HAB) of separable states
(see Fig 3). As it will become clear below, in order to obtain an entanglement monotone measure the
distance d must be contractive. Choosing the Bures distance, it is easy to verify that

EBu(ρ) = dB(ρ,SAB)
2 = min

σsep∈SAB

{
dB(ρ, σsep)

2
}

(356)

satisfies all the axioms of an entanglement measure in Definition 9.3.1. Actually, the axiom (i) holds
because dB is a distance on E(HAB). The convexity property (ii) is a consequence of the convexity of
SAB and the joint convexity of the square Bures distance28 (Corollary 7.2.3). Finally, the monotonicity
(iii) is shown in the following way. Let σρ ∈ SAB be a closest separable state to ρ, i.e. EBu(ρ) =
dB(ρ, σρ)

2. Let us recall from Sec. 9.3 that any LOCC is a separable quantum operation and can be
written as M(ρ) =

∑
iAi ⊗ BiρA

∗
i ⊗ B∗

i . Furthermore, one has M(SAB) ⊂ SAB. One can then use
the contractivity of dB to obtain

EBu(ρ) ≥ dB(M(ρ),M(σρ))
2 ≥ EBu(M(ρ)) . (357)

This shows that EBu is monotonous with respect to separable operations and, in particular, to LOCCs.
The entanglement measure EBu has been first introduced by Vedral and Plenio [160]. Another measure
was considered in [159, 160] by replacing the square distance in (356) by the relative entropy S(ρ||σsep).
More generally, we can define

Eα(ρ) = min
σsep∈SAB

{
Sα(ρ||σsep)

}
, (358)

where Sα is the quantum relative Rényi entropy (Sec. 6.3). For 1/2 ≤ α ≤ 1, this defines an entan-
glement measure by the same arguments as above, because Sα is jointly convex and contractive (see
Theorem 6.3.1; the property (i) in this theorem ensures that Eα(ρ) ≥ 0 with equality if and only
if ρ ∈ SAB). One establishes the following result by invoking the fact that Sα is non-decreasing in
α (Proposition 6.3.4) and by using (175) and the relation (149) between S1/2(ρ||σ) and the fidelity
F (ρ, σ).

Corollary 11.1.1. {Eα}1/2≤α≤1 constitutes a non-decreasing family of entanglement measures and

E 1
2
(ρ) = −2 ln

(
1− EBu(ρ)

2

)
≤ Eα(ρ) ,

1

2
≤ α ≤ 1 . (359)

28 This justifies the square in our definition (356).
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The measure E1 associated to the relative entropy (122) is less geometrical than EBu (it is not
associated to a distance) but has the following interesting property.

Proposition 11.1.2. (Vedral and Plenio [160]) The entanglement measure E1 coincides with the
entanglement of formation EEoF for pure states, and for mixed states ρ ∈ E(HAB) it is bounded from
above by EEoF,

E1(ρ) ≤ EEoF(ρ) . (360)

Proof. We refer the reader to [160] for a detailed proof of the first statement. It is based on the
observation that for a pure state with Schmidt decomposition |Ψ〉 = ∑

i

√
µi|αi〉|βi〉, the minimum in

(358) is achieved when σsep is the classical state

σ∗ =
n∑

i=1

µi|αi〉〈αi| ⊗ |βi〉〈βi| . (361)

Since S(ρΨ||σ∗) = −〈Ψ| lnσ∗|Ψ〉 = −∑
i µi lnµi, the equality E1(|Ψ〉) = EEoF(|Ψ〉) follows once one

has proven that S(ρΨ||σsep) ≥ S(ρΨ||σ∗) for all σsep ∈ SAB. This is done in Ref. [160] by showing that
for any σsep ∈ SAB,

dfΨ(t, σsep)

dt

∣∣∣
t=0

= 1−
∫ ∞

0
dt tr

(
(σ∗ + t)−1ρΨ(σ∗ + t)−1σsep

)
≥ 0 (362)

with fΨ(t, σ) = S(ρΨ||(1−t)σ∗+tσ). Indeed, assume that S(ρΨ||σsep) < S(ρΨ||σ∗) for some σsep ∈ SAB.
By taking advantage of the right convexity of the relative entropy, one then finds for any t ∈ (0, 1]

fΨ(t, σsep)− fΨ(0, σsep)

t
≤ −S(ρΨ||σ∗) + S(ρΨ||σsep) < 0 , (363)

in contradiction with (362). Note that it suffices to prove the non-negativity in (362) for the pure
product states σsep = |φ ⊗ χ〉〈φ ⊗ χ|, because of the linearity in σsep of the trace in the right-hand
side.

The second statement in the proposition is a consequence of the first one and of the convexity of
E1. Actually, if {|Ψi〉, ηi} is a pure state decomposition of ρ minimizing the average entanglement,
then

EEoF(ρ) =
∑

i

ηiEEoF(|Ψi〉) =
∑

i

ηiE1(|Ψi〉) ≥ E1

(∑

i

ηi|Ψi〉〈Ψi|
)
= E1(ρ) . (364)

✷

Note that the inequality (360) can be strict. Examples of two-qubit states ρ for which E1(ρ) <
EEoF(ρ) are given in [159]. Thanks to (359) and (360), one can place an upper bound on EBu(ρ) by
a function of the entanglement of formation EEoF. Such a bound does not seem to be known in the
literature, but it is not optimal for pure states as a consequence of the next proposition.

Remark 11.1.3. As shown in [160], E1 fulfills the stronger monotonicity condition (iii”) of Sec. 9.4.2.
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11.1.2 Geometric measure of entanglement and convex roof constructions

Let F (ρ,SAB) denote the maximal fidelity between ρ and a separable state,

F (ρ,SAB) = max
σsep∈SAB

{
F (ρ, σsep)

}
. (365)

Proposition 11.1.4. (Streltsov, Kampermann, and Bruß [152]) The geometric measure of entangle-
ment is given for pure states by

EBu(|Ψ〉) = 2− 2
√
F (|Ψ〉,SAB) = 2(1−√

µmax) , (366)

where µmax = max{µi} is the largest Schmidt coefficient of |Ψ〉. For mixed states, F (ρ,SAB) is obtained
via a maximization over the pure state decompositions of ρ,

F (ρ,SAB) = max
{|Ψi〉,ηi}

{∑

i

ηiF (|Ψi〉,SAB)

}
. (367)

The nice relation (367) is intimately related to Uhlmann’s theorem (Sec. 7.2) and to the convex-
ity of SAB. Note that the relative-entropy measure E1 does not fulfill a similar property (compare
with Proposition 11.1.2). Even though EBu is not a convex roof, it is a simple function of another
entanglement measure EG defined via a convex-roof construction like in (303) and from its expression

EG(|Ψ〉) = 1− max
|Φ〉∈SAB

{
|〈Φ|Ψ〉|2

}
(368)

for pure states [144, 164]. Actually, we will see that a pure state always admits a pure product state
as closest separable state, hence the maximum in (368) coincides with F (|Ψ〉,SAB) and EG(ρ) =
1 − F (ρ,SAB) by the proposition above. According to (366), EG(|Ψ〉) = 1 − µmax is of the form
(289) with fG(ρA) = 1 − ‖ρA‖ satisfying all hypothesis of Proposition 9.3.2. Therefore, by a similar
reasoning as in the proof of Proposition 9.4.3, EG is an entanglement measure which fulfills the strong
monotonicity property (iii”). In contrast, EBu(|Ψ〉) = fBu([ρΨ]A) = 2(1 −

√
‖[ρΨ]A‖) but fBu is not

concave, whence Proposition 9.3.2 indicates that EBu does not fulfill (iii’). We should not be bothered
too much about that, the two measures EBu and EG being equivalent (that is, they define the same
order of entanglement) and simply related to each other.

Proof. For a pure state ρΨ = |Ψ〉〈Ψ|, the fidelity reads F (ρΨ, σsep) = 〈Ψ|σsep|Ψ〉. Writing the decom-
position of separable states into pure product states, σsep =

∑
i ξi|ϕi ⊗ χi〉〈ϕi ⊗ χi|, we get

F (ρΨ,SAB) = max
{|ϕi〉,|χi〉,ξi}

{∑

i

ξi|〈ϕi ⊗ χi|Ψ〉|2
}
= max

‖ϕ‖=‖χ‖=1

{
|〈ϕ⊗ χ|Ψ〉|2

}
, (369)

where we have used
∑

i ξi = 1. For any normalized vectors |ϕ〉 ∈ HA and |χ〉 ∈ HB , one derives from
the Schmidt decomposition (9) and the Cauchy-Schwarz inequality that

|〈ϕ⊗ χ|Ψ〉| ≤
n∑

j=1

√
µj

∣∣〈ϕ|αj〉〈χ|βj〉
∣∣ ≤ √

µmax

n∑

j=1

∣∣〈ϕ|αj〉〈χ|βj〉
∣∣

≤ √
µmax

( n∑

j=1

|〈ϕ|αj〉|2
)1/2( n∑

j=1

|〈χ|βj〉|2
)1/2

≤ √
µmax . (370)
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All bounds are saturated for |ϕ〉 = |αjmax〉 and |χ〉 = |βjmax〉, where jmax is the index for which µj is
maximum. Thus F (ρΨ,SAB) = µjmax = µmax and the formula (366) is proven. It is of interest to note
that the pure product state |αjmax〉|βjmax〉 is a closest separable state to |Ψ〉 (a characterization of all
these closest separable states will be given in Proposition 11.2.2 below).

We now proceed to show (367). Consider a fixed separable state σsep =
∑p

i=1 ξi|Φi〉〈Φi| with
|Φi〉 ∈ SAB and ξi ≥ 0. Without loss of generality one may assume p = (nAnB)

2 + 1 (see the
discussion after Definition 2.4.1). Let {|fi〉}pi=1 be an orthonormal basis of an ancilla space K and
|Φ〉 =

∑
i

√
ξi|Φi〉|fi〉 be a purification of σsep on H ⊗K. Thanks to Theorem 7.2.2, F (ρ, σsep) is the

maximum over all purifications |Ψ〉 of ρ on H ⊗ K of the transition probability |〈Ψ|Φ〉|2. Writing
|Ψ〉 in the form (15) and using the one-to-one correspondence between pure state decompositions and
purifications (see Sec. 2.3), one can equivalently maximize over all pure state decompositions {|Ψi〉, ηi}
of ρ. Moreover, the maximization of F (ρ, σsep) over the separable states σsep leads to a maximization
over the pure state ensembles {|Φi〉, ξi} in SAB. This yields

F (ρ,SAB) = max
{|Φi〉,ξi}

max
{|Ψi〉,ηi}

{∣∣∣∣
p∑

i=1

√
ηiξi〈Ψi|Φi〉

∣∣∣∣
2}

. (371)

But, using once more the Cauchy-Schwarz inequality and
∑

i ξi = 1, one has

max
{|Φi〉,ξi}

{∣∣∣∣
p∑

i=1

√
ηiξi〈Ψi|Φi〉

∣∣∣∣
2}

=

p∑

i=1

ηi max
|Φ〉∈SAB

{
|〈Ψi|Φ〉|2

}
. (372)

It has been argued above that the maximal fidelity between |Ψi〉 and a separable state is attained for
pure product states, thus F (|Ψi〉,SAB) = max|Φ〉∈SAB

|〈Ψi|Φ〉|2. Substituting this expression into (372)
and (371), we arrive at the required relation (367). ✷

According to (366), EBu(|Ψ〉) = 0 if and only if |Ψ〉 is a product state, in agreement with the
fact that separable pure states are product states. Another consequence of (366) and of the bound
µmax ≥ 1/n (which follows from

∑
i µi = 1) is F (|Ψ〉,SAB) ≥ 1/n, with n = min{nA, nB}. Furthermore,

F (|Ψ〉,SAB) = 1/n if and only if |Ψ〉 is maximally entangled (Sec. 2.4). One deduces from (367) that

EBu(ρ) ≤ 2− 2√
n
. (373)

By the same arguments as in the proof of Proposition 9.5.1, this bound is saturated if and only if ρ
has maximal entanglement of formation EEoF(ρ) = lnn. This means that EBu and EEoF capture the
same maximally entangled states.

11.1.3 Geometric measure of entanglement for two qubits

In the case of two qubits, a closed formula for EBu(ρ) can be obtained with the help of Proposi-
tion 11.1.4 and of Wootters’s result on the concurrence (Sec. 9.4.3). It reads [152]

EBu(ρ) = 2−
√
2
(
1 +

√
1− C(ρ)2

) 1
2 (374)

with C(ρ) given by (311). Actually, for pure states one finds by comparing C(|Ψ〉) = 2
√
µ0µ1 and

(366) that F (|Ψ〉,SAB) = g(C(|Ψ〉)) with g(C) = (1 +
√
1− C2)/2. As g is decreasing and concave,

(305) and (367) yield F (ρ,SAB) ≤ g(C(ρ)). But it is shown in [169] that there is an optimal pure state
decomposition {|Ψi〉, ηi} of ρ such that C(ρ) = C(|Ψi〉) for any i. Thus

g
(
C(ρ)

)
≥ F (ρ,SAB) ≥

∑

i

ηiF (|Ψi〉,SAB) =
∑

i

ηig
(
C(|Ψi〉)

)
= g

(
C(ρ)

)
, (375)
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which justifies (374).

11.2 Geometric quantum discord

11.2.1 Discord-like measures of quantum correlations

In the same spirit as for the geometric measure of entanglement, one defines the geometric quantum
discord as

DA(ρ) = dB(ρ, CA)2 = 2(1 −
√
F (ρ, CA)) , F (ρ, CA) = max

σA−cl∈CA

{
F (ρ, σA−cl)

}
, (376)

where CA is the (non-convex) set of A-classical states (see Definition 10.2.3). One can introduce
similarly the relative-entropy discords

D
(α)
A

(ρ) = min
σA−cl∈CA

{
Sα(ρ||σA−cl)

}
. (377)

As in Corollary 11.1.1 one has D
(1/2)
A

(ρ) = −2 ln(1−DA(ρ)/2) ≤ D
(α)
A

(ρ) for any α ∈ [1/2, 1].
An analog of the geometric discord DA based on the Hilbert-Schmidt distance d2 has been first

introduced by Dakić, Vedral, and Brukner [46]. We hope to have convinced the reader in Sec. 7 that
the Bures distance is a more natural choice in quantum information. We will see that the discord
(376) shares many of the properties of the quantum discord δA of Sec. 10, while its analog with the
d2-distance has unpleasant features. In particular, like δA the Bures geometric discord is invariant
under conjugations by local unitaries and contractive with respect to quantum operations MB on B.
For indeed, the set of A-classical states is invariant under such transformations (see (326)), whence

DA(UA ⊗ UB ρU
∗
A ⊗ U∗

B) = DA(ρ) , DA(1⊗MB(ρ)) ≤ DA(ρ) (378)

by unitary invariance and contractivity of dB. These properties also hold for D
(α)
A

, 1/2 ≤ α ≤ 1,
because the relative Rényi entropy is also contractive (Theorem 6.3.1). This should be contrasted
with the non-monotonicity with respect to operations on B of the Hilbert-Schmidt geometric discord,
which is due to the lack of monotonicity of d2 (Sec. 7.1). An explicit counter-example is given in [131].
We now precise the axioms on discord-like correlation measures.

Definition 11.2.1. A measure of quantum correlations of a bipartite system AB with respect to sub-
system A is a function DA : E(HAB) → [0,∞) satisfying

(i) DA(ρ) = 0 if and only if ρ is A-classical;

(ii) DA is invariant under local unitary transformations and contractive under quantum opera-
tions on B, that is, (378) holds true;

(iii) DA coincides with an entanglement measure for pure states.

This definition is at the time of writing of this article believed to capture all relevant physical
requirements for quantifying the amount of quantum correlations in AB given that one can access
to subsystem A only [134]. The axioms (i-iii) are in particular satisfied by the quantum discord δA
(Propositions 10.2.1 and 10.3.1). This is also true for the geometric discord DA. Actually, we have just
shown above that DA satisfies (ii), and (i) is trivial. Since the closest separable state to a pure state is
a pure product state, which is A-classical, DA coincides with the geometric measure of entanglement
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EBu for pure states (see (381) below). Hence DA is a measure of quantum correlations. Similarly, the

relative-entropy based discord D
(1)
A

is a measure of quantum correlations. The property (iii) follows in
this case from the fact that if ρΨ is a pure state then a separable state σsep minimizing S(ρΨ||σsep) is
the classical state given by (361) (see the proof of Proposition 11.1.2), so that D

(1)
A

(ρΨ) coincides with

the entanglement measure E1(ρΨ) defined in (358). It is an open problem to show that D
(α)
A

satisfies
(iii) when α 6= 1/2, 1.

The B-discords DB and D
(α)
B

are defined by exchanging A and B in (376) and (377). As for the
quantum discord of Sec. 10, in general DA 6= DB. Symmetric measures of quantum correlations are
obtained by considering the square distance to the set of classical states CAB = CA ∩ CB,

DAB(ρ) = 2
(
1− max

σclas∈CAB

{√
F (ρ, σclas)

})
, D

(α)
AB

(ρ) = min
σclas∈CAB

{
S(ρ||σclas)

}
. (379)

Let us mention that a similar symmetric information-based discord can be defined by modifying the
maximization procedure in (325) so as to involve projectors πAi ⊗ πBi (or generalized measurement
operators MA

i ⊗ MB
i ), instead of MA

i ⊗ 1. It is called the measurement-induced disturbance [103].

The relative-entropy symmetric discord D
(1)
AB

has been studied in [109], together with other quantities
characterizing quantum and classical correlations. We will not elaborate further here on the numerous
discord-like measures defined in the literature and their operational interpretations (see e.g. [110]).

We emphasize that since CAB ⊂ CA ⊂ SAB (see Fig. 3), the geometric measures are ordered as

EBu(ρ) ≤ DA(ρ) ≤ DAB(ρ) . (380)

This ordering is a nice feature of the geometrical approach. It also holds for the relative-entropy
measures. In contrast, depending on ρ the entanglement of formation EEoF(ρ) can be larger or smaller
than the quantum discord δA(ρ).

Before going on to general results, let us say few words about explicit calculations of the discords.
In the special case of two-qubit states ρ with maximally mixed marginals ρA = ρB = 1/2, the relative-

entropy measure D
(1)
AB

(ρ) coincides with the usual discord δv.N.
A

(ρ) [109, 108]. For the same states,
a closed formula for DA(ρ) has been found in [1, 150] and the closest A-classical states to ρ have
been determined explicitly29. The Hilbert-Schmidt geometric discord is much easier to calculate. A
simple formula for arbitrary 2-qubit states is derived in [46] and has been later on extended to higher
dimensions. The geometric discord defined with the trace distance d1 has been determined recently
for certain families of two-qubit states (the so-called X-states, containing in particular the states with
maximally mixed marginals, and the B-classical states) [43, 115]. Note that since d1 is contractive,
this geometric discord fulfills the axiom (ii) of Definition 11.2.1.

11.2.2 Geometric discord for pure states

We now proceed to determine the geometric discord DA for pure states. It has been seen in the proof
of Proposition 11.1.4 that the family of closest separable states of a pure state |Ψ〉 contains a pure
product state, which is a classical state. By inspection of (366) and (380), one gets

DA(|Ψ〉) = DB(|Ψ〉) = DAB(|Ψ〉) = EBu(|Ψ〉) = 2(1−√
µmax) . (381)

One deduces from the bound µmax ≥ 1/n (which follows from
∑n

i=1 µi = 1) that

DA(|Ψ〉) ≤ 2
(
1− 1√

n

)
, n = min{nA, nB} . (382)

29 This is done in [150] with the help of Corollary 11.2.6 below.
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This bound is saturated when µi = 1/n for any i, that is, for the maximally entangled states. We will
see below that this statement is still true for mixed states provided that nA ≤ nB.

The identities (381) are analogous to the equality between the entanglement of formation EEoF

and the discord δA for pure states (Sec. 10.1). As said before, they reflect the existence of a pure
product state which is closer or at the same distance from |Ψ〉 than any other separable state. It is of
interest to find all the closest A-classical states to |Ψ〉. This is done in the next proposition.

Proposition 11.2.2. (Spehner and Orszag [149]) Let ρΨ = |Ψ〉〈Ψ| be a pure state of AB with largest
Schmidt coefficient µmax. If µmax is non-degenerate, then the closest A-classical (respectively clas-
sical, separable) state to ρΨ for the Bures distance is unique. It is given by the pure product state
|αmax〉|βmax〉, where |αmax〉 and |βmax〉 are eigenvectors with eigenvalue µmax of [ρΨ]A and [ρΨ]B, re-
spectively. If µmax is r-fold degenerate, say µmax = µ1 = . . . = µr > µr+1, . . . , µn, then infinitely
many A-classical (respectively classical, separable) states σ minimize dB(ρΨ, σ). These closest states
are convex combinations of the pure product states |ϕl〉|χl〉 with

|ϕl〉 =
r∑

i=1

uil|αi〉 , |χl〉 =
r∑

i=1

uil|βi〉 , l = 1, . . . , r , (383)

where {|αi〉}ri=1 and {|βi〉}ri=1 are orthonormal families of Schmidt vectors associated to µmax in the
Schmidt decomposition (9), and (uil)

r
i,l=1 is an arbitrary r × r unitary matrix.

It should be noticed that when µmax is degenerate, the vectors (383) provide together with |αi〉,
|βi〉, i = r + 1, . . . , n, a Schmidt decomposition of |Ψ〉 (in that case this decomposition is not unique,
see Sec. 2.2). Conversely, disregarding the degeneracies of the other eigenvalues µi < µmax, all Schmidt
decompositions of |Ψ〉 are of this form for some unitary matrix (uil)

r
i,l=1. Thus, the existence of an

infinite family of closest A-classical states to |Ψ〉 is related to the non-uniqueness of the Schmidt
vectors associated to µmax, and this family contains the products |ϕl〉|χl〉 of these vectors and convex
combinations thereof. This shows in particular that the maximally entangled pure states are the pure
states with the largest family of closest states30.

Proof. An arbitrary A-classical state σ can be decomposed as σ =
∑

ij qij|ϕi〉〈ϕi| ⊗ |χj|i〉〈χj|i|. In
much the same way as in the proof of Proposition 11.1.4, F (|Ψ〉, CA) = µmax and the closest A-classical
states to ρ fulfill

|〈ϕi ⊗ χj|i|Ψ〉|2 = max
‖ϕ‖=‖χ‖=1

{
|〈ϕ⊗ χ|Ψ〉|2

}
= µmax when qij > 0. (384)

We have thus to determine all |ϕ〉 ∈ HA and |χ〉 ∈ HB such that |〈ϕ ⊗ χ|Ψ〉|2 = µmax. This occurs if
all inequalities in (370) are equalities. Let us first assume that µ1 = µmax > µ2, . . . , µn. After a close
look to (370) one immediately finds that |〈ϕ ⊗ χ|Ψ〉|2 = µmax if and only if |ϕ〉 = |α1〉 and |χ〉 = |β1〉
up to irrelevant phase factors. Hence (384) is satisfied for a single pair (i, j). Therefore, all the qij
vanish except one and the closest A-classical state to |Ψ〉 is the pure product state |α1〉|β1〉.

We now proceed to the degenerate case µ1 = . . . = µr = µmax > µr+1, . . . , µn. Let us establish the
necessary and sufficient conditions for the inequalities in (370) to be equalities. For the first inequality,
the condition is arg(〈ϕ|αj〉〈χ|βj〉) = θ with θ independent of j. For the second one, the condition is that
|ϕ〉 belongs to Vmax = span{|αj〉}rj=1 or |χ〉 belongs to Wmax = span{|βj〉}rj=1. The Cauchy-Schwarz
inequality in (370) is saturated if and only if |〈ϕ|αj〉| = λ|〈χ|βj〉| for all j, with λ ≥ 0. Finally, the

30 This family forms a (n2 + n− 2) real-parameter sub-manifold of E(HAB).
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last inequality holds with equality if and only if |ϕ〉 ∈ span{|αj〉}nj=1 and |χ〉 ∈ span{|βj〉}nj=1. Putting

all conditions together, we obtain |ϕ〉 ∈ Vmax, |χ〉 ∈ Wmax, and 〈χ|βj〉 = eiθ〈αj |ϕ〉 for j = 1, . . . , r.
Therefore, from any orthonormal family {|ϕl〉}rl=1 of Vmax one can construct r orthogonal vectors
|ϕl ⊗ χl〉 satisfying |〈ϕl ⊗ χl|Ψ〉|2 = µmax for all l = 1, . . . , r, with 〈χl|βj〉 = 〈αj |ϕl〉. The probabilities
{qij} are then given by qij = qi if i = j ≤ r and zero otherwise, {ql}rl=1 being an arbitrary probability
distribution. The corresponding A-classical states σ maximizing the fidelity F (ρΨ, σ) are the classical
states

σ =
r∑

l=1

ql|αl ⊗ βl〉〈αl ⊗ βl| . (385)

✷

11.2.3 Geometric discord for mixed states and quantum state discrimination

As for all other measures of entanglement and quantum correlations, determining DA(ρ) is harder for
mixed states than for pure states. Interestingly, this problem is related to an ambiguous quantum
state discrimination task.

Proposition 11.2.3. (Spehner and Orszag [149]) For any state ρ of the bipartite system AB, the
maximal fidelity between ρ and an A-classical state reads

F (ρ, CA) = max
{|ϕi〉}

{
P opt v.N.
S,a ({ρi, ηi})

}
= max

{|ϕi〉}
max
{Πi}

{ nA∑

i=1

ηi tr(Πiρi)

}
, (386)

where the maxima are over all orthonormal bases {|ϕi〉}nA

i=1 of HA and all von Neumann measurements

given by orthonormal families {Πi}nA

i=1 of projectors of HAB with rank nB. Here, P opt v.N.
S,a ({ρi, ηi}) is

the maximal success probability in discriminating ambiguously by such measurements the states ρi with
probabilities ηi defined by

ηi = 〈ϕi|ρA|ϕi〉 , ρi = η−1
i

√
ρ|ϕi〉〈ϕi| ⊗ 1

√
ρ , i = 1, . . . , nA (387)

(if ηi = 0 then ρi is not defined but does not contribute to the sum in (386)). Furthermore, the closest
A-classical states to ρ are given by

σρ =
1

F (ρ, CA)

nA∑

i=1

|ϕopt
i 〉〈ϕopt

i | ⊗ 〈ϕopt
i |√ρΠopt

i

√
ρ|ϕopt

i 〉 , (388)

where {|ϕopt
i 〉} and {Πopt

i } are any orthonormal basis of HA and von Neumann measurement maxi-
mizing the right-hand side of (386).

The ρi are quantum states if ηi > 0 because ρi ≥ 0 and ηi is chosen such that tr(ρi) = 1. Moreover,
{ηi}nA

i=1 is a probability distribution (since ηi ≥ 0 and
∑

i ηi = tr(ρ) = 1) and the ensemble {ρi, ηi}nA

i=1

is a convex decomposition of ρ, i.e. ρ =
∑

i ηiρi.

Corollary 11.2.4. If ρ is invertible then one can substitute P opt v.N.
S,a ({ρi, ηi}) in (386) by the maximal

success probability P opt
S,a ({ρi, ηi}) over all POVMs, given by (64).
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Proof. This is a simple consequence of Corollary 5.4.3. Actually, if ρ > 0 then the states ρi defined in
(387) are linearly independent, thus the optimal measurement to discriminate them is a von Neumann
measurement with projectors of rank ri = rank(ρi). The linear independence can be justified as
follows. Let us first notice that ρi has rank ri = nB (for indeed, it has the same rank as ηiρ

−1/2ρi =
|ϕi〉〈ϕi|⊗1

√
ρ). A necessary and sufficient condition for |ξij〉 to be an eigenvector of ρi with eigenvalue

λij > 0 is |ξij〉 = (λijηi)
−1√ρ|ϕi〉 ⊗ |ζij〉, where |ζij〉 ∈ HB is an eigenvector of Ri = 〈ϕi|ρ|ϕi〉 with

eigenvalue λijηi > 0. For any i, the Hermitian invertible matrix Ri admits an orthonormal eigenbasis

{|ζij〉}nB

j=1. Thanks to the invertibility of
√
ρ, {|ξij〉}j=1,...,nB

i=1,...,nA
is a basis of HAB and thus the states ρi

are linearly independent and span HAB. ✷

Before going into the proof of the proposition, let us discuss the state discrimination problems
when ρ is pure or A-classical. Of course, the values of DA(ρ) are already known in these cases,
being given by (381) and by DA(ρ) = 0, respectively, but it is instructive to recover that from
Proposition 11.2.3. If ρ = ρΨ is pure then all states ρi with ηi > 0 are identical and equal to ρΨ, so
that P opt v.N.

S,a = max{Πi}{
∑

i ηi〈Ψ|Πi|Ψ〉} = ηmax. One gets F (ρΨ, CA) = µmax by optimization over
the basis {|ϕi〉}. If ρ is an A-classical state, i.e. if it can be decomposed as in (326), then the optimal
basis {|ϕopt

i 〉} coincides with the basis appearing in this decomposition. With this choice one obtains
ηi = qi and ρi = |ϕi〉〈ϕi| ⊗ σB|i for all i such that qi > 0. The states ρi are orthogonal and can thus
be perfectly discriminated by von Neumann measurements. This yields F (ρ, CA) = 1 and DA(ρ) = 0
as it should be. Reciprocally, if F (ρ, CA) = 1 then P opt v.N.

S,a ({ρi, ηi}) = 1 for some basis {|ϕi〉} and
the corresponding ρi must be orthogonal (Sec. 5). Hence one can find an orthonormal family {Πi} of
projectors with rank nB such that ρi = ΠiρiΠi for any i with ηi > 0. It is an easy exercise to show that
this implies that Πi = |ϕi〉〈ϕi| ⊗ 1 if ρ|ΠiH is invertible. Thus ρ =

∑
i ηiρi is A-classical, in agreement

with the fact (following directly from the definition) that DA(ρ) = 0 if and only if ρ is A-classical.
The above discussion provides a clear interpretation of the result of Proposition 11.2.3: the states ρ

with non-zero discord are characterized by ensembles {ρi, ηi} of non-orthogonal states, which thereby
are not perfectly distinguishable, for any orthonormal basis {|ϕi〉} of HA. The less distinguishable are
the ρi’s, the most distant is ρ from the set of zero-discord states.

We will establish Proposition 11.2.3 by relying on the slightly more general statement summarized
in the following lemma.

Lemma 11.2.5. For a fixed family {σA|i}ni=1 of states σA|i ∈ E(HA) having orthogonal supports and
spanning HA, with 1 ≤ n ≤ nA, let us define

CA({σA|i}) =
{
σ =

n∑

i=1

qiσA|i ⊗ σB|i ; {qi, σB|i}ni=1 is a state ensemble on HB

}
. (389)

Then

F
(
ρ, CA({σA|i})

)
= max

σ∈CA({σA|i})

{
F (ρ, σ)

}
= max

U

{ n∑

i=1

‖Wi(U)‖22
}
, (390)

where the last maximum is over all unitaries U on HAB and

Wi(U) = trA
(√

σA|i ⊗ 1
√
ρU

)
. (391)

Moreover, there exists a unitary Uopt achieving the maximum in (390) which is such that Wi(Uopt) ≥ 0.
The states σopt satisfying F (ρ, σopt) = F (ρ, CA({σA|i})) are given in terms of this unitary by

σopt =
1

F (ρ, CA({σA|i}))

n∑

i=1

σA|i ⊗Wi(Uopt)
2 . (392)
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Proof. Using the spectral decompositions of the states σB|i, any σ ∈ CA({σA|i}) can be written as

σ =

n∑

i=1

nB∑

j=1

qijσA|i ⊗ |χj|i〉〈χj|i| with qij ≥ 0 ,
∑

ij

qij = 1 , (393)

where {|χj|i〉}nB

j=1 is an orthonormal basis of HB for any i (compare with (333)). By assumption, if
i 6= i′ then ranσA|i⊥ ranσA|i′ , so that

√
σ =

∑
i,j

√
qij

√
σA|i ⊗ |χj|i〉〈χj|i|. We start by evaluating the

trace norm in the definition (176) of the fidelity by means of the formula ‖O‖1 = maxU | tr(UO)| to
obtain

F
(
ρ, CA({σA|i})

)
= max

σ∈CA({σA|i})
max
U

{∣∣tr(U∗√ρ
√
σ)

∣∣2
}

= max
U

{
max

{qij},{|χj|i〉}

∣∣∣∣
∑

i,j

√
qij〈χj|i|Wi(U)∗|χj|i〉

∣∣∣∣
2}

. (394)

The square modulus can be bounded by invoking twice the Cauchy-Schwarz inequality and
∑

ij qij = 1,

∣∣∣∣
∑

i,j

√
qij〈χj|i|Wi(U)∗|χj|i〉

∣∣∣∣
2

≤
∑

i,j

∣∣〈χj|i|Wi(U)∗|χj|i〉
∣∣2

≤
∑

i,j

∥∥Wi(U)|χj|i〉
∥∥2 =

∑

i

‖Wi(U)‖22 . (395)

The foregoing inequalities are equalities if the following conditions are satisfied:

(1) Wi(U) =Wi(U)∗ ≥ 0;

(2) qij = 〈χj|i|Wi(U)|χj|i〉2/(
∑

i,j〈χj|i|Wi(U)|χj|i〉2);

(3) {|χj|i〉}nB

j=1 is an eigenbasis of Wi(U) for any i.

Therefore, (390) holds true provided that there is a unitary U on HAB satisfying (1). For a given
U , let us define Uopt = U

∑
i π

A
i ⊗ V ∗

i , where π
A
i is the projector onto ranσA|i and Vi a unitary on

HB such that Wi(U) = |Wi(U)∗|Vi (polar decomposition). Then Uopt is unitary since by hypoth-
esis πAi π

A
i′ = δii′π

A
i and

∑
i π

A
i = 1, and one readily shows that Wi(Uopt) = Wi(U)V ∗

i ≥ 0. As∑
i ‖Wi(U)‖22 =

∑
i ‖Wi(Uopt)‖22, the identity (390) follows from (394) and (395). From condition (3)

one has Wi(Uopt)|χopt
j|i 〉 = wji|χopt

j|i 〉 with
∑

i,j w
2
ji = F (ρ, CA({σA|i})), see (395). Condition (2) entails

σopt
B|i =

∑

j

qoptij |χopt
j|i 〉〈χ

opt
j|i | =

Wi(Uopt)
2

F (ρ, CA({σA|i}))
, (396)

which together with (393) leads to (392). ✷

Proof of Proposition 11.2.3. Let {|ϕi〉}nA

i=1 be an orthonormal basis of HA. Applying Lemma 11.2.5
with σA|i = |ϕi〉〈ϕi| one gets

F
(
ρ, CA({|ϕi〉})

)
= max

U

{
nA∑

i=1

tr
[
U |ϕi〉〈ϕi| ⊗ 1U∗√ρ |ϕi〉〈ϕi| ⊗ 1

√
ρ
]
}
,

= max
{Πi}

{
nA∑

i=1

tr
[
Πi

√
ρ|ϕi〉〈ϕi| ⊗ 1

√
ρ
]
}

= P opt v.N.
S,a ({ρi, ηi}) . (397)
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The last maximum is over all orthonormal families {Πi}nA

i=1 of projectors of rank nB and the suc-

cess probability P opt v.N.
S,a ({ρi, ηi}) is given by (94). Since the fidelity F (ρ, CA) is the maximum of

F (ρ, CA({|ϕi〉})) over all bases {|ϕi〉}, this leads to (386) and (388). ✷

11.2.4 The qubit case

It has been emphasized in Sec. 5 that the optimal success probability and measurement for discrim-
inating ambiguously more than two states are not known explicitly in general. Nonetheless, if the
subsystem A is a qubit, the ensemble {ρi, ηi} in Proposition 11.2.3 contains only nA = 2 states and
the optimal probability and measurement are easily determined. Following the steps yielding to (68)
we find

P opt v.N.
S,a ({ρi, ηi}) =

1

2

(
1− tr Λ

)
+

nB∑

l=1

λl , (398)

where λ1 ≥ · · · ≥ λnB
are the nB largest eigenvalues of Λ = η0ρ0 − η1ρ1. The optimal von Neumann

measurement is formed by the spectral projector Πopt
0 of Λ for these nB eigenvalues and its complement

Πopt
1 = 1 − Πopt

0 . For the states ρi associated to the orthonormal basis {|ϕi〉}1i=0 of C2 via formula
(387), one has Λ =

√
ρ (|ϕ0〉〈ϕ0| − |ϕ1〉〈ϕ1|) ⊗ 1

√
ρ. The operator inside the parenthesis in the last

identity is equal to σu ≡ ∑3
m=1 umσm for some unit vector u ∈ R

3 depending on {|ϕi〉} (here σ1, σ2,
and σ3 are the Pauli matrices). Conversely, one can associate to any unit vector u ∈ R

3 the eigenbasis
{|ϕi〉}1i=0 of σu. According to Proposition 11.2.3, F (ρ, CA) is obtained by maximizing the right-hand
side of (398) over all Hermitian matrices

Λ(u) =
√
ρ σu ⊗ 1

√
ρ (399)

with u ∈ R
3, |u| = 1. The following corollary of Proposition 11.2.3 is a refinement of a result in [150].

Corollary 11.2.6. Let A be a qubit, i.e. nA = 2. The fidelity between ρ and the set of A-classical
states is given by

F (ρ, CA) =
1

2
max
‖u‖=1

{
1 + ‖Λ(u)‖1

}
, (400)

where Λ(u) is the 2nB×2nB matrix (399). The closest A-classical states to ρ are given by (388) where
Πopt

0 is the spectral projector associated to the nB largest eigenvalues of Λ(uopt) and uopt ∈ R
3 is a

unit vector achieving the maximum in (400).

Proof. Let λl(u) be the eigenvalues of Λ(u) in non-increasing order. We claim that

− 1

2
tr(Λ(u)) +

nB∑

l=1

λl(u) =
1

2

nB∑

l=1

λl(u)−
1

2

2nB∑

l=nB+1

λl(u) =
1

2
tr |Λ(u)| . (401)

To prove this claim it suffices to show that Λ(u) has at most nB positive eigenvalues λl(u) > 0 and at
most nB negative eigenvalues λl(u) < 0, counting multiplicities. As ker ρ ⊂ ker Λ(u) one may without
loss of generality restrict Λ(u) to the subspace ΠHAB, with Π the projector onto ran(ρ). A standard
linear algebra argument shows that if S is a finite invertible matrix and Σ a self-adjoint matrix, then
the number of positive (respectively negative) eigenvalues of Σ is equal to the number of positive
(respectively negative) eigenvalues of S∗ΣS. Let P±

Σ be the spectral projectors of Σ = Πσu ⊗ 1Π
on R± \ {0}. Since

√
ρ : ΠHAB → ΠHAB is invertible, in order to prove (401) it is thus enough to
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verify that rank(P±
Σ ) ≤ nB. This is evident if rank(Π) ≤ nB. If rank(Π) > nB, then ±〈Ψ|σu ⊗ 1|Ψ〉 =

±〈Ψ|Σ|Ψ〉 > 0 for any |Ψ〉 ∈ P±
Σ HAB ⊂ ΠHAB. This implies that rank(P±

Σ ) ≤ rank(P±
σu⊗1) = nB,

as otherwise one could find a non-vanishing vector |Ψ〉 ∈ P±
Σ HAB belonging to the nB-dimensional

eigenspace of σu⊗ 1 with eigenvalue ∓1, in contraction with the foregoing inequality. This establishes
(401). Then (400) follows from (398) and Proposition 11.2.3. ✷

11.2.5 States with the highest geometric discord

The geometric discord DA, as the quantum discord δA, quantifies the degree of quantumness of a state.
Let us recall from Sec. 10.3.2 that when the space dimensions of A and B are such that nA ≤ nB, the
“most quantum” states ρ having the highest discord δA(ρ) are the maximally entangled states, i.e. the
states with the highest entanglement of formation EEoF(ρ) = lnnA. It is comforting that a similar
result holds for the geometric discord.

Corollary 11.2.7. If nA ≤ nB, the highest value of DA(ρ) on E(HAB) is equal to 2 − 2/
√
nA. The

most distant states ρ from the set of A-classical states, which are such that DA(ρ) = 2 − 2/
√
nA, are

the maximally entangled states given by Proposition 9.5.1.

Comparing with the results of Sec. 11.1.2, we see that when nA ≤ nB the most distant states from
CA are also the most distant from the set of separable states SAB. If nA ≤ nB < 2nA, these most
distant states are maximally entangled pure states, as illustrated in Fig. 3.

Proof. This is again a corollary of Proposition 11.2.3. The success probability P opt v.N.
S,a is clearly

larger or equal to the highest prior probability31 ηmax = maxi{ηi}. In view of Proposition 11.2.3 and
ηmax ≥ 1/nA, we get

F (ρ, CA) ≥
1

nA
(402)

for any state ρ. When n = nA ≤ nB this bound is optimal, the value 1/n being achieved for the
maximally entangled pure states (Sec. 11.2.2). This proves the first statement. Let ρ be a state such
that F (ρ, CA) = 1/n. According to (386) and since it has been argued above that P opt v.N.

S,a ≥ ηmax ≥
1/n, this implies that P opt v.N.

S,a ({ρi, ηi}) = 1/n whatever the orthonormal basis {|ϕi〉}. It is intuitively
clear32 that this can happen only if the receiver gets a collection of identical states ρi with equal prior
probabilities ηi = 1/n. From (387) and ρ =

∑
ηiρi one obtains ρA = 1/n and ρi = ρ for any i and

{|ϕi〉}. Plugging the spectral decomposition ρ =
∑

k pk|k〉〈k| into (387), the second equality yields
Dkl = trB(|k〉〈l|) = n−1δkl for all k and l such that pkpl 6= 0. One concludes that ρ has maximal
entanglement of formation by following the same steps as in the proof of Proposition 9.5.1. ✷

One may wonder if Corollary 11.2.7 could also hold for nA > nB (modulo the exchange nA ↔ nB),
as what happens for the geometric measure of entanglement (see Sec. 11.1.2). However, unlike EBu(ρ)
the geometric discord is not symmetric under the exchange of the two subsystems. The problem of
determining its highest value and the corresponding “most quantum” states is still open for nA >
nB. For such space dimensions the bound (402) is still correct but it is not optimal, that is, there
are no states ρ with fidelity F (ρ, CA) = 1/nA. Indeed, one can show as in the proof above that

31 A receiver would obtain PS,a = ηmax by simply guessing that his state is ρimax , with ηimax = ηmax, whatever the
measurement outcomes. A better strategy is of course to perform the von Neumann measurement {Πi} such that Πimax

projects onto a nB-dimensional subspace containing ran(ρimax). This range has a dimension rank(ρimax) ≤ nB by a
similar reasoning as in the proof of Corollary 11.2.4.

32 An explicit proof of this fact can be found in [149].
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Entanglement of
formation

Quantum discord
Geometric

entanglement
Geometric discord

AB in a pure state EEoF(|Ψ〉) = δA(|Ψ〉) = H({µi}) EBu(|Ψ〉) = DA(|Ψ〉) = 2(1 − √
µmax)

AB in a mixed state

EEoF(ρ) = min
{∑

i ηiEEoF(|Ψi〉)
}

(convex roof)

δA(ρ) = IA:B(ρ)−
max{IA:B(MA ⊗ 1(ρ))}
︸ ︷︷ ︸

classical correlations

EBu(ρ) = 2(1−
max{

√

F (ρ, σsep)}
︸ ︷︷ ︸

= convex roof

)

DA(ρ) = 2(1−
max{

√

F (ρ, σA−cl)})
︸ ︷︷ ︸

= max. success proba.
in state discrimination

Vanishes iff ρ is separable ρ is A-classical ρ is separable ρ is A-classical

Maximal iff
with maximal value

ρ is max. entangled
lnn

}
EEoF: true ∀ nA,B

δA: true if nA ≤ nB

ρ is max. entangled
2(1 − 1/

√
n)

}
EBu: true ∀ nA,B

DA: true if nA ≤ nB

Local unit. invariance X X X X

Monotonicity w.r.t. LOCCs operations on B LOCCs operations on B

Convexity X no X no

Ordering no EBu(ρ) ≤ DA(ρ)

ABC in a pure state EEoF(ρBC) = δA(ρAB) + S(ρAB) − S(ρA) ?

Table 1: Summary of the definitions and properties of the entanglement of formation (Sec. 9), quantum
discord (Sec. 10), geometric measure of entanglement (Sec. 11.1), and geometric discord (Sec. 11.2).
Here nA and nB are the space dimensions of the subsystems A and B, n = min{nA, nB}, and µi are
the Schmidt coefficients in (9).

if F (ρ, CA) = 1/nA then the eigenvectors |k〉 of ρ with eigenvalues pk > 0 have maximally mixed
marginals Dkk = (|k〉〈k|)A = 1/nA. But this is impossible since rank(Dkk) ≤ nB by (9).

Remark 11.2.8. One can place a lower bound on F (ρ, CA) for nA > nB by invoking the inequality [149]

F (ρ, CA) ≥
‖ρ‖
nB

+
1− ‖ρ‖
nA

nB − δρ
nB

(403)

where δρ = 0 if rank(ρ) ≤ nB and 1 otherwise.

Table 1 presents a comparison of the properties of the entanglement of formation, the quantum
discord, and their geometrical analogs based on the Bures distance.

11.2.6 Geometric discord and least square measurements

The ensemble {ρi, ηi} in the discrimination task associated to the geometric discord in Proposi-
tion 11.2.3 turns out to be related to the transpose operation of the von Neumann measurement in
the basis {|ϕi〉}. In fact, let us denote by MA the measurement on A with rank-one orthonormal
projectors πAi = |ϕi〉〈ϕi|. Let

ηi = 〈ϕi|ρA|ϕi〉 , ρAB|i = η−1
i |ϕi〉〈ϕi| ⊗ 〈ϕi|ρ|ϕi〉 (404)

be the corresponding probabilities and post-measurement conditional states when the initial state is
ρ. The transpose operation of MA for ρ is (see (45))

RMA,ρ(σ) =

nA∑

i=1

√
ρ|ϕi〉〈ϕi| ⊗ 〈ϕi|ρ|ϕi〉−

1
2 〈ϕi|σ|ϕi〉〈ϕi|ρ|ϕi〉−

1
2
√
ρ . (405)

We observe that
ρi = RMA,ρ(ρAB|i) , i = 1, . . . , nA . (406)

Comparing (44) and (406), one expects from the discussion in Sec. 4.3 that the least square mea-
surement {M lsm

i } for the ensemble {ρi, ηi} is associated to the transpose operation of RMA,ρ for
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ρ
MA RMA,ρMA(ρ)

Figure 4: State changes under the von Neumann measurement MA with rank-one projectors
πAi = |ϕi〉〈ϕi| followed by its transpose operation RMA,ρ. The upper line corresponds to a mea-
surement without readout and the other lines to the different measurement outcomes.

MA(ρ) =
∑

i ηiρAB|i. But this two-fold transpose operation coincides with MA, hence {M lsm
i } is

nothing but the von Neumann measurement on A in the basis {|ϕi〉}. This can be readily checked:
since {ρi, ηi} is a convex decomposition of ρ, (57) leads to

M lsm
i = ηiρ

−1/2ρiρ
−1/2 = πAi ⊗ 1 . (407)

One can bound P opt v.N.
S,a ({ρi, ηi}) from below by the success probability obtained by discriminating the

ρi with {M lsm
i }, and from above by the square root of this probability, see (83). By Proposition 11.2.3,

this yields

max
{|ϕi〉}

{ nA∑

i=1

trB
[
〈ϕi|

√
ρ|ϕi〉2

]}
≤ F (ρ, CA) ≤ max

{|ϕi〉}

{ nA∑

i=1

trB
[
〈ϕi|

√
ρ|ϕi〉2

]} 1
2

. (408)

The left- and right-hand sides become nearly equal when F (ρ, CA) is almost one, that is, if ρ is close
to CA. Other inequalities on F (ρ, CA) can be obtained in terms of the fidelities F (ρi, ρj) with the help
of Proposition 5.5.1.

The aforementioned observations are summarized by Fig. 4.
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A Operator monotone and operator convex functions

We recall in this appendix some basic facts about operator monotone and operator convex functions.
We refer the reader to the lecture notes [33] and the book [27] for more complete presentations of
these notions.

We denote by B(H)+ the set of non-negative operators on H, with dim(H) = n < ∞. A function
f : R+ → R is operator convex if for any n × n matrices A,B ∈ B(H)+ and any 0 ≤ η ≤ 1, it
holds f((1 − η)A + ηB) ≤ (1 − η)f(A) + ηf(B). It is strictly operator convex if the inequality holds
with equality if and only if η ∈ 0, 1 or A = B. It is operator concave if −f is operator convex. It
is operator monotone-increasing if for any A,B ∈ B(H)+, A ≤ B ⇒ f(A) ≤ f(B), and operator
monotone-decreasing if the reverse equality holds.

It is not hard to show (see e.g. [33]) that f(x) = x−1 is operator monotone-decreasing and strictly
operator convex. Clearly, this is then also true for f(x) = (x+ t)−1 for any t ≥ 0. According to the
integral representation

Aα =
sin(απ)

π

∫ ∞

0
dt tα

(1
t
− 1

t+A

)
, (A1)

it follows that fα(x) = xα is operator monotone-increasing and strictly operator concave for 0 < α < 1.
Similarly, one shows that fα is operator monotone-decreasing and operator convex for α ∈ [−1, 0] and
operator convex for α ∈ [1, 2]. However, for instance the square function f2 is not operator monotone
and the cube function f3 is not operator convex. One can establish that g(x) = lnx and f(x) = x lnx
are operator concave and operator convex, respectively, thanks to the identities

lnA = lim
α→0

α−1(Aα − 1) , A lnA = lim
α→1

Aα −A

α− 1
. (A2)

Another example of monotone-increasing function is f(x) = (x− 1)/ ln x =
∫ 1
0 dαxα.

Operator monotonicity is much stronger than usual monotonicity of real functions. This is clear
from Löwner’s theorem, which states that if f : (−1, 1) → R is operator monotone and non-constant,
then f admits the integral representation

f(x) = f(0) + f ′(0)

∫ 1

−1
dµ(t)

x

1− xt
, (A3)

where µ is a probability measure on [−1, 1] (see [27], Corollary V.4.5). Furthermore, if f : R+ → R+

is continuous, then f is operator monotone if and only if it is operator concave ([27], Theorem V.2.5).
The fact that concavity implies monotonicity is easily obtained by noting that if 0 ≤ A ≤ B, C =
B −A ≥ 0, and 0 ≤ η < 1, then f(ηB) ≥ ηf(A) + (1− η)f(η(1− η)−1C) (by concavity). As f(x) ≥ 0
the second term in the right-hand side is non-negative and thus f(ηB) ≥ ηf(A). Letting η → 1 we get
f(B) ≥ f(A). The converse implication can be shown by similar arguments as those used to establish
(A4) below and by invoking the fact that if (A4) is satisfied for any contraction C then f is operator
convex (see [27] for more detail).

Another remarkable result valid for continuous functions f : [0, a) → R is that f is operator convex
and f(0) ≤ 0 if and only if g(x) = x−1f(x) is operator monotone on (0, a) ([27], Theorem V.2.9).
Similarly, for functions f : (−1, 1) → R of class C2, if f is operator convex and f(0) = 0 then g(x) is
operator monotone ([27], Corollary V.3.11). An integral representation for non-linear operator convex
functions f can be obtained with the help of the last property, by applying (A3) to g(x).

If f : R+ → R is operator convex and f(0) ≤ 0, then

f(C∗AC) ≤ C∗f(A)C (A4)
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for any contraction C ∈ B(H), ‖C‖ ≤ 1, and any A ∈ B(H)+. This inequality can be shown as
follows [69]. Let us consider the matrices

Â =

(
A 0
0 0

)
, Û± =

(
C ±D
E ∓C∗

)
(A5)

with D =
√
1− CC∗ and E =

√
1− C∗C (the latter operators are well defined since ‖C‖ ≤ 1). An

explicit calculation shows that Û± is unitary and
(
C∗AC 0

0 DAD

)
=

1

2

∑

ǫ=±

Û∗
ǫ Â Ûǫ . (A6)

If f is operator convex and f(0) ≤ 0, then
(
f(C∗AC) 0

0 f(DAD)

)
= f

(
C∗AC 0

0 DAD

)

≤ 1

2

∑

ǫ=±

f(Û∗
ǫ Â Ûǫ)

≤ 1

2

∑

ǫ=±

Û∗
ǫ

(
f(A) 0
0 0

)
Ûǫ =

(
C∗f(A)C 0

0 Df(A)D

)
. (A7)

This implies in particular the bound (A4). Conversely, it is shown in [69] that if this bound is satisfied
for any orthogonal projection C and any A ∈ B(H)+, then f is operator convex and f(0) ≤ 0.

Let M be a quantum operation on B(H) and f : R+ → R be operator convex. Then the following
Jensen-type inequality holds [51]:

f(M∗(A)) ≤ M∗(f(A)) , A ∈ B(H)+ . (A8)

A simple justification of this inequality is as follows. Since M∗(c 1) = c 1 for any constant c ∈ R, one
may assume without loss of generality that f(0) = 0. Let A ∈ B(H)+. According to Stinespring’s
theorem (Sec. 3) one can find a unitary operator U on an enlarged space H⊗HE and a vector |ǫ0〉 ∈ HE

such that M∗(A) = 〈ǫ0|U∗A⊗ 1U |ǫ0〉. Let us set P0 = |ǫ0〉〈ǫ0|. Applying (A4) with C = 1⊗ P0, one
gets

f(M∗(A))⊗ P0 = f(1⊗ P0 U
∗A⊗ 1U 1⊗ P0)

≤ 1⊗ P0f(U
∗A⊗ 1U)1⊗ P0 = M∗(f(A))⊗ P0 . (A9)

B Trace inequalities

In this appendix some inequalities involving the ‖ · ‖p-norms are stated or derived.

1. Let us first recall the triangle and “inverse triangle” inequalities: for any matrices A and B one
has

‖A+B‖p
{

≤ ‖A‖p + ‖B‖p if p ≥ 1

≥ ‖A‖p + ‖B‖p if 0 < p < 1.
(B1)

This shows that the map A 7→ ‖A‖p defined by (2) is a norm for p ≥ 1, but this is not the case
for p < 1. One deduces the bound

tr[
√

|A|2 + |B|2] ≤ tr |A|+ tr |B| (B2)
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by applying (B1) for p = 1 to the matrices

Â =

(
A 0
0 0

)
, B̂ =

(
0 0
B 0

)
.

2. Another standard result is the Lieb-Thirring inequality [100]. We quote here without proof a
generalization of this inequality derived by Araki [12]. Let k > 0 and A and B be non-negative
operators. If α ≥ 1 then ∥∥B 1

2AB
1
2

∥∥α
αk

≤
∥∥B α

2AαB
α
2

∥∥
k
. (B3)

Taking α→ α−1 and k → k/α, one can deduce that the reverse inequality holds true if 0 ≤ α ≤ 1.

3. Next, let us show that for any square matrices A, B, C, and D of the same size, the following
bound generalizing the Cauchy-Schwarz inequality ‖AB‖1 ≤ ‖A‖2‖B‖2 holds true [112]

‖AB +CD‖21 ≤
(
‖A‖22 + ‖D‖22

)(
‖B‖22 + ‖C‖22

)
. (B4)

Actually, let us form the 2× 2 block matrices

Ê =

(
A∗ 0
C∗ 0

)
, F̂ =

(
B 0
D 0

)
.

Then
‖AB + CD‖21 =

∥∥Ê∗F̂
∥∥2
1
≤ ‖Ê‖22‖F̂‖22 =

(
‖A‖22 + ‖C‖22

)(
‖B‖22 + ‖D‖22

)
.

But CD = UD∗C∗U with U unitary by the polar decomposition. Applying the above inequality
with C and D replaced by UD∗ and C∗U and using the unitary invariance of ‖ · ‖2, one gets the
desired result (B4).

4. Let B = (Bij)
m
i,j=1 be a non-negative m×m operator-valued matrix, whose entries Bij are given

by pi × pj matrices. Denote by A =
√
B = (Aij)

m
i,j=1 the square root of B. Then for any

j = 1, . . . ,m, one has [19] ∑

i,i 6=j

∥∥Aij
∥∥2
2
≤ 1

2

∑

i,i 6=j

∥∥Bij
∥∥
1
. (B5)

Let us first establish (B5) form = 2. Thanks to the singular value decomposition and the unitary
invariance of the ‖ · ‖p-norms, we may assume without loss of generality that A12 is a diagonal
p1 × p2 matrix, i.e. A12 =

∑p
k=1

√
νk|k〉〈k| with p = min{p1, p2}. By a standard argument, the

non-negativity of A implies

|〈ϕ1|A12|ϕ2〉|2 ≤ 〈ϕ1|A11|ϕ1〉〈ϕ2|A22|ϕ2〉

for any vectors |ϕ1〉 ∈ C
p1 and |ϕ2〉 ∈ C

p2 . Using this bound and the relation B12 = A11A12 +
A12A22, we find

‖A12‖22 =

p∑

k=1

νk ≤
p∑

k=1

√
νk〈k|A11|k〉〈k|A22|k〉 ≤

1

2

p∑

k=1

√
νk
(
〈k|A11|k〉+ 〈k|A22|k〉

)
=

1

2
‖B12‖1 .

Consider now the general case m ≥ 2. The idea is to write B as a 2 × 2 block matrix such
that the upper left and lower right blocks are the (m − 1) × (m − 1) matrix (Bij)

m−1
i,j=1 and the

single entry Bmm, respectively, whereas the upper right (lower left) block forms a column (line)

110



vector with entries Bim (Bmi). A similar block decomposition can be made for A. Applying the
foregoing result for m = 2, one gets

∑

i,i 6=m

∥∥Aim
∥∥2
2
=

∥∥∥∥∥∥∥




A1m
...

A(m−1)m




∥∥∥∥∥∥∥

2

2

≤ 1

2

∥∥∥∥∥∥∥




B1m
...

B(m−1)m




∥∥∥∥∥∥∥
1

=
1

2

∥∥∥∥
√ ∑

i,i 6=m

|Bim|2
∥∥∥∥
1

≤ 1

2

∑

i,i 6=m

‖Bim‖1 ,

where we have used (B2) in the last bound. This proves (B5) for j = m. By an appropriate
unitary conjugation, one deduces that the bound holds for any j.

5. The following trace inequality plays a central role in the derivation of the quantum Chernoff
bound [7]: for any positive square matrices A > 0 and B > 0 and any 0 ≤ s ≤ 1,

1

2

(
tr(A) + tr(B)− tr |A−B|

)
≤ tr(A1−sBs) . (B6)

This inequality was first shown in [7], but the proof in this reference is not very transparent. We
present here a much simpler proof due to Ozawa, which has been first reported in [87]. Denoting
by O± = (|O| ± O)/2 ≥ 0 the positive and negative parts of O, one may express tr |A − B| as
2 tr(A−B)+ − tr(A) + tr(B). Thus (B6) is equivalent to

tr
(
(As −Bs)A1−s

)
≤ tr(A−B)+ .

Since f(x) = xs is operator monotone (see Appendix A) and A ≤ A+(A−B)− = B+(A−B)+,
one has As ≤ (B + (A−B)+)

s. Hence

tr
(
(As −Bs)A1−s

)
≤ tr

([
(B + (A−B)+)

s −Bs
]
A1−s

)

≤ tr
([
(B + (A−B)+)

s −Bs
]
(B + (A−B)+)

1−s
)
,

where the second inequality relies on the similar bound Bs ≤ (B + (A−B)+)
s. By rearranging

the product in the last trace and using the latter bound with s↔ (1− s), one gets

tr
(
(As −Bs)A1−s

)
≤ tr(B) + tr(A−B)+ − tr

(
Bs(B + (A−B)+)

1−s
)
≤ tr(A−B)+ .

This concludes the justification of (B6).
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(in French), Ph.D. thesis (University Joseph Fourier, Grenoble, 2012)

[163] W. Wasilewski, K. Jensen, H. Krauter, J.J. Renema, M.V. Balabas, and E.S. Polzik, Quantum
Noise Limited and Entanglement-Assisted Magnetometry, Phys. Rev. Lett. 104, 133601 (2010)

[164] T.C. Wei and P.M. Goldbart, Geometric measure of entanglement and applications to bipartite
and multipartite quantum states, Phys. Rev. A 68, 042307 (2003)

[165] R.F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-
variable model, Phys. Rev. A 40, 4277-4281 (1989)

[166] M.M. Wilde, A. Winter, D. Yang, Strong converse for the classical capacity of entanglement-
breaking and Hadamard channels via a sandwitched Renyi relative entropy, arXiv:1306.1586
[quant-ph]

[167] M.M. Wolf, Quantum Channels and Operations Guided Tour (2002), available online at:
http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf

[168] W.K. Wootters, Statistical distance and Hilbert space, Phys. Rev. D 23, 357-362 (1981)

[169] W.K. Wootters, Entanglement of Formation of an Arbitrary State of Two Qubits, Phys. Rev.
Lett. 80, 2245 (1998)

120



[170] S.L. Woronowicz, Positive maps of low dimensional matrix algebras, Rep. Math. Phys. 10, 165-
183 (1976)

[171] H.P. Yuen, R.S. Kennedy, and M. Lax, Optimum testing of multiple hypotheses in quantum
detection theory, IEEE Trans. Inf. Theory 21, 125-134 (1975)

[172] B. Yurke, S.L. McCall, and J.R. Klauder, SU(2) and SU(1,1) interferometers, Phys. Rev. A 33,
4033-4054 (1986).

121


	Introduction
	Quantum states
	Quantum states and observables
	The Schmidt decomposition
	Purifications and pure state decompositions of mixed states
	Entangled and separable states

	Quantum measurements
	Physical realization of a measurement process
	Quantum operations
	Generalized measurements
	Connections between POVMs, quantum operations, and state ensembles

	Transpose operation and least square measurement
	Recovery operation in quantum error correction
	Transpose operation as an approximate reverse operation
	Least square measurement

	Quantum state discrimination
	Discriminating quantum states drawn from a given ensemble
	Ambiguous and unambiguous discriminations of two states
	Ambiguous discrimination
	Unambiguous discrimination of two pure states
	Unambiguous discrimination of two mixed states

	Discrimination with least square measurements
	General results on ambiguous discrimination
	Bounds on the maximal success probability
	The Holevo bound

	Quantum entropies
	The von Neumann entropy
	Relative entropy
	Quantum relative Rényi entropies
	Definitions
	Main properties
	Monotonicity in 


	The Bures distance and Uhlmann fidelity
	Contractive and convex distances
	The Bures distance
	Bures distance and statistical distance in classical probability
	Comparison of the Bures and trace distances
	Bures and quantum Hellinger metrics, quantum Fisher information
	Characterization of the Riemannian contractive distances

	State discrimination and parameter estimation in large systems
	Quantum hypothesis testing: discriminating two states from many identical copies
	Parameter estimation in quantum metrology
	Phase estimation in Mach-Zehnder interferometers
	Quantum Cramér-Rao bound
	Interferometer precision and inter-particle entanglement


	Measures of entanglement in bipartite systems
	Entanglement as correlations between local measurements
	LOCC operations
	Axioms on entanglement measures
	Entanglement of formation
	Entanglement of formation for pure states
	Convex roof constructions
	The Wootters formula for two qubits

	Maximally entangled states

	The quantum discord
	Definition of the quantum discord
	The A-classical states
	Properties of the quantum discord
	Invariance and monotonicity properties
	States with the highest discord
	Monotonicity when disregarding a part of the measured subsystem

	Monogamy relation

	Distance and entropic measures of quantum correlations
	Geometric and relative-entropy measures of entanglement
	Definition and main properties
	Geometric measure of entanglement and convex roof constructions
	Geometric measure of entanglement for two qubits

	Geometric quantum discord
	Discord-like measures of quantum correlations
	Geometric discord for pure states
	Geometric discord for mixed states and quantum state discrimination
	The qubit case
	States with the highest geometric discord
	Geometric discord and least square measurements


	Operator monotone and operator convex functions
	Trace inequalities

