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Abstract

A survey of various concepts in quantum information is given, with a main emphasis on the
distinguishability of quantum states and quantum correlations. Covered topics include generalized
and least square measurements, state discrimination, quantum relative entropies, the Bures distance
on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound,
bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations.
The article is intended both for physicists interested not only by collections of results but also
by the mathematical methods justifying them, and for mathematicians looking for an up-to-date
introductory course on these subjects, which are mainly developed in the physics literature.
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1 Introduction

The fundamental role played by the theory of information in physics has been demonstrated in the last
century along with the development of statistical physics [14]. More recently, it has been recognized
that information is also at the heart of quantum physics, leading to the emergence of a new field called
quantum information. In few words, quantum information theory is concerned with the use of quantum
systems to accomplish information-processing tasks which are either not feasible classically or are done
classically much less efficiently [117]. These tasks can be related to a computational problem or to
communication, for instance, sending encrypted information in a secure way. Computational tasks
are performed on a quantum computer made of qubits. Such qubits are two-level quantum systems
in arbitrary superpositions of |0) and |1) instead of being either in state 0 or 1 as with classical bits.
A quantum algorithm is a unitary quantum evolution on a set of qubits followed by a measurement,
the outcomes of which should provide the solution of the problem. For example, the celebrated Shor
algorithm factorizes an integer with N digits into prime numbers in a time O(N?1In N In(In N)) [145],
instead of the exponential time required by all known classical algorithms. Quantum computers with a
few qubits have been implemented in physics laboratories. There is still a lot of debate about whether
we will be able in the future to manipulate coherently many qubits and address them locally during
a sufficiently long computational time, and which quantum systems are the most promising [117, 2§].

The fact that quantum algorithms and communication protocols can outperform their classical
analogs is usually attributed to quantum correlations. Such correlations in composite quantum sys-
tems are at the origin of the violation of the Bell inequalities, which has been confirmed experimen-
tally [127]. These quantum correlations are quite different in nature from classical correlations in
stochastic processes. For a long time they have been identified with entanglement. However, there
is now increasing evidence that other types of quantum correlations in mixed states, which may be
present even in unentangled states and are captured notably by the quantum discord [120},[75], might be
of relevance in certain quantum algorithms and communication protocols [49, 97, 123, 107, [34] [66], 47].

In this survey article, we review the basic properties of the entanglement measures and quantum
discord and present a geometrical description of these notions based on the Bures distance on the set
of quantum states. In this approach, the quantum discord turns out to be related to the problem
of discriminating non-orthogonal quantum states. Two central questions guide the discussion in this
article and can be formulated as follows. How well can one distinguish unknown quantum states
pertaining to a given ensemble by performing a measurement on a system? If this system consists of
several particles, does the amount of information one gets from measurements on a single particle tell us
something about the way the particles are correlated? Quantum measurements and entropies obviously
come into the game in these two questions. They constitute the subjects of Secs. Bl 4, and [l Some
answers to the first question are given in Secs. Bl and B devoted respectively to state discrimination
and to related topics called hypothesis testing and parameter estimation. The Bures distance and
Uhlmann fidelity are introduced in Sec. [l A detailed account of their properties is given there. The
remaining sections (Secs. [0} [I0, and [I1]) address the problem of quantifying quantum correlations and
provide answers to the second question. It is neither our purpose to discuss thoroughly the (huge
amount of) quantum correlation measures found in the literature nor to study how these correlations
could explain the quantum efficiencies. Well-documented surveys on quantum entanglement already
exist, see e.g. [82] [67], as well as on the quantum discord and related measures [110]. The precise
role of entanglement as a resource in quantum computing and quantum communication is still not
completely understood, in spite of recent progresses (such as the proof that, in order to offer an
exponential speedup over classical algorithms, a quantum algorithm using pure states must produce
entanglement which is not restricted to blocks of qubits of fixed size as the system size increases [92]).



The role played by the discord as a quantum resource is, in turn, still poorly understood and constitutes
a challenging issue (see [110]).

We concentrate in our exposition on the mathematical and fundamental aspects of the theory. In
particular, we will not investigate here the physical implementations and the system-dependent irre-
versible dynamical processes destroying (or sometimes producing) quantum correlations. We present
the detailed proofs of some selected fundamental results, instead of relating all important achievements
obtained so far. Most of these results have been published in physics journals, and are sometimes ex-
plained in the original papers without full mathematical rigor in their derivation. Others have been
published in mathematical journals with full proofs, which are nevertheless given here for completeness.
We try to emphasize how the results are connected between themselves and to stress the similarities
in the arguments used to derive them. This sometimes leads to new proofs.

Quantum information is a rapidly growing field of research and the amount of articles and surveys
devoted to it is already considerable. Researchers who got interested by this subject recently (includ-
ing the author) may fear to have difficulties to form a clear opinion about the most pertinent open
questions. Significant contributions have been made by physicists, mathematicians, and computer
scientists, who constitute a broad community with different viewpoints. We hope that this article
may be useful to mathematicians, by providing examples of interesting problems and explaining the
mathematical tools used to tackle them. It may also be of help to physicists wishing to get acquainted
with such tools, which could be useful to derive new results. The paper is written as an introduc-
tory course. Certain statements appear as remarks, which play the role of exercises, with the main
arguments to justify them. We encourage the reader to complete these proofs by himself. This work
is intended to be complementary to other surveys containing collections of results without explicit
derivations and to more introductory monographs like [117], which do not include the most recent
advances.

The following comments on the structure of the article might be helpful. The contents of Sec. [
Sec. [, and Secs. are largely independent. On the other hand, Sec. [l is partly related to Sec. [,
and Sec. [§l makes use of the results of Sec. [ and Sec. The material of Secs. and is relevant
for Secs. [0 and Section [I1] needs more or less the knowledge of all previous sections. The main
definitions and theorems presented in Secs. Bl and [B] are used in the whole article. Two appendices
contain textbook issues about operator convex functions and some less standard trace inequalities.

Before closing this introduction, let us warn the reader that we will be exclusively concerned by
quantum systems with finite-dimensional Hilbert spaces. This is motivated for two reasons. Firstly,
this is the case of most systems in quantum information theory. Secondly, in this way one avoids the
technical complications of infinite-dimensional spaces and concentrates oneself on the main ideas and
concepts. Some of these concepts have been originally worked out in the general setting of C*-algebras,
but we shall present here simpler proofs applying to the finite-dimensional case only.



2 Quantum states

In this section we review the basic definitions of pure and mixed states, entangled states, and the pure
state decompositions and purifications of mixed states. Before that, we introduce in Sec. 2.1l some
notation and define a few mathematical objects from the theory of operator algebras, which will be
used repeatedly in this article. In Sec. we discuss an extremely useful result from linear algebra,
namely, the Schmidt decomposition.

In all what follows, capital letters A, B, etc., refer to quantum systems, Ha, Hg, etc., denote their
Hilbert spaces, and na = dim Ha, ng = dim Hg, etc., the dimensions of these spaces. These dimensions
are always assumed to be finite. A bipartite system AB formed by putting together the systems A
and B has Hilbert space given by the tensor product Hag = Ha ® Hg. For instance, if A and B are
two qubits with Hilbert spaces Ha ~ Hg ~ C?, the space of these two qubits is Hag = C? ® C? ~ C%.
Similarly, Ha,..A, = Ha, ®---®@Ha, is the Hilbert space of the multipartite system formed by putting
together the systems Ay, ..., Ag. The tensor product vectors [¢a) @ |pg) € Hag will be denoted either

by |1 ® ¢g) or, more ofterll, by [1a)|¢s).

2.1 Quantum states and observables

A state of a quantum system with Hilbert space H is given by a density matrix p, that is, a non-negative
operator on H with unit trace trp = 1. We write £(H) the convex cone formed by all states on H.
States will always be denoted by the letters p, o, or 7, with subscripts referring to the corresponding
system if necessary. The extreme points of the cone £(H) are the pure states py = |¥)(¢)|, with
[y € H, ||¥] = 1 (here |[¢)(1)| designates the rank-one orthogonal projector onto Cl|i)). The pure
states can be identified with elements of the projective space PH, that is, the set of equivalence classes
of normalized vectors in H modulo a phase factor. The vectors e|¢)) € H with 0 < § < 2 are called
the representatives of py, € PH. We will abusively write [1)) instead of py, except when this may be
a source of confusion. If p is a state of a bipartite system AB with Hilbert space Hag = Ha ® Hg,
the reduced states of A and B are defined by partial tracing p over the other subsystem. They are
denoted by pa = trp(p) € E(Ha) and pp = tra(p) € E(Hp). These reduced states correspond to the
marginals of a joint probability in classical probability theory.

The C*-algebra of bounded linear operators from H to H’ is denoted by B(H,H'), and we write
B(H) = B(H,H). In our finite-dimensional setting, B(H, H') is the algebra of all n’ x n finite complex
matrices, with dimH = n and dim H’ = n’. The Hilbert-Schmidt scalar product on B(H,H') is defined
by

(X,Y)=tr(X"Y), (1)

where X* denotes the adjoint operator of X. The associated norm is || X||o = [tr(X*X )]% The set of
states £(H) can be endowed with the distances?

dy(p, ) = |lp — oll, = [tr(lp — ol?)]7 2)

with p > 1. Here |X| denotes the non-negative operator | X| = v X*X. When p — oo, ||X||, converges
to the operator norm || X || = || X|| of X, that is, the maximal eigenvalue of | X|. The Holder inequality

reads

X|l, = max [tr(XY 3
X[, = | e [(XY) (3)

1 As common in the physics literature we do not write the tensor product symbol & explicitly.
2 We shall see in Sec. [7] that there are other more natural distances on £(#H) from a quantum information point of
view.



with p > 1 and ¢ = p/(p — 1). This still holds for p = 1 and ¢ = oo, as can be shown by using the
Cauchy-Schwarz inequality for the scalar product (). In that case the maximum is achieved if and only
if YU]X\% = eie\X]% with € [0,27) and U a unitary such that X = U|X| (polar decomposition).

A self-adjoint operator O € B(H) is called an observable. The real vector space of all observables
on H is denoted by B(H)sa.. If AB is a bipartite system, one says that O € B(Hag)s.a is a local
observable if either O = A® 1 or O =1® B, with A € B(Ha)s.a. and B € B(Hg)s.a.- Here and in the
following, 1 stands for the identity operator on Ha, Hg, or another space.

A linear mapd M : B(H) — B(H') is positive if it transforms a non-negative operator into a
non-negative operator. It is completely positive (CP) if the map

M®R1:XeBHRCT™) — Y M(Xy) @ k)| € BH @C™) (4)
k=1
is positive for any integer m > 1.
Given two orthonormal bases {|i)};2; of Ha and {|5)};2, of Hp, one can identify any operator

O : Hg — Ha with a vector ]\T/o> € Ha ® Hp thanks to the bijection

O [Wo) = (ilO[)|D)]3) - (5)
i.j

This bijection is an isomorphism between the Hilbert spaces B(Hg,Ha) (endowed with the scalar
product () and Hag. Similarly, one can represent the linear map M : B(Hg) — B(Ha) by an
operator O acting on Hgg = He ® Hg with values in Haa = Ha ® Ha. The matrix elements of this
operator in the product bases {|k)|[)};5_, of Hes and {[i)|j)};4_, of Haa are given by (Or)iju =
(1] M(]k){l])|7). This representation is an *-isomorphism between the C*-algebras B(B(Hg), B(Ha))
and B(Hgg, Haa). The so-called reshuffling operation [20] associates to Oxq the operator O, €
B(Hag) with matrix elements (Oﬁ)ik,jl = (Om)ij ki, which satisfies

(A@ B, OXy) = (Wa|OmJ |V ) = (A, M(B)) (6)
for any A € B(Ha) and B € B(Hg). Here J denotes the anti-unitary operator on Hgg defined by
(k|{1|J|®) = (k|(I|¥) (complex conjugation in the canonical basis) and B = >k (K[ B[DE)(] is the
operator associated to J|Up) via the isomorphism (). With these definitions, M : B(Hg) — B(Ha)
is CP if and only if OZ& > 0, that is, O}\a,l has non-negative eigenvalue.

The left and right multiplications Lx and Ry by X € B(H) are the operators from B(H) into
itself defined byﬁ

Lx(Y)=XY , Rx(Y)=YX VY €BH). (7)

They are represented on B(H ® H) by local operators X ® 1 and 1® X7, respectively, where T stands
for the transposition in the basis {|i)}. Given two states p and o € E(H) with p > 0, the Araki relative
modular operator A, is defined by [11]

D ,(Y)=0Yp ' =L0R,1(Y) VY €B(H). (8)

olp

olp

It is a self-adjoint non-negative operator on the Hilbert space B(H) (for the scalar product (II)).

3 Operators acting on the vector space of observables B(H)s.a. or on the whole algebra B(H) are always denoted by
calligraphic letters.

* Actually, O%; > 0 is equivalent to O% = A*A for some A € B(Hag), that is, to (OX)ix.ji = @EM(|k){))|j) =
> g ApaikApgi for all i,j =1,...,na and k,l = 1,...,ne. Setting Apq = >_, | Apq,iri)(k|, it follows that Oy >0if
and only if M(X) =3  ApsXAj, for all X € B(Hg), which is equivalent to M being CP by the Kraus representation
theorem (Theorem [3:2:3] below).

® In the C*-algebra setting, the map X — Lx is the Gelfand-Neumark-Segal representation of the C*-algebra, [29].




2.2 The Schmidt decomposition

The following standard result is very useful in quantum information theory.

Theorem 2.2.1. (Schmidt decomposition) Any pure state |¥) € Ha@Hg of a bipartite system admits
a decomposition

n
@) = Z Viilea) | Bi) 9)
i=1
where n = min{na,ng}, pi > 0, and {|oy)}I, (respectively {|Bi)}I—,) is an orthonormal family of
Ha (respectively of Hg). The p; and |oy) (respectively |5;)) are the eigenvalues and eigenvectors of
the reduced state pp = trg(|U)(¥|) (respectively pg = tra(|W)(¥|)). Thus, if the eigenvalues p; are
non-degenerate then the decomposition (9) is unique.

The non-negative numbers f; are called the Schmidt coefficients of |¥). They satisfy >, u; =
||* =1.

Proof. Let {|i)};2; and {[j)}72, be some fixed orthonormal bases of Ha and Hg. By using the
isomorphism |¥) — Oy = 3, (i ® j|¥)]i)(j| between Hap and the space of na x ng matrices (see
Sec. 2.1]), we observe that the decomposition (@) corresponds to the singular value decomposition of
Oy, that is, Oy = Ua >, \/i]i)(i|Ug with p; the eigenvalues of OjOy and Ua and Ug unitaries on
Ha and Hg. Then Upli) = |oy) and Ugli) = |B]) are eigenvectors of OyOy, and Oy, Ow, respectively.

Denoting by J is the complex conjugation in the basis {|j)} (see above), one has |5;) = J|5). 0

The Schmidt decomposition can be generalized to mixed states by considering p as a vector in the
Hilbert space B(Ha) ® B(Hg). Any p € E(Hag) can be written as

n2
p = Z VimXm & Y (10)
m=1

’I’L2 ’I’L2
where {X,,},2 ; and {Y,,,}, 2, are orthonormal bases of B(Ha) and B(#g) for the scalar product (1))
and ., are the eigenvalues of the n% X ni matrix R > 0 defined by

Rijay = (pli)i'| & 1, i)' © 1p) (11)

2
(the R;;; are the matrix elements in the orthonormal basis {|i)(j \}Z?Zl of B(Ha) of the operator
playing the role of the reduced state in Theorem ZZZT]). Note that > ., = tr(p?) < 1, with equality
if and only if p is a pure state.

Remark 2.2.2. Alternatively, the ji, are the square roots of the singular values of p™ € B(Hgg, Han),
where R is the reshuffling operation (Sec.[21l), and X, and Yy, are given in terms of the eigenvectors
[Xm) and |vm) of p™(p™)* and (p%)*p™ by Xin = 32, (1@ 11xm) i) (3] and Vi = 3 (k @ Um) k)1,
respectively.

Proof. Considering p as a vector in B(Ha) ® B(#Hg) and introducing two orthonormal bases {A,} of
B(Ha) and {B,} of B(Hg), according to the proof of Theorem 2.2.1] |//i,, are the singular values of
the n3 x ng matrix ((A, ® By, p))pq. Denote by {|a,)} and {|3,)} the orthonormal bases of Haa
and Hgp associated to {A,} and {B,} via the isomorphism (5)). The statement follows by choosing
A, = [i){j| and B, = |k)(I| and using the identity (c,|p™J|B,) = (A, ® By, p), see (@). O



2.3 Purifications and pure state decompositions of mixed states

Definition 2.3.1. Let p be an arbitrary state on H and K be another Hilbert space. A pure state
|¥) € H® K such that p = tric(|U)(V]) is called a purification of p on H & K.

In the language of C*-algebras, a purification is an example of cyclic representation of a state [29].
An example of purification of p on H ® H is

) =Y VErlk)k) | (12)
k=1

where p = Y, pi|k) (k| is a spectral decomposition of p. If |[¥) and |®) are two purifications of p on the
same space H ® K, then there exists a unitary operator U acting on K such that |®) =1 @ U|¥). In
fact, one infers from the Schmidt decomposition that [¥) = >, \/pk|k)|fx) and [®) = >, \/Prlk)|gr),
where {|fx)}r_, and {|gk)}}_, are two orthonormal families of K. Thus |gi) = U] fi) for some unitary
U.

We will often be interested in the sequel by families of quantum states of a system S, p; € E(Hs),
i =1,...,m, to which we attach some probabilities n; > 0, >, 7; = 1. Following the terminology
employed by physicists in statistical physics, we call {p;,;}1"; an ensemble of quantum states (or more
simply an ensemble). A convex decomposition of p is an ensemble {p;,n;}~; such that p = > n;ip;.
A pure state decomposition of p is a convex decomposition in terms of finitely many pure states

pi = [i) (il i-e. -
p=> milthi) (il . (13)

i=1

If the vectors |¢;) are orthogonal, then (I3]) coincides with the spectral decomposition, but we will
see that there are infinitely many other ways to decompose p. Physically, (I3]) describes a state
preparation: it means that the system has been prepared in the pure state |i;) with probability 7;.
The non-uniqueness of the decomposition can be interpreted as follows. If a receiver is given two
ensembles {|v;),n; }1 and {|¢;),&; };):1 corresponding to different state preparations of two identical
systems in the same state p, then he cannot make any difference between them if he has no prior
knowledge on the state preparation. Indeed, any measurement performed by him gives rise to the
same distribution of outcomes for the two ensembles. In other words, the full information that the
receiver can collect on the system via measurements is encoded in p, and not in the ensemble involved
in the state preparation. This very important fact has consequences that are sometimes disconcerting
to people unfamiliar with the conceptual aspects of quantum mechanics. For instance, if a preparer
gives a maximally mixed state p = 1/n to a receiver, the latter has no way to decide whether this state
was prepared from n equiprobable orthonormal pure states (which are only known by the preparer)
or if it was prepared by another procedure involving more than n states. It is also worth mentioning
that the process transforming the ensemble {p;,7;}7, into the average state p = Y. 1;p;, which can
be viewed as the inverse of a convex decomposition, corresponds physically to a loss of information
about the state preparation.

Given a fixed orthonormal basis {|f;)}7_; of K with p > ran(p) = r, there is a one-to-one corre-
spondence between pure state decompositions of p containing at most p states and purifications of p
on H® K. Actually, given the pure state decomposition (I3)),

P

0) = Vil f) (14)

1=1



defines a purification of p on H ® K (we have set n; = 0 for m < ¢ < p). Reciprocally, let |¥) be a
purification of p on H ® K. Denote as before the eigenvalues and orthonormal eigenvectors of p by pg
and |k). As argued above, one can find a unitary U on K such that

T
= VIR f) ZZw FlULf) R f2) = me |f3) (15)
k=1 i=1 k=1
with /ni|vs) = > /Pre(filU|fi)|k). Hence |¥) has the form (I4). Taking the partial trace over K,
one can associate to it a unique pure state decomposition, which is given by (I3]).
Since two purifications |¥) and |®) of the same state p are related by a local unitary U acting
on the ancilla space K, this implies that any two pure state decompositions p = >, n;[;) (1| and

p=2""_1&il0j)(¢;| are related by

max{m,p}
V&) = Y wivilb) (16)
1=1

where (uj;) is a unitary matrix with size max{m,p} (if m < i < p we set as before 7; = 0).

2.4 Entangled and separable states

Let us consider a bipartite system AB. If this system is in a tensor product state |Usep) = |¥a)|0B)
with |¢a) € Ha and |¢pg) € Hp, then the expectation value of the product of two local observables
A®1 and 1 ® B coincides with the product of the expectations values, i.e.

GAB(|‘IJsep>) = <\IISCP|A ® B|‘Ijsep> - <\I'80p|A ® 1|\I'80p><‘1'80p|1 ® B|‘Ijsep> =0. (17)

This means that the random outcomes of measurements of the local observables A® 1 and 1 ® B are
uncorrelated. More generally, if one thinks of AB as a pair of particles located far apart (e.g. a photon
pair shared by two observers Alice and Bob), this pair is in a product state if and only if there are
no correlations between the results of arbitrary local measurements performed independently on each
particle (for instance, if Alice sends her photon through a polarizer and then to a photodetector, and
Bob does the same with his photon, the clicks of the two detectors will be uncorrelated whatever the
polarizer angles). One says that |Vgep) = |¥a)|¢B) is a separable state. If the pure state |U) € Hag is
not a product state one says that it is entangled.

By applying the Schmidt decomposition, one sees that |¥) is separable if and only if all its Schmidt
coefficients vanish except one, that is, if and only if its reduced states pan and pg are pure. In the
opposite, if either pa or pg is proportional to the identity matrix (maximally mixed state), we say
that |U) is mazimally entangled. Such states have the form

ent = Z|a2 |5z ) (18)

where {|o;)}"; and {|5;)}", are orthonormal families in Ha and Hg and n = min{na,ng}. For
instance, denotlng by |0) and |1) the canonical basis vectors of C2, the EPR (or Bell) states |®1) =
(]0)[0) & [1)[1))/v/2 and |¥L) = (]0)[1) £ |1)]|0))/v/2 are maximally entangled states of two qubits,
and any maximally entangled two-qubit state is an EPR state, up to a local unitary transformation
Up ® Ug.

For mixed states, entanglement is no longer equivalent to being a product state. The “good”
definition of mixed state entanglement is due to Werner [165].

10



Definition 2.4.1. A mixed state p of a bipartite system AB is separable if it admits a pure state
decomposition

p= Zﬁi’¢i®¢i><¢i ® ¢ (19)

in terms of pure separable states |1; @ ¢;) € Hag. If such a decomposition does not exist then p is
entangled. The set of all separable states of AB forms a convex subset of E(Hag), which is denoted by
SAB-

It follows from the Carathéodory theorem that the number of pure product states in the decom-
position (IA) can always be chosen to be smaller or equal to (nang)? + 1.

According to this definition, a state is separable if it could have been prepared from pure product
states only. This does not mean that it has actually been prepared using such states. For example,
if one prepares two qubits in the maximally entangled states |®) and |®_) with equal probabilities,
the corresponding state

p = 5IB) @]+ 5B )@ | = 210} 0] @ [0){0] + 511l @ 1)(1] (20)

is separable! This unexpected result is inherent to the ambiguity of the state preparation discussed
in the preceding subsection. This quantum ambiguity unfortunately obliges us to look for all possible
state preparations of a given mixed state p to decide whether p is entangled or not. This makes this
problem highly non-trivial.

An explicit complete characterization of Sag is known for qubit-qubit and qubit-qutrit systems only,
that is, for (na,ng) = (2,2), (2,3), and (3,2). Insuch a case, the Peres-Horodecki criterion [125, (80, [81]
gives a necessary and sufficient condition for p to be entangled. This criterion is formulated in terms of
the partial transpose. Given two orthonormal bases {|i)} of Ha and {|k)} of Hg, the partial transpose
p™® of p with respect to B has matrix elements in the product basis {|i)|k)} given by

(il (Klp™ 7)1ty = (illIpld) k) - (21)

One defines similarly p’ and note that p™ = (p’8)7. It follows from Definition 41l that if p is
separable then p™ > 0 and p’® > 0, i.e. p’» and p’® are states of AB. Thus, if p™ (or, equivalently,
p'®) has negative eigenvalues then p is necessarily entangled. Since the transpose is a positive but not
CP map, such negative eigenvalues may indeed exist. However, if nang > 6, certain entangled states
have non-negative partial transposes [81]. It is remarkable that this does not happen when nang < 6:
then p™ > 0 if and only if p € Sag [80]. Two remarks should be made at this point. First, states
with non-negative partial transposes cannot undergo entanglement distillation and therefore form an
interesting subset of £(Hag) on their own, which contains Sag (see [82] for more detail). Second,
extending the Peres criterion to all positive but not CP linear maps Ag : B(Hg) — B(Ha) (i-e. asking
that 1 ® Ag(p) > 0 for any such map) yields a necessary and sufficient condition for entanglement,
valid whatever the space dimensions na and ng [80]. Due to the lack of an explicit characterization
of such maps (except for (na,ng) = (2,2) or (3, 2))@, this condition is unfortunately not very helpful
in general.

Let us also mention another necessary but not sufficient (even for two qubits) condition for en-
tanglement, which relies on the Schmidt decomposition (I0) for mixed states. By using the fact that

6 When (na,ng) = (2,2) or (3,2), any positive map A : B(Hg) — B(Ha) can be written as A = My + Mo T,
where M; and M3y are CP and T is the transposition [I70]. The fact that the partial transpose criterion is sufficient for
entanglement follows from this characterization [80].
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> m /m defines a norm on £(Hag), one can show that if p € Sag then > \/ftm, < 1 [39]. Hence

> m V/Hm > 1 implies that p is entangled.

Once a state has been recognized as separable, it may be of relevance to determine its decom-
position(s) into pure product states. This problem has been addressed in [169, 137, [162] for two
qubits.

Definition 2.4.T] can be extended straightforwardly to multipartite systems A; ... Ay. Then different
kinds of entanglement can be defined according to the chosen partition of {Aq,...,Ax}. In this article
we will not consider multipartite entanglement, which is a challenging subject in its own [67, [82].
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3 Quantum measurements

In this section we review the notions of quantum operations and generalized measurements and give
the basic theorems, namely, the Stinespring theorem, the Kraus decomposition, and the Neumark
extension theorem. We start by a physical description of a von Neumann measurement.

3.1 Physical realization of a measurement process

A measurement on a quantum system S is realized by coupling S with a measurement apparatus. This
apparatus consists of a macroscopic pointer P interacting with an environment E playing the role of
an infinite bath. One may think of P as the center of mass of the needle of a meter. The environment
E then includes all the other degrees of freedom of the macroscopic apparatus. The coupling of
the measured system S with the pointer transforms the initially uncorrelated state |¢)) ® |0) of the
composite system SP into an entangled state,

[¥) @10) — [WgE) = > culaa) ® i) - (22)
1,0

Our assumption that S and P are initially in pure states is made to simplify the foregoing discussion
and can be easily relaxed. The states |ay;;) form an orthonormal basis of the system Hilbert space Hsg
(measurement basis), which is the eigenbasis of the measured observable A, i.e. A|ay) = a;|ay). The
index [ labels if necessary the different orthogonal eigenstates of A with the same degenerate eigenvalue
a;. In ideal measurements ¢;; = (a;|1). The states |i) are the pointer states of the apparatus. After
a sufficiently long coupling time between S and P, these states are macroscopically distinct and thus
nearly orthogonal, (i|j) =~ d;; (hereafter §;; stands for the Kronecker symbol, equal to 1 if i = j
and zero otherwise). The transformation ([22) is a unitary transformation, ie. |¥gY) = Usp|t))|0)
where Usp is a unitary evolution operator on Hgp. One usually calls such a transformation the pre-
measurement [64]. This unitary evolution induces quantum correlations between S and P, such that
each eigenprojector II; = ), |ay) (| of A is in one-to-one correspondence with a pointer state |i).
The resulting state (22)) is a superposition of macroscopically distinct states, sometimes referred to as
a “Schrodinger cat state”. The pointer states are singled out by their robustness against environment-
induced decoherence. More precisely, if the pointer P is initially in the state |i), its interaction with the
environment E does not entangle P and E. Letting P and E interact during a time ¢ much larger than
the decoherence time, the SP-entangled state |Ugy) is transformed into a statistical mixture in which
all the coherences between the pointer states |i) have disappeared. After tracing out the environment
degrees of freedom, the reduced state of SP is modified according to

[WEE V(W] — pRe™ = cantalair) (| @ |i)(i] =Y T pTl; @ [i) (il (23)
ikl i

p = |[) (1| being the initial system state. The final SP-state has no quantum correlations but is
classically correlated: indeed, each pointer state |i) goes hand in hand with the system state

psii =p; MWipll; ,  p; = tr(ILp) . (24)

Concrete models for the pointer and its coupling with the system and the environment have been
investigated in [2 B} 147, [148]; in these works the aforementioned decoherence time and the time
duration of the measurement are estimated in the more realistic situation where the two transforma-
tions (22]) and (23] occur simultaneously. The readout of the pointer (that is, the observation of the
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position of the needle) cannot significantly alter the macroscopic state |i). It merely selects one of the
measurement outcomes,

outcome i: Py — psp; = pspi @ 1) (i (wavepacket reduction). (25)

After the measurement yielding the outcome 7 the measured system is in the conditional state pgy;,
and this outcome occurs with probability p; (Born rule). The transformation (23] results from the
knowledge of the random outcome, it should not be regarded as a true dynamical process. It is
actually analog to a state preparation (see Sec. 2.3)). In mathematical terms, it corresponds to a
convex decomposition of pgp™ = 7. pipspy;-

We point out that recent progresses in the understanding of quantum measurement processes via
dynamical models and their interpretation with a statistical physics viewpoint have been made by
Allahverdyan, Balian, and Nieuwenhuizen [4].

3.2 Quantum operations

In the absence of readout of the measurement result, one does not know which state pg); has been
prepared and the system is after the measurement in the average state

Mu(p) = ZHiPHi ) (26)

where p is the state before the measurement.

Since {II;} is the spectral measure of the self-adjoint operator A, the II; form a family of projectors
in B(Hs)s.a. satisfying ILIL; = 6;;I1; and ), II; = 1. We will refer in the sequel to such a family as an
orthonormal family of projectors. 1t is easy to show that the map My is CP (as a sum of CP maps)
and trace-preserving. In quantum information, such maps are called quantum operations.

Definition 3.2.1. A quantum operation M : B(Hs) — B(Hs) is a trace-preserving CP map from
B(Hs) into B(Hsg).

A necessary and sufficient condition for a linear map M : B(Hs) — B(Hg) to be CP is that
it satisfies M @ 1(|Went){(Went|) > 0 for the maximally entangled state |Wen) = n§1/2 > i |EYE) in
Hs ® Hs, where {|k)} is an orthonormal basis of Hs. In fact, M ® 1(|Went)(Went|) coincides with the
operator 0/7\1,( defined in Sec. 21 up to a factor 1/ng, and it has been argued above that M is CP if
and only if O}\a,l > 0.

A quantum operation is the quantum analog of a stochastic matrix M2 giving the transition
probabilities g(j|i) of a classical Markov process,

n n

P=(pieepn) = MPp with (M), = q(ili)p o a(Gli) =0, S qGl)=1. (27)
i=1 j=1

Save for the wavepacket reduction (25l), all physical dynamical processes on quantum systems are
given by quantum operationd/. Let a system S interact with another system E at times ¢ > 0. If S

" In order to include the transformation @5), many authors define a more general notion of quantum operation by
relaxing the trace-preserving condition and replacing it by tr(M(p)) < 1 for any p € E(H). The state transformation is
then given by the non-linear map p — M(p)/tr(M(p)). Theorems and 3:22:3] can be easily adapted to this more
general definition. In particular, the Kraus decomposition (BI) holds, with Kraus operators A; satisfying >, A7 A; < 1.
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and E are initially in a product state p(0) ® pg(0) and SE can be considered as an isolated system, so
that its dynamics is governed by the Schrodinger equation, then the reduced state of S at time ¢ reads

p(t) = trg (e 7HsE p(0) @ pg (0)etHsE) (28)

Here Hsg = Hs + Hg + AHjy is the Hamiltonian of SE, where Hg and Hg are the Hamiltonians of
S and E, Hiy their coupling Hamiltonian, and A the coupling constant. The time-evolved state (28])
is related to the initial state p(0) by a quantum operation My, i.e. p(t) = Myp(0). The Stinespring
theorem says that any quantum operation M can be viewed as a reduced evolution of the system
coupled to an auxiliary system (ancilla).

Theorem 3.2.2. (Stinespring [I51]) Let M be a quantum operation B(Hs) — B(Hs). Then one
can find an ancilla Hilbert space He, a state |eg) € Hg, and a unitary operator U on Hsg such that
M(p) = tre(Up ® |eo)(eo| U™).

It is appropriate at this point to review a few well-known facts from the theory of CP maps
on C*-algebras. The adjoint M* with respect to the trace of M : B(Hs) — B(Hg) is the map
M* : B(Hg) — B(Hs) defined by tr[AM(p)] = tr[M*(A)p] for any A € B(Hg) and p € B(Hs). If M
is a quantum operation then M* is also a CP map and is unity-preserving, M*(1) = 1. According to
Stinespring’s theorem, one has

M*(X) = (eg|U* X @ 1U |eg) (29)

for any X € B(H). It follows that M* satisfies the Kadyson-Schwarz inequality

IMA(X)P < MA(IX?) . (30)

Theorem 3.2.3. (Kraus [95]) A linear map M from B(Hs) into itself is a quantum operation if and
only if it admits the representation

M(p) = ZAipA;-* : (31)

where {A;} is a countable family of operators on Hs satisfying > ; A7 A; = 1.

For infinite dimensional Hilbert spaces and in the more general C*-algebra setting, the Kraus
decomposition holds under the additional assumption that M is normal, that is, ultra-weakly contin-
uous. One usually deduces it from Stinespring’s theorem. In our finite-dimensional setting, however,
a simple direct proof of Theorem [B.2.3] exists (see Remark [3.2.4] below). One can then obtain the
Stinespring theorem from the Kraus decomposition as follows. Let {|k)}}2, be an orthonormal ba-
sis of Hs and Hg be a (possibly infinite-dimensional) Hilbert space with orthonormal basis {]¢;)}.
Define the vectors [Uyo) = Y. Aj|k)|e;). Using > . AfA; = 1, one finds that these vectors form
an orthonormal family in Hsg, which can be completed so as to get an orthonormal basis {|W¥;)}.
Then M*(X) = (eo|U*X ® 1Ulep) for any X € B(Hs), where the unitary U on Hsg is defined by
Ulk)|e) = |¥y;) for any k and [.

Remark 3.2.4. Any quantum operation B(Hs) — B(Hs) with dimHs = ns < oo admits a Kraus
decomposition (F1l) with at most n% operators A;. Consequently, one can choose the ancilla space Hg
in Theorem[3.2.2 of dimension dim Hg = ng

Sketch the proof [117]. To show that M has the form (BII), consider the operator B = M ®

1(|Went) (Went|) with |Wene) = ns_l/2 > i |E)k) € Hss as above. Since M is CP, one has B > 0.
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Let |®;) be orthogonal eigenvectors of B, normalized in such a way that ngB = > |®;)(®;]. Then
define the Kraus operators A; as the operators associated to |®;) by the isomorphism (Bl between

B(Hs) and Hss. O

It is important to realize that the Kraus decomposition is not unique. For indeed, if {4;}!_; is a
family of Kraus operators for M and (uﬂ)f j—1 1s a unitary matrix of size ¢ > p, then the operators

p
szzﬂjz‘Ai , J=1...,q, (32)
=1

define another family of Kraus operators for M. Conversely, two families {4;}Y_; and {Bj}?zl of
Kraus operators for M with p < ¢ < oo are related to each other by (32). Actually, let B and |Wept)
be defined as in the Remark B.2.4] above. Then B =3, ;) (f:| = >_; [v;) (75| with

) =ng® SO(AdRDIE)  [5) =ng? S (BRI (33)
k k

In view of the link (IG) between pure state decompositions of a non-negative operator, one has |v;) =
2 Wyl i) with (uj;){ ;_; unitary. This implies (32)).

Given a purification |¥) of p on Hs ® Hgr and a quantum operation M : B(Hs) — B(Hsg), it is
natural to ask about purifications of M(p). A slight generalization of Theorem B.2.2]ensures that there
exist a vector |e¢y) € Hg and a unitary U : Hs@Hg — H®@Hg such that M(p) = tre (Up® |eo) (€0|U™).
Therefore,

n_p
[Tat) = IR @U[T)|eo) = > > /il Ailk))| fi)l€) (34)
k=1 i=1
is a purification of M(p) on He@Hr®@H. In the second equality, {|k)} is an orthonormal eigenbasis of
p, {|fx)} is the orthonormal family of Hg such that |¥) = ", \/pi|k)|fx), and {|€;)} is an orthonormal
basis of Hg such that U|k)|eg) = >, (A;]k))|e;) (see the expression of U in terms of the Kraus operators
after Theorem B.2.3)).

3.3 Generalized measurements

For the quantum operation Myy defined by (26]), the orthogonal projectors II; form a family of Kraus
operators. One may wonder if more general quantum operations, given by Kraus operators A; which
are not necessarily orthogonal projectors, correspond to some kind of measurements. The answer is
yes: such operations can always be obtained by coupling the system S to an auxiliary system E (the
ancilla) and subsequently performing a von Neumann measurement on E.

Theorem 3.3.1. (Neumark extension theorem) Let {A;}Y_, be a finite family of operators satisfying
> A¥A; = 1. Then there exist a space Hg with dimension dimHg = p, a pure state |eg) € Hg, an
orthonormal family {mE} of projectors in B(Hg), and a unitary operator U on Hsg such that for any
density matriz p € E(Hs),

AipAr = tre(1 @ 7E Up @ |eo) (eo|U*1 @ wF) . (35)
Proof. Use the same arguments as in the above proof of Stinespring’s theorem from Theorem [B.2.3],

and define 7F = |¢;) (. O
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Definition 3.3.2. A generalized measurement is given by a family {M;} of non-negative operators M;
satisfying Y, M; = 1 (positive operator valued measure, abbreviated as POVM) together with a family
of operators {A;} such that M; = A7 A;. The conditional state ps|i gwen outcome i and the probability
of this outcome read

psii = p; (AipA; . pi=tr(Mip) . (36)

According to Theorem B.3.1] any generalized measurement can be realized by letting the system
S interact with an ancilla E in the state |eg) and subsequently performing a von Neumann measure-
ment on E, that is, coupling E to a macroscopic apparatus with pointer P. The interaction between
S and E first transforms the initial state ps ® |ep){€p| into psg = Ups @ |€g){(eg|U™, U being a unitary
evolution operator on Hgg, and the subsequent von Neumann measurement leads to the wavepacket
reduction for the system SP (compare with (24) and (23])

outcome i:  psp — pspi = p; | tre(1 @ 7 psel @ w) @ [i)(i] = p; ' Aips AT @ [i) (il (37)

where p; = tr(1 ® 7Epsg) = tr(M;ps) is the probability of outcome 4, in agreement with (36]).

One has A; = UiMil/ 2 (polar decomposition) for some unitary operator U; depending on i. The
conditional states ps|; are thus characterized by the POVM {M;} up to unitary conjugations, which
introduce a freedom in choosing the output state associated to each measurement outcome. For
instance, if M; = |m;)(1;| are of rank one then A; = |i)(j;| for some arbitrary normalized vector
li) and the output conditional states are pg;; = [i)(i]. One usually takes the vectors |i) to form
an orthonormal basis (which can be identified to the pointer state basis of Sec. B.l), in such a way
that the states ps); be perfectly distinguishable (this happens if the ps|; are orthogonal only, see
Sec. [0l below). One should keep in mind, however, that the probability p; = (1;|p|i) of outcome 7 is
independent of the choice of {|i)}. If one is interested only in functions of the post-measurement states
ps|; which are invariant under unitary conjugations (as, for instance, the von Neumann entropy), then
the generalized measurement can be fully specified by the measurement operators M;. Thanks to the
Neumark extension theorem, these operators may be written as

M; = AfA; = (eo)U*1 @ nEU |eg) (38)

As stressed above, in the absence of read-out the state of the system after the measurement is the
average of the conditional states,

M(p) = Zpipsu = ZAZPA? ; (39)

in analogy with (26]). This defines a quantum operation M, the Kraus decomposition of which specifies
the state preparation associated with the wavepacket reduction.
Writing the spectral decomposition of each operator M;, one observes that

ri
My =" )l Y My =3 (i) (i =1, (40)
k=1 i ik

where r; = rank(M;) and |f1;;) are unnormalized eigenvectors with norms equal to the square roots of
the corresponding eigenvalues. The last condition in (40) implies that either {|z;x)} is an orthonor-
mal basis, in which case {M;} is an orthonormal family of projectors (von Neumann measurement),
or {|iix)} is a non-orthogonal family containing more than ng vectors, in which case at least two
eigenvalues ||f1;x| are strictly smaller than one and {M;} is not a von Neumann measurement.

The set of all POVMs is a convex set. Its boundary and extremal points have been studied in [45].
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Remark 3.3.3. An alternative version of Theorem [3.31 states that if m =), r; with r; = rank(M;),
then there exist a space Hg with dimension m — ns + 1, a state |eg) € Hg, and a von Neumann
measurement {135} on Hsg such that

M; = (60|15 ep) (41)

The interesting point is that the dimension of the ancilla space Hg can be smaller than p in Theo-
rem [F.3 1] (for instance dim Hg = p — ns + 1 for rank-one operators M; ).

Sketch of the proof [126]. Note that m > ng by the observation above. Define

m—ns

Gie) = |in)leo) + > cinal®)ler) , (42)

=1

where |f;;) is as in (@), |¢) € Hs is an arbitrary state, and {|¢;)},"," is an orthonormal basis of He.

The coefficients c¢;;; may be chosen such that {|(;)} is an orthonormal family of Hsg. To establish
this statement, set c;x; = (I[fix) for m —ng <1 <m, with {|)}]",,, .., an orthonormal basis of Hs,
and let ¢; € C™ be the vector with components ¢;;;. Then ¢; - ¢y = oy for any [,I' > m —ns, as a
result of ). M; = 1. One can choose the (m — ng) other vectors ¢; in such a way that (c1,...,cm)
forms a m x m unitary matrix. Then TI3E = 37, |z ) (x| has the desired property. 0

3.4 Connections between POVMs, quantum operations, and state ensembles

To each POVM one can associate a quantum operation and vice-versa. Similarly, there is a canon-
ical way to associate to a quantum operation a state ensemble and vice-versa. These correspon-
dences depend on an orthonormal basis {|i)}7*, of a fictitious pointer P with m-dimensional space
Hp. It has been already seen above that one can associate to a POVM {AM;}", on S a quantum
operation with Kraus operators A; such that M; = A7A;. This operation implements the state
changes in the measurement process in the absence of readout. If we imagine that S is coupled to
P and that the measurement is performed on both S and P, one may consider the Kraus operators
Air = |k)|i)(fuir| such that M; =Y~ A% A, where {|k)};%, is an orthonormal basis of Hs and |f;)
are the unnormalized eigenvectors of M; in ([@0). Provided that there is no readout of the measure-
ment on S, one may trace the post-measurement states over Hs. The conditional states of P are
given by pp|; = pi_k1 trs(AixpAjy,) = |4)(i] with py = (fix|plitix), and the corresponding probability is
pi = > Pik = tr(M;p). The state changes in the absence of readout are implemented by the quantum
operation M : B(Hs) — B(Hp) defined by

M(P):ZtT(MiP)|i><i| , pEEHs) & MU)(]) = Mibij , i,j=1,...,m. (43)

Conversely, if M is a quantum operation B(Hs) — B(Hp) then M; = M*(|i)(i|]) defines a POVM
{M;}™, (actually, M; > 0 by the positivity of M* and ), M; = M*(1) = 1). Therefore, for a given
orthonormal basis {|i)}7, of Hp, there is a one-to-one correspondence between POVMs {M;}™, on
Hs and quantum operations M : B(Hs) — B(Hp) of the form (43)).

A similar one-to-one correspondence can be found between state ensembles on Hs with fixed
probabilities {n;}!"; and quantum operations B(Hp) — B(Hs) such that M(]i)(j|) = 0 for i # j.
This correspondence is given by

pi = MG , i=1,...,m. (44)



In fact, if M : B(Hp) — B(Hs) is a quantum operation then {p;,n;}I" is clearly an ensemble on
Hs. Conversely, if {p;,n;}/", is an ensemble of m states, let us write the spectral decompositions
Pi = Yk Pik|%ik) (Yik|. Then the operation with Kraus operators A;; = \/pik|%ik) (i| has the required
property.
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4 Transpose operation and least square measurement

4.1 Recovery operation in quantum error correction

The notion of transpose operation was introduced by Ohya and Petz in their monograph [119]. It
plays the role of an approximate reversal of a quantum operation, in a sense that will be made more
precise below.

Definition 4.1.1. Let M : B(H) — B(H') be a quantum operation and p € E(H) be a state such
that M(p) > 0. The transpose operation of M for p is the quantum operation Raq,, : B(H') — B(H)
with Kraus operators R; = p%A;kM(p)_%, where {A;} is a family of Kraus operators for M. It is
independent of the Kraus decomposition of M. Actually, for any o € E(H'),

Ratp(0) = pE M (M(p) 2o M(p) %) p? . (45)

One easily checks that ), RfR; = 1, so that R, is indeed a quantum operation, and that
Rm,p o M(p) = p. Furthermore, transposing twice amounts to do nothing, that is, the transpose of
Rm,p for the state M(p) is equal to M.

The operation R4, appears naturally in the context of quantum error correction. The problem
of quantum error correction is to send a state p over a noisy quantum communication channel in such
a way that p is resilient to the effect of the noise in the channel. The state p is encoded via a unitary
transformation into a subspace Hc of the Hilbert space H of the quantum channel. The noise is
described by some quantum operation M.

Proposition 4.1.2. Let M be a quantum operation on B(H) with Kraus operators {A;}. Let Il¢
denote the orthogonal projector onto a subspace Ho C H and Ec : p — g pllc be the conditional
expectation onto the space of operators supported on Ho. There exists a recovery quantum operation R
on B(H) satisfying R o M o Ec = E¢ if and only if the following condition holds:

Ec (A7 Aj) = ai;llc (46)

where (a;;) is a self-adjoint matriz. If this condition is satisfied then for any p with support ran(p) C
Hc, the transpose operation R, is a recovery quantum operation.

We refer the reader to the book of Nielsen and Chuang [117] for a proof of the necessary and
sufficient condition (@6]). Some bibliographic information on this topic can also be found there.

Proof of the second statement. By taking advantage of the non-uniqueness of the Kraus decomposi-
tion, (46) can be transformed into Ec(B;Bj) = p;é;jIlc, where the Kraus operators B; are given by
B2) with (usj)(aij)(us;)* the diagonal matrix with entries p;. Together with the polar decomposition,
this implies B;llc = /p;W; with W; = Vil satisfying W;*W; = 4;;Il¢, the V; being some unitary
operators. Thus the subspaces V;H¢ are orthogonal for different j’s and the restriction of ; WiWw;
to the subspace V = ®;V;Hc equals the identity. If p = Ec(p) and the restriction of p to H¢ is
invertible, then M(p) = >_, p;W;pW; and M(p)~1? = > ij_1/2W]?k/\/p—j, the last operator being
defined on V. A simple calculation then shows that R,,0 MoE¢c = E¢, as stated in the Proposition.
O
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4.2 Transpose operation as an approximate reverse operation

Since the condition (@) is not always fulfilled, it is natural to ask whether one can find an optimal
imperfect recovery map, which would enable to recover a given ensemble {p;, 7;} subject to some noise
with a maximal fidelity. A notion of fidelity has been introduced by Schumacher [141]. Its definition
is as follows (for more detail and motivations from classical information theory, see [117]). Given a
state p € £(Hs), consider a purification |¥,) of p on Hs ® Hr, where R is a reference system with
Hilbert space Hr ~ Hs. For instance, |¥,) can be given by ([I2)). If p is a mixed state then |¥,) is SR-
entangled (Sec.2.4]). The entanglement fidelity of p quantifies how well this entanglement is preserved
when the system S is subject to some noise modelized by a quantum operation M on B(Hs). It is
defined by

Fo(p, M) = (| M @ L(|V,)(¥,|)[¥)) . (47)

Since different purifications of p on Hgr are related by unitaries acting on Hg, the right-hand side of
[T) does not depend on the chosen purification. As a consequence of the positivity and the trace-
preserving property of M, one has 0 < Fi(p, M) < trsg[M @ 1(|¥,)(¥,|)] = tr[M(p)] = 1. Plugging
(I2)) and (3I)) into ([47), a simple calculation yields

Folp, M) = 3 |t (4s0) " (48)

where {A;} is a family of Kraus operators for M. Note that the sum in the right-hand side does
not depend on the choice of Kraus decomposition (this follows from (82])), as it should be. For a
pure state p, = [¢)(¢], the entanglement fidelity reduces to the input-output fidelity F(py, M) =
(WIM(|0)(|)]b). One infers from ([@8) that F.(p, M) is a convex function of p.

Let us now consider an ensemble of states {p;,7;}/;. The corresponding average entanglement
fidelity is defined by

FO({p%ni}vM an pl? : (49)
This fidelity belongs to the interval [0, 1].
Proposition 4.2.1. (Barnum and Knill [19]) If the states p; commute with p =", n;ip;, then

Fe({piuni}7RM7p o M) 2 Fe({piani}aRopt o M)2 ) (50)

where R am,p 18 the transpose operation of M for p and Repy the optimal recovery quantum operation R
maximizing Fe({pi,ni}, R o M).

Hence, if the minimal fidelity error is 1 — Fe({pi, i}, Ropt © M) = 7, then the fidelity error by
using R, A as the recovery operation is at most twice larger than this minimal error.

Proof. Taking advantage of the non-uniqueness of the Kraus decomposition, one can choose for any
fixed i some families {R;?pt (Z)} and {A,(;)} of Kraus operators for R°P* and M satisfying

w(BPDAVp) =0 | j#£k. (51)
Actually, glven any families { Rpr"} for R°P* and {A4;} for M, the operators R; oPt(8) — u( ) RO and

im

A,(; =>,T ”kl Al have the required property if ( @) ) and (v,(d)) are the unitary matrices in the singular
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decomposition of (tr(Rpr* A;p;)). Since {R;?pt (i)Al(j)} is a Kraus family for R°P* o M, one obtains from
), @9), and (BI)
a [ opt (7 i 2
Fe({pim}, R 0 M) = 3 il er(RP VAT pi)|” (52)
4,3
We first ponsider the case ppy = M(p) > 0. Without loss of generality, we may assume that
ran(R?pt(Z)) C ran p; C ranp, so that the operators

A() _pi,mig 13 Dy _ —1 popt (i) 3
Xu—m % ,04,01 . Yij=mnlpy By pip;  and  (BjT)" =p zR;7 T piy (53)

are well-defined. Since [p;, p] = 0, one finds by using twice the Cauchy-Schwarz inequality

(S0 <l Tl

1,J

< Z‘tr ,k‘ Z|tr . (54)

1,5,k 1,5,k

Fo({pi,mi}, R°P" o M)?

The transpose operation R, r¢ has Kraus operators R( Q- p% (A( )) N vi - As a result,

Feo({pisni}, Rppmo M) = Zm!tr(Rﬁ-’ A;(;)Pz')‘ = Z‘tr(ijXik)‘z : (55)
0,4,k 0,5,k

The first sum in the last member of (54) is equal to Fo({p;, n: }, R°P*oB), where B is the CP map defined
by B(o) = >, BS)U(B,(;))* (note that B does not depend on ). Even if B is not trace-preserving,
with the help of ([T this fidelity can be bounded from above by tr[R°P* o B(p)], which equals unity
thanks to the identity B(p) = M(p). This yields the inequality (B0). If pp¢ is not invertible, one
approximates M by some quantum operations M. satisfying M.(p) > 0 for ¢ > 0 and M. — M as
€ — 0, and obtains the result by continuity. O

4.3 Least square measurement

Let us consider an ensemble {p;,n;}/", of states of the system S forming a convex decomposition
of pout = D_; mipi- For any i, we denote by p; = >, pir|tir) (¢ix| the spectral decomposition of p;
and set p; = A; A}, where A; = /p;U; is defined up to a unitary U;. Introducing as in Sec. [3.4] an
arbitrary orthonormal basis {|k)},2, of Hs and a fictitious pointer with m-dimensional space Hp and
orthonormal basis {]z)},, one can choose

A = Z\/ﬁ\wisz‘\ € B(Hsp,Hs) . (56)

k=1

We remark that A; is associated to a purification of p; ®|i)(i| on Hsp @ Hs via the isometry (Bl between
B(Hsp,Hs) and Hsp @ Hs, namely, [¥;) = >, \/Pik|Vir)|i)|k). Moreover, |Wou) = Y, /i ¥;) is a

purification of pyy; on the same space.
The least square measurementlg associated to {p;,m;}1", is given by the Kraus and measure-
ment operators

1 _1 _1
R — /i Azp, 2 = Z\/mpz V) (Vilogd > ME™ = | RE™|? = 02 pipod (57)

8 This measurement bears several names: it was referred to as the “pretty good measurement” in [71] and is also
called “square-root measurement” by many authors.
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for i = 1,...,m. One indeed checks that ), MZ-1sm = 1, so that (57) defines a generalized measure-
ment in the sense of Definition While the operators MZ-lsm and thus the outcome probabilities
¢ = tr(M*™os) (here o is the system state) only depend on {p;,7;}, the post-measurement states
also depend on the choice of the basis {|i)}, as highlighted in Sec. Bl The conditional and average
post-measurement states of the pointer P are

outcome i: 05 > Op; = gt trs(RIFMog (RIE™)*) = [i) (il (58)
m
no readout: o5 — op = M5%(og) Zq,ap‘l qumm (59)

For a pure state ensemble {|1;),n;}I", the least square measurement consists of rank-one measure-
1

ment operators M; = |f;){(f;| with |f;) = \/Mipow|i). The vectors |fi;) have the following prop-
erty [78, 54], which elucidates the name given to the measurement: they minimize the sum of the
square norms |||f;) — v/7i|¥:)||* under the constraint >, |f;)(f;| = 1. If the [¢);) are linearly indepen-
dent and span Hs, so that m = n, then {|fz;)} is an orthonormal basis of Hs. In that case { M} is
a von Neumann measurement (see Sec. 3.3]).

Remark 4.3.1. The aforementioned property of a least square measurement can be stated as follows:

2 : ,
{llﬂll_n {ZHW — /i) || } =ns+1—-2tr(psy) with  pout = Zml%ﬂ%l , (60)
the minimum being over all families {|f;)}i2, in Hs such that Y, ;) (1| = 1. This minimum is
achieved if and only if |f;) = mpgult/2\wi> (up to irrelevant phase factors).

Sketch of the proof. [54],83] Define A =", \/ni|v;)(i| and B = Y, |fi;)(i| in analogy with (56). Then
observe that the sum to be minimized in (60) is equal to ||[A* — B*||3 = 1 4+ ns — 2Re tr(AB*), and
use (3)). O

As suggested by this result, the least square measurement plays an important role in distinguishing
quantum states drawn from a given ensemble. This point will be discussed in Sec. 53] below.

Let us recall from Sec. 4] that the relation p; = M(|i)(i]), where {|i)}7, is a fixed orthonormal
basis of Hp, can be used to associate to a quantum operation M : B(Hp) — B(Hs) an ensem-
ble {p;,ni}i", on Hs. Conversely, if {p;,n;} is an ensemble on Hs, the operation M with Kraus
operators Ag, = Ai|k) = \/Pir|Wir)(i| satisfies this relation (here A; is the operator (56)). Simi-
larly, the relation ([43]) establishes a one-to-one correspondence between POVMs {M;} on Hgs and
quantum operations R : B(Hs) — B(Hp). It was recognized by Barnum and Knill [19] that the
least square measurement associated to the ensemble {p; = M(|i)(i|),n;} is nothing but the measure-
ment corresponding to the transpose operation R, of M for the state pin = Y, 1;|i)(i|. Actually,
since M(pin) = pout, according to the Definition [L.1.1]

_1
Rik = pm zkpout vV iPik | ><wik|pou%c (61)

are Kraus operators for R ;. Thus
1
1 -5 - .
Mism = T]ipouztpipout Z Rszlk RM pm(’ ><Z‘) : (62)

Conversely, it is immediate to verify that R, (0) = 3. RioRY, = >, tr(MPa)[i) (i, hence
R M,py, I8 the operation associated to {M}"™} by the relation (@3).

23



5 Quantum state discrimination

The carriers of information in quantum communication and quantum computing are quantum systems,
and the information is encoded in the states of those systems. After processing the information, it
is necessary to perform measurements in order to read out the result of the computation. In other
words, one has to determine the output state of the system. If these possible outputs form a set
of orthogonal states, that is, if they are given by m known density matrices p; with orthogonal
supports, then it is easy to devise a measurement which discriminates them without any error (a von
Neumann measurement with projectors II; onto ran(p;) will do the job). However, when the p; are
non-orthogonal a perfect discrimination is impossible. Indeed, if two non-orthogonal states |11) and
|th2) could be discriminated perfectly then one could duplicate those states by producing copies of
|1h;) if the measurement outcome is i = 1,2, without prior knowledge on which of the two states one
actually possesses. This would contradict the no-cloning theorem@. Consequently, one can extract less
information from an ensemble of non-orthogonal states than from an ensemble of orthogonal ones.

It is of interest to find the best measurement to distinguish non-orthogonal states p; with the
smallest possible failure probability. We study this state discrimination problem in this section. This
is a quite important issue in quantum cryptography and in quantum communication in general. As
emphasized in the introduction of this article, we aim at explaining some typical questions, providing
examples, and establishing basic general results that will be used in the next sections, rather than
giving a full account on the subject. We refer the reader to the review articles [38] 26l 25] for more
complete presentations. Measurements for distinguishing quantum states can also be optimized using
other criteria than the minimal probability of equivocation. For instance, one can try to maximize the
mutual information between the initial distribution of the state ensemble and the distribution of the
measurement outcomes. This optimization problem, which plays an important role in the transmission
of information in quantum channels, is briefly discussed at the end of this section.

Before entering into the detail of the theory, let us make a philosophical remark concerning the
quantum-classical differences. Let us inquire about the quantum analog of the celebrated experiment
in classical probability which consists of picking up randomly colored balls contained in an urn. In
quantum mechanics, the readout of the system’s state (the color of the ball in the classical analogy)
is performed by a measurement perturbing the system. If the urn contains an ensemble of non-
orthogonal states, we have just seen above that there is no way to identify with certainty which state
from the ensemble has been picked up. Therefore, the starting assumption that the color of the ball
is known once it has been extracted from the urn is not fulfilled in the quantum world and identifying
these colors is already a non-trivial task!

5.1 Discriminating quantum states drawn from a given ensemble

We review in this subsection two strategies for discriminating non-orthogonal states, known as the
ambiguous and unambiguous state discriminations. Let us consider an ensemble {p;,n;}I", of states
p; with prior probabilities 7;. For instance, the p; can be some states of the electromagnetic field
encoding m symbols of a given alphabet, the ith symbol occurring with frequency 7;. In order to send
a message, a sender prepares random states drawn from the ensemble and gives them to a receiver.

® No unitary evolution on a system S initially in state [) and a register R initially in state |¢) can transform
[¥) = |[b)|¢p) into [¥') = |[p)|p) for any |b) belonging to a set of distinct non-orthogonal states, e.g. [1) € {|11), [t2)}.
Actually, the scalar products (¥1|W2) = (t1|tpe) and (U] |Wh) = (1]1h)? are different if (1)1]2h2) # 0,1. More generally,
the no-cloning theorem tells us that one cannot duplicate unknown states by using any (not necessarily unitary) quantum
evolution, except when these states pertain to a family of orthogonal states [I§].
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To decode the message the latter must identify these states by performing measurements. He wants
to find the measurement that minimizes the failure probability.

A first strategy, called ambiguous (or minimal error) quantum state discrimination, consists in
looking for a generalized measurement with m outcomes yielding the maximal success probability
Ps = > ;mipiji» piji being the probability of the measurement outcome i given that the state is p;.
Here, the number of possible outcomes is chosen to be equal to the number of states in the ensemble.
The conditional probability of the outcome j given the state p; is (see Sec. B.3))

pjji = tr(M;p;) (63)

so that the maximal success probability reads

P (o) = o S (ot | (64
=1

POVM {M;}

where the maximum is over all POVMs {M;}™ .

A second strategy consists in seeking for a generalized measurement with (m+1) outcomes enabling
to identify perfectly each state p;, but such that one of the outcomes leads to an inconclusive result.
This strategy, originally proposed by Ivanovic [85] and further investigated by Dieks and Peres [52][124],
is called unambiguous quantum state discrimination. In other words, if the measurement outcome is
j € {1,...,m} then the receiver is certain that the state is p;, whereas if j = 0 he does not know. This
means that p;; = p;;0;; with p;; > 0, for any 4,5 = 1,...,m. The probability of occurrence of the
inconclusive outcome, Py = ; 1;po|;, must be minimized. Since po; = 1 —p;j;, the success probability
is obtained from the same formula (64]) as for ambiguous discrimination, but with a maximum over
all POVMs {M;}L, such that tr(M;p;) = p;0;5 for j # 0. For pure states p; = |¢;) (¢, the rank-one
measurement operators M satisfying this condition are

Djlj
(Y5 [45)

with the dual normalized vectors [¢}) defined by (¢7|¢i) = 051} |¢;). The remaining problem is
to find the values of the probabilities Pjlj which maximize the success probability (64]) under the
constraint that {M;}2, is a POVM, that is,

M; = |2\¢ il o, i=1...,m, (65)

wa,ﬁ'; 2lv sl 2 0. (66)

This is a non-trivial problem, which has been solved so far in particular cases only. Upper and lower
bounds on the maximal success probability can be found in terms of the scalar products (1;]1;) (see
g. [26]).

It is worth noting that unambiguous discrimination is not always possible. For instance, a pure
state ensemble {|1;),n;} with linearly dependent vectors [¢;) cannot be discriminated unambigu-
ously [37]. Indeed, assume that |¢;,) is a linear combination of the other states |t¢;). Together with
the no-error condition pj; = p;|;0;;, which is equivalent to |t);) € ker M; for any j ¢ {0,4}, this means
that [;,) € ker(M,,) and thus p;y|;, = 0, in contradiction with the requirement p; j;, > 0. The same
argument shows that one cannot discriminate unambiguously an ensemble of mixed states {p;,7;} such
that one state p;, has its support ran(p;,) contained in the sum of the supports of the other states.

Ambiguous and unambiguous quantum state discriminations have many applications. For instance,
the discrimination of two non-orthogonal states plays a central role in the quantum cryptography
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protocol proposed by Bennett in 1992 to distribute a secrete key between two parties [21]. We will
not elaborate further on these applications. Let us also mention that other optimization schemes than
those discussed above have been worked out [26] 25]. State discriminations have been implemented
experimentally by using polarized photons in pure states (see [42] and references therein) and, more
recently, in mixed states [I11].

5.2 Ambiguous and unambiguous discriminations of two states

5.2.1 Ambiguous discrimination

The simplest example of ambiguous discrimination is the case of m = 2 states p; and ps. Then the
optimal success probability and measurement are easy to determine [74]. One starts by writing the
measurement operator My as 1 — M7 in the expression of the success probability,

) 1
Ps{,fl}({mam}) = m tr(Mip1) + m2 tr(Map2) = 5(1 —trA) 4 tr(M;A) (67)
with A = n1p1 — m2p2. The maximum of tr(M;A) over all M; satisfying 0 < M; < 1 is achieved

when M is the spectral projector II; associated to the positive eigenvalues A; > --- > A, > 0 of the
Hermitian matrix A. Consequently, the maximal success probability is given by the Helstrom formula

(T+tr|Al) , A=mpi—1m2p2. (68)

DO | =

Ps(jgt({mﬂh}) =

The optimal measurement is a von Neumann measurement {H(l)pt, 1- H(l)pt} with H(l)pt the projector
onto the support of A, = (A + |A])/2. If A > 0 the optimal measurement is {II\?" = 1,TI5?" = 0},
meaning that no measurement can outperform the simple guess that the state is p; (a similar statement
holds for py if A < 0). For pure states p; = [¢;) (], (68)) reduces to

Ps",;’t({\wmm}) = %(1 +4/1— 4771772]@1’1/,2”2) (69)

and the optimal measurement consists of the rank-one eigenprojectors of A for the positive and neg-
ative eigenvalues. When 7, = 1y, these are the projections onto the two orthogonal subspaces placed
symmetrically with respect to |¢1) and [1)2), as represented in Fig. [Il

5.2.2 Unambiguous discrimination of two pure states

The power of generalized measurements is illustrated in the unambiguous discrimination of two pure
states [11) and |¢3). Indeed, we will show that such measurements enable to distinguish quantum
states better than von Neumann measurement@. Clearly, the Hilbert space H can be restricted to its
two-dimensional subspace spanned by |11) and |¢2). The unambiguity condition implies [11) € ker Mo
and [19) € ker M7, so that the measurement operators M; and Ms are of rank one and given by (65]).
We can already observe at this point that the number of outcomes is larger than the space dimension, so
that the unambiguous discrimination strategy cannot be realized with a von Neumann measurement.
The optimal success probability is given by [80]

L=2ymma|(i|ve)| ifl—qg <m<aq

70
nmax(l - |<7;Z)1|¢2>|2) if Tlmax > q1 ( )

P ({[Wimi}) = {

10 This can be considered as the main physical motivation to introduce generalized measurements [i27].
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Figure 1: Optimal measurement {M; P'Y in the discrimination of two non-orthogonal pure states |¢);)
and |th9) with equal prior probabilities 7; = 1/2. (a) For ambiguous discrimination, {M ™'} is the von
Neumann measurement in the two orthogonal states |¢1) and |p2) with |(¢;|v;)| = cos(§ — g), that
is, it is the least square measurement associated to {|¢;),n;} (b) For unambiguous discrimination,
if the maximal prior probability 7max is larger than ¢; = 1/(1 + cos?6), then the von Neumann
measurement in the orthonormal basis {|11), [13)} (if Tmax = m2 > m) or {|¢2), |[¥])} (if Nmax = m >
72) indicated by the red dashed vectors yields the smallest failure probability. Failure occurs when the
outcome corresponds to the first vector in these two bases (inconclusive result). If 1 —¢; <m < ¢1, a
smaller failure probability is obtained by using the generalized measurement with rank-one operators
M; indicated schematically by the green vectors.
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With Nmax = max{ny,n2} and ¢ = 1/(1 + [(¥1|v»2)|?). It is instructive to establish this formula by
using the Neumark extension theorem [26]. Thanks to Theorem B3] one can represent {M;} as
a von Neumann measurement on the larger space H ® Hg, with Hg ~ C?. Let {Aj}?zo be the
Kraus operators for the measurement and |ey), U, and wf be as in this theorem. We may assume

that wf = [j){j| are of rank one, where {| j>}§:o is an orthonormal basis of Hg (see the proof of
Theorem B.3.1]). One writes

2
W) = Ulgdleo) = 3 /Brialesidli) (71)
j=0

for i = 1,2, where , /Pl ) = (4|¥}) € H are in general non-orthogonal for distinct j’s and ||¢;[| = 1.
By (35) and (36) the unnormalized post-measurement states are p;j; = (j|W;)(W57) = pjjils1i) (@)l
hence pj;|; and ]cpj|,~> can be interpreted as the probability of outcome j and the corresponding condi-
tional state for the input state |¢;). Since we require py; = p1j2 = 0, the unitarity of U imposes the
conditions pg; = 1 — pyj; and (W[W5) = | /PoiPoiz(Poj1lPo2) = (¥1[¢2). The last relation implies that
the probabilities py|; satisfy

Poj1Poj2 = PojiPoj2l (@op |opR)* = cos® 6, (72)

where we have set cos@ = [(11]12)]. Note that this bound could have been obtained directly from
([66]), which is easy to solve since we are dealing here with 2 x 2 matrices [26].

In order to maximize the success probability Ps = >, mip;; = 1 — >, mipo|s, we are looking for
the smallest possible pg; and pgjp. For such pg;’s the inequality [@2) is an equality. Assuming
cos @ > 0, this holds whenever |pg) = ei5lcp0|1> with ¢ = arg(¢1|¢2). Accordingly, the conditional
post-measurement state for the inconclusive outcome is the same irrespective of the input state |¢;).
This is physically meaningful since if this post-measurement state was depending on |1);) then one
could perform a new measurement on it to increase further the success probability. In summary, for
the optimal measurement one has

|93) = \/Dileia)i) + /Poji €% @) (73)

with |®g) = ‘(,00‘1>‘0> and 61 =0, §y = 4.
The failure probability
cos? 0

Pon

Py =mpoj1 + 12 (74)

is easy to minimize as a function of pg;. The minimum is achieved for pg‘pl = \/M2/n1 cos @ and is

equal to Py Pt — 9, /mnz cos B. This yields the upper expression in ([Z0). The restrictions on the values

of 71 come from the conditions pg‘plt <1 and p°®' < 1. When 7 < 1 — ¢1, the minimum is achieved

0]2
opt opt opt
01 i = 0and py,

be identified with certainty, as |¢)1) always produces an inconclusive outcome. Strictly speaking this
does not correspond to an unambiguous discrimination. One can nevertheless determine the optimal
measurement, characterized by prt = 0 and by two orthogonal projectors M;pt = |¢3) (3] and
MZP" = |91) (31|, see [@F). A similar statement holds when 7, > ¢; by exchanging the indices 1 and
2. The corresponding success probability is given by the lower expression in (70]).

These results are summarized in Fig. [[I As claimed above, when 1 — ¢; < m; < ¢ generalized
measurements, obtained via a coupling of the system with an ancilla and a measurement on the
latter, do better in decoding the message than a von Neumann measurement performed directly on

the system.

for p.;, = 1 and pg%t = cos? 0, ie. p = sin?0. In such a case only the state [t/5) can
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5.2.3 Unambiguous discrimination of two mixed states

Let us now turn to the case of two mixed states p; and ps. Such states cannot be unambiguously
discriminated when ran p; is contained in ran p, or vice versa. By the unambiguity condition, ran M; C
ker po and ran My C ker p;. A trivial situation is when ker p; 1 ker po, in which case the optimal
POVM is the von Neumann measurement with M; and Ms equal to the projectors on ker ps and
ker p1, respectively. Then the minimal failure probability is P(? Pt — tr[(mp1 + m2p2)p], Iy being the
projector onto ran p; Nran ps. One can as before restrict the Hilbert space so that ran p; +ran ps = H.
If ran p; and ran ps have co-dimension one in H, then M; and My are of rank one and take the
form (B3] with [¢7) € ker pa, [15) € ker p1, and [(¢}[;)|? replaced by R; = (¥F|pi|¥f). A simple
generalization of (70) then yields [135]

mR1 + 2Ry — 2¢/mmRiRacos 9 . fmRi mRs
opt ont ) if cos 9<mm{ , }
PS,E ({pismi}) = Psp (Ri,mi) = sin” ¢ Ry m Ry
max{n Ri,n2Ra} otherwise
(75)

with cos @ = |(y5|¢3)|. For kernels of dimensions do > d; > 1, by a standard linear algebra argument
one can construct two orthonormal bases {]w§k>}z1:1 of ker p; and {\w’fk>}z2:1 of ker po such that
(VY |W5) = OricosBy, with 0, € [0,7/2]. Let us take M; = >, My, for i = 1,2, with M;, =
mig|V5) (¥h|. Optimizing Pé{fi} over the non-negative numbers m;; under the constraint 1 — M; —
M5 > 0 reduces to the optimization problem for rank-one measurement operators studied before (in
fact, this constraint is equivalent to 1 — My, — Mo, > 0 for k = 1,...,dy and 1 — My, > 0 for
dy < k < dj). This gives the lower bound [135]

dy
PR ({pimi}) = > PSP (Rgomi) +m > Rue  with Rip = (W ]pilv)- (76)
k=1 d1 <k<da

An upper bound can be obtained in terms of the fidelity between the states p; and ps defined by
F(p1,p2) = (tr(]\/p1v/p2]))? (see Proposition and Remark [7.4.4] below) [135],

Thmin

1 —2ymn2F(p1,p2) if F(p1,p2) <
PS(?Et({piv 772}) < Tlmax (77)
Nmax(1 — F'(p1, p2)) otherwise.

A nice application of two mixed state discrimination is the state comparison problem [I7]. Consider
two independent copies of a given system, the state of which is drawn from the pure state ensemble
{1¥i),1/2}i=12. One would like to decide with the help of an appropriate measurement if the two
copies are in the same state or not, without further information on the actual state of each copies.
If 1) and |i2) are not orthogonal, this can only be done with a probability of success Ps comp < 1.
This amounts to discriminate the two mixed states

b = i ® Y @]+ 5l @) (2 ® Wl
pan = Sl @)y @l + S ® ) @ wi (78)

It is shown in [135] that for such mixed states of rank two, the lower and upper bounds in (76]) and (77)
coincide. A simple calculation (see Remark [7.4.4] below) then gives the optimal success probability [17]

PR o =1 = (]a)] . (79)
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5.3 Discrimination with least square measurements

How well does the least square measurement (Sec. [3]) in discriminating ambiguously quantum states?
More precisely, let
PER (i) = 3 g (M) (80)
(2
be the success probability in discriminating the states p; by performing the least square measurement
{M}s™} associated to {p;,n;}. We would like to compare Plsm with the optimal success probability.
Let us first observe that if p; = M(|i)(i]), M being a quantum operation on B(H) and {]7)},
a fixed orthonormal basis of H, then Ps,({pi,n:}) is related to the entanglement fidelity defined in
Sec. Recall that any ensemble {p;,n;}/"; with m < n states can be obtained in this way from an
operation M : B(H) — B(H) (since m < n we can identify here the pointer space Hp with a subspace
of H, see Sec.B4]). To establish the relation with the average fidelity ([@3)), consider a POVM {M;}",
with m measurement operators and let us associate to it the quantum operation R on B(H) defined

P (i mi)) me iViDpi) = Y mililR o M(Ii)(i])i) = Fe({li),m}, RoM)  (81)
=1

thanks to the equality of the entanglement fidelity with the input-output fidelity for pure states. In
view of the one-to-one correspondence between POVMs with m < n operators and quantum operations
on B(H) we obtain the following relation between PS‘?I: and the maximal fidelity over all recovery
operations R on B(H):

PN ({pini}ity) = mgX{Fe({li%m}?ll,Ro M)}, m<n. (82)

Furthermore, the optimal measurement operators are given in terms of the optimal recovery operation
Rt by M opt _ = (R°PY)*(|i)(i]). According to Proposition 2] taking R to be the transpose operation
R M,py, Of ./\/l for the state pin = >, 17;]7) (| gives an entanglement fidelity larger than the square of the
right-hand side of (82). But the measurement associated to R, is the least square measurement,
ie. MP™ = Rt py, ([0)(i]) (see Sec. L3). As a result, Proposition L2 yields the following inequality.

Corollary 5.3.1. If m <n =dim%H, then

[NIES

PE (i) < (PER(pimibin)* (83)

Thus, if the error probability for discriminating {p;,7;} using the least square measurement is
small, then it is at most twice the minimal error probability Pe?ﬁta =1- POpt up to a small correction
of the order of (Pésgl)2 Small error probabilities occur for almost orthogonal states. Therefore, for
such states least square measurements are nearly optimal [71], [19].

It is worth mentioning that least square measurements are also asymptotically optimal for dis-
criminating ambiguously equiprobable linearly independent pure states [78]. In addition, they opti-
mally discriminate equiprobable states drawn from a symmetric ensemble, like for instance the states
pi = U lp (U=1)* related between themselves through conjugations by powers of a single unitary
operator U satisfying U™ = =£1 (see [15] 16, 41, 54] and references therein). Necessary and suffi-
cient conditions for the optimality of least square measurements in state discrimination have been
investigated in [57] [138].
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5.4 General results on ambiguous discrimination

Let {p;,n; }i", be an ensemble of m states of a system with a n-dimensional Hilbert space . Hereafter
we assume that 1; > O for alli = 1,...,m, so that m is the actual number of states to discriminate. We
denote by p; = m;p; the unnormalized states with trace equal to the prior probability 7;. To shorten
notation, the dependence of the success probability Ps on the ensemble is not written explicitly. The
following proposition contains one of the few results in ambiguous discrimination applying to arbitrary
ensembles.

Proposition 5.4.1. [77, 171, 55] The optimal success probability in ambiguous state discrimination
s given by

Py = nf {tr(T)} (84)
>pi
where the infimum is over all self-adjoint operators Y satisfying Y > p; for any i =1,...,m. More-

over, the POVM {prt ™M, is optimal if and only if the operator TOP* =" ﬁiMZ-Opt satisfies the two
conditions

(i) YOP' is self-adjoint;
(ii) YOPY > p; for anyi=1,...,m.
In such a case, the infimum in the right-hand side of (8) is attained for T = YTOPt.

The fact that (ii) is sufficient to ensure the optimality of {M '} is obvious from the relation
PPt — PO =3 el (TP — )M (85)
i=1

The necessary and sufficient conditions (i) and (ii) are due to Holevo [77], who derived them by
considering a specific one-parameter family {M;(e)} of POVMs such that M;(0) = M P and by

exploiting the fact that 8Ps{fi(€)} /O0e = 0 for ¢ = 0 (see [74], chapter 4). Yuen, Kennedy, and Lax
[171] proposed another derivation based on a duality argument in vector space optimization. We shall
present below the related proof of Eldar, Megretski and Verghese [55].
Let us note that (i) and (ii) imply
(YOPY — B) MPt = MEPH(YP —5) =0 , i=1,...,m. (86)

7 3

In fact, since 3, tr[(ToP* — ;)M '] = 0 and Y°P* — 5; > 0 by (i), one deduces that |(ToP* —
pi) 2 (MPPY/212 = 0 (recall that A > 0 and tr(A) = 0 imply A = 0). One concludes from this
equality that (YOP* — 5;) M* = 0. Tt is easy to see by eliminating T°P* that (86) is equivalent to

M (g — pp)M™ =0, i,j=1,...,m. (87)
The condition (87) automatically implies that T°P! is self-adjoint. Hence a necessary and sufficient
condition for {M?"} to be optimal is given by conditions (i) and (8.

Except in special cases such as ensembles of equiprobable states related by a symmetry [15] [16],
54l [41], it is difficult in practice to obtain the optimal measurement and success probability from the
above necessary and sufficient conditions. Nevertheless, the formulas (84) and (86l are helpful for
computing these quantities numerically. For indeed, the minimization task in (84]) is simpler than the
maximization in (64]) and can be solved efficiently with the help of convex semidefinite programs [55].
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Proof. The main idea is to show that the minimization problem in (84]) is dual to the maximization
problem in (64]). More precisely, there exists a convex set I' C B(H)s.a. such that

P <w(r) , Y{M;} POVM, ¥ T €T, (88)

and the maximum of the left-hand member is equal to the minimum of the right-hand member,
ie. Psof;t = minyer tr(Y). The set ' is defined by

P={YeBMH)sa: T=pi,i=1,....,m}. (89)

Then tr(T) —Ps{fi} = >, tr[(T —p;)M;] > 0 for any T € T', so that (88]) holds true. Let us now define
the following convex subset € of the real vector space B(H)s.a. X R:

(B,x)€Q <« B=)» Bi-1,z=r—-)Y tr(Bip) with B; >0 and r > P". (90)
=1 =1

This space is endowed with the scalar product ((B,z), (C,y)) = tr(BC) + zy. Since 2 is convex and
does not contain (0,0), by the separating hyperplane theorem one can find a non-vanishing vector
(To,a) € B(H)s.a. x R such that (T4, a), (B,z)) >0 for any (B,z) € Q, that is

tr[ra(iBi—Q} +a<r—§:m(3,@)) >0. (91)
=1 1=1

Taking B; = t|p)(p| if i = k and zero otherwise, with |¢) € H and ¢ > 0, and letting ¢t — oo, we
obtain (p|Y,|e) — alp|pr|e) > 0. But |p) and k are arbitrary, hence

Ye>ap; , i=1,...,m. (92)
Similarly, taking B; = 0 for all 4 and r» — Psof;t, ©T) yields
aP$P > tr(Y,) . (93)

From the same choice of B; and r — oo one gets a > 0. If a = 0 then Y, > 0 and tr(Y,) = 0 by (@2) and
[@3). This would imply Y, = 0, in contradiction with (Y., a) # (0,0). Thus a > 0. The self-adjoint
operator ToP' = T, /a satisfies TOP' > p; for all i (i.e. TP' € T') and tr(Y°PY) < Pso’st, see ([@2) and
[@3). The converse of the last inequality follows from (88]). Whence PS(?? = tr(YT°P') = minyer tr(Y),
as claimed in the proposition. This identity implies 37, tr[(YOP* — 5;) M) = 0 if {M'} is an
optimal POVM. But all traces in the sum are non-negative, thus they vanish and (8@) is satisfied by

the arguments given above to derive this equation. It results from (88) that TP* = 3~ 5, M =
S MPP'5;. This concludes the proof. O

Let us consider the success probability
m
PSRN ({pg,mi}) = I{rﬁwf{; i tr(Him)} : (94)

where the maximum is over all von Neumann measurements {II;},. A natural question is whether
this probability may be equal to Psogt, i.e. whether the states p; may be discriminated optimally with
a von Neumann measurement. We have already argued above that this is not always the case, even

32



for pure states. A simple consequence of Proposition [5.4.1] is that the equality holds for linearly
independent states. The states p; are called linearly independent if their eigenvectors |(;;) with non-
zero eigenvalues form a linearly independent family {|§U>}f::11:nl in H (here r; is the rank of p;). We
say that they span the Hilbert space H if H = span{\gﬁ}g:ll;; Without loss of generality one can
restrict H to a subspace H’ spanned by the p;.

Corollary 5.4.2. [55] Let {|1[)Z->,772-}§’;1 be an ensemble of pure states spanning H. Then the optimal
measurement operators M, °PY in ambiguous state discrimination are of rank one. More generally, for
any ensemble {p;,n;i}"4 spanmng H, the optimal measurement operators have ranks rank(M; Opt) <
rank(p;) for alli=1,.

Corollary 5.4.3. [56] Let {p;,n;}I", be an ensemble of linearly independent states spanning H. Then
an optimal measurement in ambiguous state discrimination is a von Neumann measurement with
orthogonal projectors M; Pt HOPt of rank r; = rank(p;). In particular, the probabilities (67)) and (94)
are equal.

Proof. Let usset N;®* = TP — 5. The relation (88]) implies ran M*" C ker N/, hence rank(MP") <
dim(ker N, PY). Since the rank of the sum of two matrices is smaller or equal to the sum of their ranks,
rank(YPY) < rank(N;™") + r; and thus dim(ker Ny**) < dim(ker YoP) + 7;. But ker T°P* C [ran(p;)]*
for all i according to the condition (ii) of Proposition [5.4.1l Consequently, if the states p; span ‘H then
ker T°P' = {0}. This shows that rank(MP") < r;. If furthermore the p; are linearly independent, then
S, 7 = n = dimH. Introducing the spectral decomposition M" = 7, |Ti) (Fisx| with unnormalized
vectors |fi), k =1,...,7;, and noting that the sum >, , |fix)(fix| = 1 contains at most n terms, it

follows that {|fz;)} is an orthonormal basis of H. Thus M;” PY are orthogonal projectors of rank r;. O

5.5 Bounds on the maximal success probability

We now establish some inequalities satisfied by PSOpt for any number m of states to discriminate. A
review of various upper bounds for ambiguous discrimination can be found in [I32]. We only discuss
here the bounds involving the fidelity

Fip.o) = IVaval = (ulvapv/a)}]) (95)

The properties of this fidelity will be analyzed in the forthcoming Sec. [[l Let us only mention here
that F(p,0) is symmetric under the exchange of p and o (actually, \/op\/o and \/po./p have the
same non-zero eigenvalues) and reduces for pure states py, = [1)(¢)| and o4 = |¢)(¢| to the square
modulus of the scalar product (1|@), i.e. F(py,04) = |(1|¢)|?. More generally, F(p, o) can be seen as
a measure of non-orthogonality of p and o.

The following lower and upper bounds on the maximum success probability POp for ambiguous
state discrimination are taken from Refs. [19] and [112], respectlvely.

Proposition 5.5.1. (Barnum and Knill [19], Montanaro [112]). For any ensemble {p;,n;}I", one
has

1=\ fminiF(pirpi) < PS ({pismi}) < 1= miniFpi, p;) - (96)
i>j i>j

1 The upper bound is established in [19] (and is often reported in subsequent works) with an unnecessary extra factor
of two in front of the sum (after correcting the obvious misprints in this reference).

33



The inequalities ([Q6) make quantitative the intuitive fact that the more pairwise orthogonal are
the states p;, the larger is the success probability to discriminate them, and conversely.

Proof. Let p; = A; A}, the operators A; being, for instance, given by (56). Given a POVM {M;} with
Kraus operators R; (i.e. M; = R R;), we set

Sij = VmiRiA; ,  Bij = minjAiA4; . (97)

We view S = (5;)7%—; and B = (B;;){";_; as m x m matrices with values in B(#), which are related
by S*S = B > 0 (this follows from ), RYR; = 1). Observe that

M;}
P& thr o) =13 nite(Mipy) =13 [13513 (98)

] i#]
and
nini Fpi, pj) = minjllv/piv/o5 1 = nni |UF/pin/piUs 1T = 1| BysIE (99)
where || -||1,2 are the trace and Hilbert Schmidt norms. We have used in (@9) the polar decomposition

A; = /piU; and the unitary invariance of these norms. The main idea to prove the first inequality
in (@6]) is to bound from below the optimal success probability Pso’st by the success probability Pésgl
for discriminating the states with the least square measurement [19]. For the latter, the matrix S in
[@7) is the square root of B (in fact, according to (B7), Sijm = \/m—njA;kpgulthj so that S™™ > 0,
and it has been argued above that |S|> = B). For instance, if the p; are pure states [¢;), B and
Ssm can be identified with the scalar product matrices ((Wilv5)i% =1 and ((paly))7 1, respectively,
with [¢;) = Vilvi) and ;) = \/Epgult 2’1/JZ> the latter being the vectors describing the least square
measurement (Sec. @3). The identity S™ = /B then becomes evident from the definition of a

POVMEZ. Therefore, in view of (O8], Psogt > Pt =1-3; (V/B)ij]|3. The lower bound in (@8]

comes from the following norm 1nequahty proven in Appendix B} for any fixed j =1,...,m,
SISl < 5 3 1Byl (100)
i,i#] i,i#]

where the last sum is related to the fidelities by ([@9]).
It remains to establish the upper bound. With the notation above, this bound takes the form

1 2 2
5 > 1Bl <D 1113 - (101)
i#] i#]
Fixing j again and introducing the notation [| - [|;/ as in (2]) (note that this is not a norm), if one can

show that
|3 1B, < 3 (113 + sia) (102)

i,17#] 0,177

then the required inequality (IQI]) will be proven. Actually, by the inverse Minkowski inequality (BI))
in Appendix Blone finds Y, [|Bi;||I7 = >2; [11Bij 2112 < I 225 |Bijl?ll1/2- In order to show (I02), let us

12 This remarkable identity has been singled out for pure states in [72]. The authors of this reference suggest to use
it as a definition of the least square measurement.
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introduce the following (m — 1) x (m — 1) matrices with values in B(H):

cO = S(Sprelal . DY = S;e
| iij o . (103)
EO) = ZZ(S,“-) ® iyk] , FO) = Z Skj @ [k)(1
i#] k] ko7

(here |i)(k| stands for the matrix with vanishing entries except in the ith raw and kth column, which
has a unit entry). An explicit calculation leads to

e DY)  EO RO —HZ|B e =S 0sE L IFDYS =S 1Skl
i ii#] k ki
(104)
Furthermore,
ICONS + [PV +[EDN; + [FDNS = D ISl = D metr(on) = 1. (105)
' k

We can now take advantage of the norm inequality (B4]) of Appendix[Bl Because of (I05]), this gives

|c DY + BV F lCD5 + P95 (106)

O <
We plug the equalities (I04)) into this result to obtain (I02]). This concludes the proof. O

Let us now turn to unambiguous discrimination. The following easy-to-derive bound generalizes
the upper line in (7).

Proposition 5.5.2. [59] The mazimum success probability for unambiguous state discrimination is
bounded by

1
o 2m 2
Ps,ﬁt({/)iam}) <1- <m anjF(Pian)> . (107)

(>

Proof. The failure probability Py = 1 — Ps,, satisfies

m 2
P02 = <Z i tl“(Mo,Oi)> > m— Z nin; tl“ MO/OZ) tr(MOpJ
i=1 L% L%

iy [t ( ZJ\/_MO\/EM

(108)
where U;; are arbitrary unitary operators and the first and second bounds follow from the Cauchy-
Schwarz inequality. Expressing My as 1 — ). M; and using ran M; C kerp; for i # j, one gets

tr(Uij/piMo./pj) = tr(Uij/piy/Pj). Using the formula F(p;, p;) = maxy | tr(U\/E\/,o_jﬂ2 and maxi-

mizing over all unitaries U;;, one obtains (I07]). O

One infers from the last two propositions and the Cauchy-Schwarz inequality that

Corollary 5.5.3. The minimal failure probabilities Paby = 1 — Ps*" and Py®" for discriminating m

states ambiguously and unambiguously satisfy POOpt > 2P£R‘; (m—1).

In particular, as noted in [26], for two states POOpt is at least twice larger than PC?FEL.
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5.6 The Holevo bound

Let us come back to the issue of encoding an input message A in an ensemble {p;,n;} of quantum
states and transmitting it to a receiver. From an information point of view, it makes sense to optimize
the measurement in such a way as to maximize the mutual information between the input message
A and the output message B reconstructed by the receiver (that is, B is the set of measurement
outcomes). This mutual information is defined as [143]

IAB:H(A)+H(B)_H(A7B)7 (109)
where H(A) = — > ,n;Inn; is the Shannon entropy of the input message, H(B) = —>_.p;lnp; is
the Shannon entropy of the measurement outcomes B with probabilities p; = ) . n; tr(M;p;), and
H(A,B) = _Zi,j pij Inp;; is the Shannon entropy of the joint process (A, B) with probabilities

ij = NiDjli = Mi tr(M;p;), see ([63). One can show from the concavity of the logarithm that I4.p > 0
and I4.p = 0 if and only if A and B are independent.
The conditional Shannon entropies are defined by

B’A Zm ij\zlnp]\z ) A‘B ij ZTM] lnnz\] ) (110)

where p;|; = tr(M;p;) is the conditional probability of the measurement outcome j given the state p;
and 7;; the conditional (a posteriori) probability that the state is p; given the outcome j. The latter
is given by the Bayes rule n;; = mpﬂi/pj. The conditional entropy H(A|B) represents the lack of
knowledge of the receiver on the state of the ensemble that was sent to him, after he has performed
the measurement. In general the measurement producing the lowest value of H(A|B) is not a von
Neumann measurement [50]. Thanks to the well-known relation H(A,B) = H(A) + H(BJA) =
H(B) + H(A|B), the mutual information can be expressed in terms of these conditional entropies
s [143],
Inp=H(A)—H(AB)=H(B)— H(B|A) . (111)

As H(A|B) > 0 one has I4.p < H(A), with equality if and only if B is a function of A. This means
that if 4.5 is maximal, i.e. I4.p = H(A), the receiver can reconstruct without any error the message
A from his measurement outcomes. As stressed at the beginning of this section, this is never the case
if A is encoded using non-orthogonal states p;. Hence I4.p < H(A) for non-orthogonal states. The
maximum

Ia. 112
PO\I/II}/Ia?Mi}{ A'B} ( )

measures the maximal amount of information accessible to the receiver, that is, how well can he
reconstruct the message. The determination of the optimal measurement maximizing [4.p appears
to be a more difficult task than the minimization of the probability of error in state discrimination.
However, one can place an upper bound on the maximal information (II2]) by means of the Holevo
inequality
Iip < Xtolevo = S(p) = > _miS(pi) » p=Y_ mipi, (113)
1 (2

where S(p) = —tr(plnp) is the von Neumann entropy of p. The proof of this important result
relies on the monotonicity of the quantum mutual information under certain quantum operations (see
Remark [[0.3.3] below). The positive number Xppolevo 1S called the Holevo quantity. We will show below
that Xfolevo < H({n;}) with equality if and only if the p; have orthogonal supports (see (IZII)). We
thus recover the aforementioned fact that for non-orthogonal states p; the maximum (II2)) is smaller
than the entropy H(A) of the input message.
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6 Quantum entropies

In this Section we give the definitions and main properties of the von Neumann entropy, the cor-
responding relative entropy, and the quantum Rényi relative entropies. For classical systems these
entropies reduce to the Shannon entropy, the Kullback-Leibler divergence, and the Rényi divergences,
respectively, which are central objects in classical information theory. To begin with we recall in
Sec. the standard properties of the von Neumann entropy. The most important result for our
purpose is the monotonicity of the corresponding relative entropy with respect to quantum operations
and the characterization of pairs of states which have the same relative entropy than their transformed
states under a given operation. The proof of this result, which will be used later in Sec. 10, is given
in Sec. We finally present in Sec. the quantum version of the Rényi divergences introduced
recently in [114] [166, 60]. This quantum version contains as special cases the von Neumann relative
entropy and the logarithm of the fidelity ([O5]). The fidelity and the closely related Bures distance will
be the subject of Sec. [l Together with the von Neumann relative entropy, it plays a major role in
our geometrical approach of quantum correlations (Sec. [[1]). The generalization of this approach to
the whole family formed by the relative Rényi entropies constitutes an interesting open problem that
will not be deeply explored in this article. The reader may thus skip Sec. in a first reading.

6.1 The von Neumann entropy

The entropy H({pr}) = — >, Pk Inpi, introduced by Shannon in his two celebrated 1948 papers [143]
quantifies the amount of information at our disposal on the state of a classical system. It vanishes
when the state is perfectly known and takes its maximum value (equal to Inn if the system has n
distinct possible states) when one has no information on this state at all, that is, if all possible states
are equiprobable. The quantum analog of the Shannon entropy is the von Neumann entropy

S(p) = —tr(plnp) . (114)

This is a unitary invariant quantity, i.e. S(UpU*) = S(p) for U unitary. Moreover, S is additive for
composite systems, i.e. S(pa ® pg) = S(pa) + S(pg) for any states pa and pg of the systems A and B.
Another important property of S is its strictly concavit; 13 i.e. for any states pg,p1 and 0 < n <11t
holds S((1 —n)po +np1) > (1 —n)S(po) + nS(p1), with equality if and only if pg = p1 or n € {0,1}.

A much less trivial property of importance in quantum information theory is the so-called strong
subadditivity

S(pag) + S(psc) — S(pasc) — S(p) >0, (115)

where papc is a state of ABC with marginals pag = trc(pasc), pec = tra(pasc), and pg = trac(pasc)-
The inequality (I15]) was first proven by Lieb and Ruskai [99] by using a former work of Lieb [98] on the
concavity of the map p — tr(K*p P Kp=8) for —1 < 8 < 0 (see Lemma below). Alternatively,
(II3)) is a direct consequence of the monotonicity of the relative entropy (Theorem below), which
can be established by other means than Lieb’s concavity theorem. Choosing Hg = C, the strong
subadditivity (II5)) implies that S is subadditive, i.e. S(pac) < S(pa) + S(pc)-

As is well know in statistical physics, the von Neumann entropy S(p) is the Legendre transform of
the free energy ®(3, H) = —~ ' Intr(e ). More precisely, one has (see [33], Theorem 2.13)

S(p) =, inf  {Bu(Hp) ~p2(G.H)} . (3, H) = inf {x(Hp) = 57'S()},  (116)

13 This comes from the strict convexity of f(z) = xInz. Actually, it is not hard to prove that if f is strictly convex
then the map p € E(H) — tr[f(p)] is strictly convex [33].
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and the last infimum is attained if and only if p is the Gibbs state pg = e #H /tr(e ?H). The free
energy is a concave function of the energy observable H.
The following identity will be used repeatedly in Secs. [@ and 1Tt

S(pa) = S(ps) if pa and pg are the reduced states of the pure state |Uag) of AB. (117)

It is a consequence of Theorem 2:2.1] since if |Uag) has Schmidt coefficients p; then S(pa) = S(ps) =

— > Hilnpu.
A last identity worthwhile mentioning here is

Slp) = min H{{ni}) = min { Zm lnm} , (118)
where the minimum is over all pure state decompositions of p. Furthermore, a decomposition minimizes
H({n;}) if and only if it is a spectral decomposition of p. These statements can be justified as
follows™. TLet {|k),pr}i_, be a spectral decomposition of p, with 7 = ran(p). An arbitrary pure
state decomposition {|¢;),n;};2; of p has the form \/m|vi) = > 1 uin/Pr|k), where (u;;) is a m x m
unitary matrix and m > r (see (I6])). Setting pr = 0 for r < k < m one gets n; = >, |uik|*pr. Since
f(x) = zlnz is strictly convex, one finds

— H({n:}) Zm Inn; < Z |ui*pelnpy =Y prlnpe = —S(p) , (119)
i,k=1 k=1

so that S(p) < H({n;}). By strict convexity, the inequality in (I19) is an equality if and only if for

any 4, there exists some k; € {1,...,r 4+ 1} such that u;; =0 when k ¢ I; ={k =1,...,m;pr = px, }-

Thus S(p) = H({n;}) if and only if

Vi) = Pk Y wiklk) (120)
kel;

are eigenvectors of p with eigenvalue 7; = py, (if pr, # 0). It remains to check that (1;]1);) = 0 when
Pk; = Pk; # 0. This comes from the umtarlty of (ui). This yields the desired result. The inequality
(I1I9) can be easily generalized to ge

S(p) < H({mi}) +Zm5(m) (121)

for any ensemble {p;,n;} forming a convex decomposition of p. Moreover, one has equality if and only
if the p; have orthogonal supports.

6.2 Relative entropy

A related quantity to the von Neumann entropy is the relative entropy introduced by Umegaki [I58]

and later extended by Araki [10] in the von Neumann algebra setting,
tr(p(lnp —1Ino)) if ker(o) C ker(p)

Stolloy = { ) . (122)

+ otherwise.

Note that by taking o = 1/n proportional to the identity operator, S(p||1/n) = Inn — S(p) is the

difference between the maximal and the von Neumann entropy of p. The relative entropy has the

following properties:

4 An alternative proof can be found in [I17].
15 This follows from ([I8) by writing the spectral decompositions of the p; (see [I17], Sec. 11.3).
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(i) S(plle) > 0 with equality if and only if p = o;

)
(ii) unitary invariance S(UpU*||{UcU*) = S(p||o) for any unitary U;
(iii) additivity for composite systems: S(pa ® pg|loa ® o) = S(palloa) + S(psl|loB);
(i)
The first property (i) follows from Klein’s inequality, which states that if f is continuous and strictly
convex, then tr[f(A) — f(B) — (A— B)f'(B)] > 0, with equality if and only if A = B. Its proof can be
found for instance in the excellent lecture notes of E.A. Carlen [33]. The properties (ii) and (iii) are
immediate consequences of the cyclicity of the trace and the relation In(pa®pg) = In pa®1+1®1n pg,
as in the case of the von Neumann entropy. The last property (iv) can be deduced from the strong
subadditivity (II5]) [101), 102]. It will be proven in Sec. Let us point out that (i) implies the
aforementioned subadditivity S(pac) < S(pa) + S(pc) of the von Neumann entropy, with equality if
and only if pac = pa @ pc is a product state (in fact, S(pacllpa @ pc) = S(pa) + S(pc) — S(pac))-

Another fundamental property of S(p||o) is its monotonicity with respect to CP trace-preserving

mappings. This monotonicity means that if one performs the same measurement on two states without
readout of the outcomes, the pair of post-measurement states has a lower relative entropy than the
pair of states before the measurement. This fact was first proven by Lindblad [102] (see also [10]
and [I55]). Notice that unlike the relative entropy, the von Neumann entropy is not monotonous with
respect to non-projective measurements (see [I117], Exercise 11.15). The following theorem provides a
necessary and sufficient condition on the two states such that the monotonicity of the relative entropy
is satisfied with equality. It is due to Petz [129].

v) joint convexity: if 0 <7 < 1 then S((1-n)po+np1[|(1=n)oo+no1) < (1-1)S(polloo)+nS(p1llor).

Theorem 6.2.1. (Monotonicity of the relative entropy [129] [73]) For any quantum operation M :
B(H) — B(H') one has S(p|lo) > S(M(p)||M(c)) for all states p, o € E(H). The inequality is an
equality if and only if there exists a quantum operation R : B(H') — B(H) such that R o M(o) = o
and R o M(p) = p. This quantum operation is the transpose operation R = R, defined in ({{3).

Let us recall from Sec. 1] that the transpose operation R is the quantum operation with
Kraus operators

Ri = Vo AiM(0)712, (123)

where {4;} are some Kraus operators for M. The conditions R o M(c) = ¢ and R o M(p) = p,
which mean that p and o can be recovered respectively from M(p) and M(o) by means of the
same quantum operation R, is clearly sufficient to ensure the equality S(p||lo) = S(M(p)||M(0)) if
monotonicity holds true. It is remarkable that this is also a necessary condition, with R = R the
approximate reversal of M introduced in the context of quantum error correction (Sec. [l).

We present below the derivation of this result given by Petz in Ref. [129], which also provides a
nice and simple proof of the monotonicity. A completely different proof of the monotonicity, based on
Lieb’s concavity theorem as in Ref. [102], B3 [60], will be given in Sec. [6.3] in the more general setting
of the Rényi entropies. It is noteworthy that Petz’s derivation does neither rely on the Stinespring
theorem nor on the Kraus decomposition (albeit it takes advantage of one of its consequence, namely,
the Kadison-Schwarz inequality). It makes use of the theory of operator convex functions and of
Araki’s relative modular operators [11]. Let M be a quantum operation B(H) — B(H') and p and
o be two states of £(H) such that p and M(p) are invertible. One can define two relative modular
operators by (see Sec. [2])

Ngp(B)=0Bp™! . Apmymp(B) = M(a)B'M(p)™' ., BeB(H), B eBH). (124)
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Proof. Let us set pypy = M(p) and opg = M(o) and assume that p, o, pr, and opq are invertible.
In the whole proof these states are fixed, so to simplify notation we write A instead of A,j, and Ay

1
instead of A, |,,.,- We set £ = p% and {u1 = pX4- One can view these two operators as unit vectors
in B(H) and B(H’), respectively, for the Hilbert-Schmidt scalar product (-, -). The first observation is
that

olp

S(pllo) = (€. (np— o)) = —(¢, (A)E) = /0 Ta((e arnte -aenT). )

The third equality can be established, for instance, with the help of the first identity in (A2) (see
Appendix[A]). Therefore, in order to prove that S(p||o) > S(pa||orm), it suffices to show that for any
t>0,

(Ems Am+)7eu) < (6 (A+1)71E) (126)
To this end, let us consider the operator Cpq defined by
Cm(B'ép) = MA(B)e , BeB(H). (127)

Since {B’ém; B’ € B(H')} is equal td B(H') by the invertibility of prq, (I28) defines an operator
Cam from B(H') to B(H). Then
CMACM < Apg . (128)

Actually, thanks to the Kadison-Schwarz inequality ([30) and the relation (M*(B’*))* = M*(B’), one
has

(CrlB'én), ACu(B'En)) = tr(|M(B")P0)
< tr(M*(B’B’*)o—> = (B'ém, AmB'Er) . (129)
One shows similarly that ||[Caq(B’éarm)|l2 < ||B’éa]|2 for any B’ € B(H'), hence ||Caq|| < 1.

We now use the fact that the function f(z) = (z +t)~! is operator monotone-decreasing and
operator convex. The definitions of operator monotone and operator convex functions are given in

Appendix [Al Together with the bound (I28]), this implie

(Ap+1) < (CyACM +t) <A+ ICu+t7H1 - CiCum) - (130)
The last inequality follows by applying the Jensen-type inequality (A4]) for the operator convex function
g(z) = (x +t)~' — ¢! satisfying g(0) = 0 and the contraction Cr. Since Caq(érq) = & by (I27) and
M*(1) = 1, the inequality (I30) entails

(Enms (Apm+1)7m) <& (A+ )71+t (tr(pm) — tx(p)) - (131)

The term proportional to ¢! vanishes because M is trace preserving, hence one obtains the desired
bound (I26). We have thus proven the monotonicity of the relative entropy.

16 In the theory of C*-algebras, if this equality is true upon completion of {B’ér; B’ € B’} for the Hilbert-Schmidt
norm one says that (B’ € B’ — Lps, ) defines a cyclic representation of the algebra B’ on the Hilbert space B(H') [29].

7 In [129] the last term in the right-hand side is omitted. This is a not correct as the Jensen-type inequality (A4)
cannot be applied for the function f(z) = (z +¢)™", because it does not satisfy the condition f(0) < 0. Fortunately, this
term disappears in (I26]) due to the trace-preserving property of M and the proof goes through.
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In addition to its simplicity, the above proof offers the advantage that it easily yields a necessary
and sufficient condition for having S(p|lo) = S(pmllom). Actually, this equality holds if and only

if (I20) is an equality, i.e.
(Ems (Am+ )7 em) = (Em, (CuA + 17 CMm + 1711 = ChyCan))ém) (132)

for all ¢ > 0. But for any operators X, Y, and Z with Z invertible and X <Y, (Z,XZ) = (Z,Y Z)
implies XZ = Y Z. Hence we can infer from (I30)) and (I32)) that

Ap+t)ep=CuAa+t)7e , t>0, (133)

where we have used the identity C},Cat(§m) = & (in fact, the scalar product (Ca(B'ém), Catém)
is equal to (B'€rq, Eaq) for any B’ € B(H')). Therefore,

lCia(A + D75 = (Am+ ) 726mEm) = CuA + 026 ) = (A +0) 71, (134)

where the second equality is obtained by differentiating (I33]) with respect to t. Now, the identity
|IC*(X)||2 = || X||2 for C a contraction implies that CC*(X) = X (in fact, then the Cauchy-Schwarz in-
equality (X ,CC*(X)) < || X|2]ICC*(X)]l2 < || X||3 is an equality, so that CC*(X) must be proportional
to X). We conclude that

Cr(Am+ )7 e =CuCiy(A+ 1)1 = (A +1)71¢ (135)

for any ¢t > 0. By means of the functional calculus, one deduces from this identity that
1
CMmAZEMm = AT2E. (136)

1
In view of the definitions (I24) and (I27) and as p > 0, the last formula gives M*(0 7 {m) = o€
By multiplying by the adjoint and using the Kadison-Schwarz inequality, we arrive at

1

_1 _1
O'_%pO'_% SM* (00 PMONS) (137)

that is, p < Rme(pm) with Rag, defined in @H). But trp] = tr[pm] = tr[Ra0(pam)], whence
p = Rmo(pm). The other equality o = Raq,0(0a) is obvious. Reciprocally, as stressed above, these
two identities imply S(p||o) = S(pm||loam) thanks to the monotonicity of the relative entropy and the
fact that Raq,» is a quantum operation. O

Let us end this subsection by pointing out that the strong subadditivity of the von Neumann
entropy, the joint convexity of the relative entropy, and its monotonicity can be deduced from each
other. For instance, the strong subadditivity (II5]) is a simple consequence of the monotonicity.
Actually, one checks that

S(pas) + S(pec) — S(pasc) — S(ps) = S(pascllpa @ pac) — S(Mc(pasc)|[Mc(pa @ pec))  (138)

with Mc : p — trc(p). It is easy to show that Mc is a CP and trace-preserving map B(Hagc) —
B(Hag), therefore (II5]) follows from Theorem [6.2.1l With the help of this theorem it is also possible
to characterize all states pagc such that (II5]) becomes an equality [73].

Conversely, Lindblad [101], T02] proves the monotonicity inequality from the strong subadditivity.
The basic idea is to show that the strong subadditivity of the von Neumann entropy or the closely
related Lieb concavity theorem imply the joint convexity (iv) of the relative entropy. The corresponding
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arguments are given in Sec. below. One can then deduce the monotonicity of the relative
entropy from its joint convexity (iv) with the help of Stinespring’s theorem as follows [153], 167, 60].
Recall that if pg is the normalized Haar measure on the group U(n) of n x n unitary matrices, then
[dup(U)UBU* = n~'tr(B) for any B € B(H) (in fact, all diagonal matrix elements of the left-
hand side in an arbitrary basis are equal, as follows from the left-invariance dugy(VU) = dug(U)
for Ve U(n); as a result, this left-hand side is proportional to the identity matrix). We infer from
Stinespring theorem that

M(p) ® (1/ng) = /U . dnn(UE) (10 Ue)Up & ) e (1 0 V) (139)

with U unitary on Hse. Thanks to the additivity (iii), the joint convexity convexity (iv), and the
unitary invariance (ii), we get

S(M(p)lIM(2)) = S(M(p) ® (1/ne)[|M(o) @ (1/n))
< /U( ) dur (Ue)S((1® Ue)Up ® |eo)(eoU* (1 @ UE)||(1 ® Ug)Uc @ |eg)(eo|U*(1 ® UE))

— [ duuUe)S(pllo) = Siello). (140)
U(ng)

By the same argument, one can show a slightly more general result.

Proposition 6.2.2. Let f: E(H) x E(H) — R be a unitary-invariant jointly convex function for any
finite Hilbert space H, which satisfies f(p @ 7,0 @ T) = f(p,0) for all p,o € E(H) and T € E(H').
Then f is monotonous with respect to quantum operations.

6.3 Quantum relative Rényi entropies

6.3.1 Definitions

In the classical theory of information, other entropies than the Shannon entropy play a role when
ergodicity breaks down or outside the asymptotic regime. The Rényi entropy depending on a parameter
« > 0 unifies these different entropies. In the quantum setting, it is defined as

Sa(p) = (1 —a) ntr(p®) . (141)

It is easy to show that S, (p) converges to the von Neumann entropy S(p) when o« — 1 and that S, (p)
is a non-increasing function of a.
A first definition of the quantum relative Réyni entropy is

SP(pllo) = (@ — ) (0% ), a >0, a#l. (142)

This entropy appears naturally in the context of the quantum hypothesis testing (Sec. Bl below).
We shall discuss here a symmetrized version proposed recently by Miiller-Lennert et al. [114] and by
Wilde, Winter, and Yang [166]. It is given by

1—

Sa(pllo) = (a—1)71 lntr[(a%pa?ﬁ)a] (143)

if @ € (0,1) and tr(op) > 0 or if @ > 1 and kero C ker p (if none of these conditions are satisfied,
one sets S,(p|lo) = 4+00). This relative entropy has been used in Ref. [I66] to solve an important
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open problem related to the transmission of information in noisy quantum channels. It seems likely
that much more applications in quantum information theory will be encountered in the future. The
entropies S, appeared recently as central objects in a very different context, namely, the quantum
fluctuation relations in out-of-equilibrium statistical physics [88], [89]. A nice feature of the family
{Sa}a>0 is that it contains the von Neumann relative entropy, the fidelity entropy, and the max-
entropy as special cases. Furthermore, S, depends continuously and monotonously on «. The fidelity-
entropy is obtained for a = 1/2. It is given by S /5(p[|lo) = —In F(p, o), where F(p, o) is the fidelity
[©f). The max-entropy is defined by

: 11
Seo(pllo) = lim Sa(pllo) = Inflo™2po7 2], (144)
a—r 00
where || - || is the operator norm. The second equality follows from ||All, — ||A] as @ — oo (see

Sec. [2.1]). Finally, one recovers the von Neumann relative entropy (I22) by letting o — 1,

S(pllo) = lim Sa(pllo) - (145)

To justify this statement, let us set A(«a) = o palz;aa. Explicit calculations show that

dtr[A(a)*] N a-1d4
SIS~ 64 W A@)] + atr[A() T
% _ _2%“2<1n(0)A(a)+A(a)ln(a)>. (146)

Consequently, S, (p|lo) — (dlntr[A(a)?]/da)e=1 = tr(plnp — plno) as a — 1. Note that a similar

result holds for the unsymmetrized Rényi entropy (I42), i.e. S(p||o) = limg—1 s (p|lo). Let us also
emphasize that
Salpllo) < S8 (pllo) (147)

by the Lieb-Thirring trace inequality (B3]).
For commuting matrices p = > pg|k) (k| and o = 3, qx|k)(k|, both S, (p||c) and S (p|lo) reduce
to the classical Réyni divergence

n
s&(plla) = (a = )" (Y- pra™) . (148)
k=1
which is non-negative for @ > 0 by the Holder inequality.

6.3.2 Main properties

It is shown in this subsection that the Rényi relative entropy S, (p||o) satisfies the same properties
(i-iv) as the von Neumann relative entropy in Sec. for any a € [1/2,1]. For 0 < a < 0o we define
the a-fidelity by

11—«

18 N _ :
Fa(pllo) = llp202 |30 = llo2 po2 o = e #5W1D with g = (149)

(07

Here, we have used the notation ||Alj2q = (tr[(A*A)a])i even if this does not correspond to a norm
when 0 < o < 1/2.
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Theorem 6.3.1. For any o > 0, one has

(i) Sa(pllo) = 0 with equality if and only if p=o;
(i) Sa(pl
(

)
|o) is unitary invariant;
(11i) Sa(pllo) is additive for composite systems;

(iv) Fu(pllo)® is jointly concave for o € [1/2,1) and jointly convex for o > 1. In particular, S, (p||o)
is jointly convex for a € [1/2,1];

(v) if a« > 1/2 then So(pllo) > Sa(M(p)||M(o)) for any quantum operation M on B(H).

The statements (i-iii), as well as (iv-v) for a restricted range of «, namely a € (1,2], have been
established in [114] [166]. The justification of (iv-v) in full generality is due to Frank and Lieb [60].

Proof. The unitary invariance (ii) and additivity (iii) are evident and also hold for the a-fidelity.
We now argue that the non-negativity (i) and the monotonicity (iv) can be deduced from the con-
vexity/concavity property (iv). Thanks to Proposition [6.22] (iv) implies that if a € [1/2,1) then
Fy(M(p)||IM(0)) > Fu(p||o) for any quantum operation M, and the reverse inequality holds true if
a > 1. The monotonicity of S, for a > 1/2 then follows immediately (the case o = 1 is obtained by
continuity, see (I45])). Let {|k)} be an orthonormal basis of H and My be the quantum operation (26])
associated to the von Neumann measurement {II; = |k)(k|}. The monotonicity entails

Sa(pllo) = Sa(Mn(p)llMu(0)) = S5*(plla) , (150)

where p and q are the vectors with components pp = (k|p|k) and ¢ = (k|o|k). Since the classical
Rényi divergence (I48)) is non-negative and vanishes if and only if p = q, we deduce from (I50) that
Sa(pllo) > 0, with equality if and only if (k|p|k) = (k|o|k) for all k. The orthonormal basis {|k)}
being arbitrary, this justifies the assertion (i) for a > 1/2. To show this assertion for « € (0,1/2), we
argue as in [I14] that

Salpllo) = Sa(Mu(p)llo) = S5 (pllq) (151)
with 0 < a < 1, My being as before associated with the von Neumann {II; = |k)(k|} but with {|k)}

an orthonormal eigenbasis of 0. Actually, let o € (0,1) and let us set A(5) = agpaf with 8 = ™1 —1.
By virtue of the Jensen type inequality (AS)) of Appendix[Al one has

(Mn(A(8))" > Mu(A(B)*) (152)

due to the operator concavity of f(x) = x®. Hence, by the trace-preserving property of My and the
. . B B
identity oz Mp(p)oz = Mn(A(B)),

Salpllo) = (a—1)" Intr[Mr(A(B))]
> (o= ntr[(Mu(A(8))"] = Sa(Mul(p)||o) - (153)

This proves (I5I) and thus the non-negativity of S, for o € (0,1). Observe that S,(pllo) =
Sa(Mr(p)||o) if and only if ([I52]) holds with equality, that is, (k|A(B)|k)* = (k|A(B)%|k) for all
k. By the strict concavity of f(z) = z%, {|k)} must then be an eigenbasis of A(f3), and thereby also
of p. Thus p and o commute and S,(p||o) coincides with the classical Rényi divergence SS2(p||q).
By the aforementioned properties of S<#(p||q), it follows from (I51]) that S,(p||o) = 0 implies p = q
and thus p =o.

I
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It remains to show the statement (iv) of the theorem. Following [60], we obtain (iv) with the help
of a duality formula for Fi,(p,o) and of Lieb’s concavity and Ando’s convexity theorems. We omit
here the proof of these two important theorems, which can be found in [33] (see also [117] for the Lieb
theorem). The duality formula will be shown at the end this subsection.

Lemma 6.3.2. (Lieb’s concavity and Ando’s convexity theorem [8, 98]) For any K € B(H) and any
B € [-1,1], the function (R, S) — tr(K*RIKS™P) on B(H)y x B(H)4 is jointly concave in (R, S) if
—1<8<0and 0<q <1+ and is jointly conver in (R,S) if 0 < <1and 1+ <q<2.

Lemma 6.3.3. (Duality formula for the a-fidelity [60]) If o € (0,1) (that is, 3 =a~ ! —1>0) then
: _ _1
Fy(p,0) = é}ﬂzfo{oztr(Hp) +(1—a) tr[(\/ﬁa SVH) ﬁ]} . (154)

If a > 1 (that is, —1 < B < 0), the same identity holds but with the infimum replaced by a supremum.

Given Lemma [6.3.3] if one can show that, for a fixed operator B € B(H), the function

gp.(0) = tr[(B*o~PB) 5] (155)

is concave in o when —1 < 8 <1, 5 # 0, it will follow that F,(p||o)® is jointly concave for a € [1/2,1)
(i.e. 0 < B < 1) and jointly convex for a > 1 (i.e. =1 < 8 < 0), thereby proving Theorem We
first assume —1 < 8 < 0. For any operator Y > 0, let us set

hy (X) = tr(Y X)) — (1 4 B) tr(X) (156)

with X € B(H)y. Given two self-adjoint matrices Y and Z, it is known that (see [27], Problem
111.6.14)

Zn:yn—izi <tr(YZ) < Zn:yizi ; (157)

where y; > yo > -+ >y, and 21 > z9 > --- > z, are the eigenvalues of Y and Z in non-increasing
order. Therefore,

sup{hy (X)} = max{ > (yia} ™ — (1 + B)a,) }z—ﬂzyz = Bu(YTH),  (18)

X0 i=1

the maximum in the second member being over all vectors x € R’}. Similarly, it follows from (I57])

that if 0 < 5 <1 then infx>o{hy(X)} = -8 tr(Y_%). Plugging Y = B*0~?B into these identities,
one finds

gpp(0) = ;i%{—ﬂ_l(tr(B*a_BBXHﬁ) —(1+7) tr(X))} , —1<B<0or 0<B<1. (159)

Let us introduce the 2 x 2 block matrices

(5 0) - s=(3 %),

A simple calculation gives

tr(B*o PBX'P) = try g2 (K*S"PKSF) | (161)
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By Lemma [6.32] the right-hand side of (I61]) is concave (respectively convex) in .S when —1 < 5 <0
(respectively 0 < § < 1). As a result, the left-hand side is jointly concave (convex) in (o, X). But
the maximum over X of a jointly concave function f(o, X) is concave in o. Thanks to (I59]), we may
conclude that gp (o) is concave in o for all § € [—1,1], B # 0. The proof of Theorem [6.31] is now
complete. O

Let us come back to the duality formula (I54]). We observe in passing that this formula bears some
similarity with the variational formula (II6]) for the von Neumann entropy.

. ] 8 .
Proof of lemma [6.3:3.  Since 0~ 2Ho ™2 has the same non-zero eigenvalues as v Ho ?vH, the
quantity inside the infimum in ([I54) is equal to

g(H) = ate(Hp) + (1 — o) tr[(c~ 2 Ho= %) 7] . (162)

Differentiating the right-hand side with respect to the matrix elements of H in the some orthonormal
basis {|i)} and using the relation dtr[f(B)]/0B;; = f'(B);j; with f(z) a Cl-function, we get

H _1_
agl({ij) = a<p — a‘g(a_gHa_g) 5 10_§)ji . (163)
Hence g(H) has an extremum if and only if H = H = ag(agpag)a_lag > 0. But
7 5. Ba a
g() = trl(o% po$)7] = Fulpllo)® (164)

As B € B(H) 4 — tr(BP) is convex for p > 1 or p <0, g(H) is convex if o € (0,1) (i.e. —B~1 < 0) and
concave if @ > 1 (i.e. =371 > 1). It follows that g(H) is a minimum for o € (0,1) and a maximum
for a > 1. O

Let us point out that it follows from Lemma [6.3.2] that the normal-ordered Rényi entropy (142)) is

also jointly convex for o € (0,1). Taking o — 1 and recalling that s (pllo) — S(pl|lo), this gives a
direct proof the joint convexity of the relative von Neumann entropy S(p||o) from the Lieb concavity
theorem, as noted by Lindblad [101], [102]. Combined with Proposition [6.2.2], this leads to a completely
different justification of the monotonicity of S(p||o) in Theorem than that presented in Sec.
It would be interesting to look for a generalization of the arguments of Petz in Sec. to the case of
the a-entropies.

6.3.3 Monotonicity in «

As stated above, a very nice feature of the a-entropy (I43)) is that, like the classical Rényi divergence,
it is monotonous in «. This leads in particular to some bound between the relative von Neumann
entropy and the fidelity (see (I99) below).

Proposition 6.3.4. [114] For any p,o € E(H), Sa(pllo) is a non-decreasing function of o on (0, 00).

Proof. One first derive the following identity similar to (I59):

(.gB,—a*1 (0))

Q-

= HB*O'I/QBHQ = sup tr(B*al/aB 7'1_1/0‘) , a>1. (165)
72>0,tr(7)=1

If 0 < o < 1 the supremum has to be replaced by an infimum. When « > 1 this identity is nothing
but a rewriting of the Holder’s inequality (3]). The derivation for a € (0,1) relies on (I57]) and follows
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the same lines as for the derivation of (I59) (apart from the fact that we substituted 5 by —1/«),
but one must introduce a Lagrange multiplier to account for the constraint tr(7) = 1. Applying the
relation (I65]) for B = a_%p% and plugging the identity HagpagHa = Hpéaﬁp%Ha into (I49)), we are
led to

Sa(pllo) = Sg&){—ﬂ‘llnFa(p!\a;T)} . FalplloiT) = tr(p2o?p2r=?) = (¢, A &), (166)

for any o > 0, a # 1. In the last identity & = p% and we have introduced the relative modular
operator, see (8). For any fixed 7 € £(H), one finds

a4 v
ds B2Eu(pllo; )

The Jensen inequality applied to the convex function f(x) = zlnz implies that the quantity inside
the parenthesis in the right-hand side is non-negative. Thus —B~1F,(p||o;7) is a non-increasing
function of 5. This is true for any density matrix 7, thus one infers from (I66]) that a +— S, (p||o) is
non-decreasing. O

(=67 m Falplloim)) = (16, A%, m(al )6 — (¢, A% Omie, A% ) . (167)
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7 The Bures distance and Uhlmann fidelity

In this section we study the Bures distance on the set of quantum states £(H). This distance is
Riemannian and monotonous with respect to quantum operations. It is a simple function of the
fidelity (@5). Its metric coincides with the quantum Fisher information quantifying the best achievable
precision in the parameter estimation problem discussed in Sec. The material of this section (as
well as of Sec. {) is completely independent from that of sections [0 and [I0} so it is possible at this
point to proceed directly to Sec. @ The reading of Secs. [[.IH7.4l is, however, recommended before
going through Sec. [[1] devoted to the geometrical measures of quantum correlations, where the Bures
distance plays the key role. The section is organized as follows. Sec.[7.I] contains a short discussion on
contractive (i.e. monotonous) distances. It is argued there that the distances induced by the ||-||,-norm
are not contractive save for p = 1. The definition and main properties of the Bures distance are given
in Secs. [[.2H7.4l The Bures metric is determined in Sec[7.5l Finally, Sec. contains the proof of an
important result of Petz on the characterization of all Riemannian contractive metrics on £(#H) for
finite-dimensional Hilbert spaces H.

7.1 Contractive and convex distances

In order to quantify how far are two states p and o it is necessary to define a distance on the set £(H)
of quantum states. One has a priori the choice between many distances. The most common ones are
the LP-distances defined by ([2]). In quantum information theory it seems, however, natural to impose
the following requirement.

Definition 7.1.1. A distance d on the sets of quantum states is contractive if for any finite Hilbert
spaces H and H', any quantum operation M : B(H) — B(H'), and any p, o € E(H), it holds

d(M(p), M(0)) < d(p,0) . (168)
A contractive distance is in particular invariant under unitary conjugations, i.e.
d(UpU*,UU U*) =d(p,o) if U is unitary (169)

(in fact, p — Up U™ is an invertible quantum operation on B(#)). For such a distance, if a generalized
measurement is performed on a system, two states are closer from each other after the measurement
than before it, and if the system is subject to a unitary evolution the distance between the time-evolved
states remains unchanged.

For p > 1, the distances d,, (in particular, the Hilbert-Schmidt distance dz) are not contractive. A
counter-example for two qubits is obtained [122] by taking M(p) = A1pA; + AapA; with

1 1
Ai=0,®1 |, As=0,0_-®1 p:§®0’+0_ , 0’:§®0_0’+ (170)

(here o4 = |1)(0| is the raising operator and o_ = 0% ). Then | M(p) — M(c)||, = 2'/7 is larger than
lp = ol = 22771,

Proposition 7.1.2. [136] The trace distance dy is contractive.
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Proof. : Let R=p—0 =Ry — R_ with Ry = (|R| £ R)/2 = £RP+ > 0 the positive and negative
parts of R (here Py and P_ are the spectral projectors of R on [0,00) and (—00,0)). Then ||R|; =
tr(Ry + R—) = 2tr(Ry) because tr(R) = tr(Ry) — tr(R-) = 0. Since M is trace preserving and CP,
one has [|M(R)[|y = 2tr[M(R),] and M(R)y = (M(Ry) = M(R-))4 < M(Ry). Thus [M(R)]1 <
2t [M(R.)] = 2tr[R,] = | Rl 0

A distance d on E(H) is jointly convez if for any state ensembles {p;, p;} and {0y, p;} with the same
probabilities p;,
d(Z PiPis me) < pid(pi, i) - (171)
Since they are associated to a norm, the distances d, are jointly convex for any p > 1.

7.2 The Bures distance

We now introduce the Bures distance dg. This distance is contractive like dy. It was first considered
by Bures in the context of infinite products of von Neumann algebras [32] (see also [9]) and was later
studied in a series of papers by Uhlmann [154] 156, [157]. Uhlmann used it to define parallel transport
and related it to the fidelity generalizing the usual fidelity |(1/|¢)|? between pure states. Indeed, dg is
a extension to mixed states of the Fubini-Study distance on the projective space PH of pure states,

D=

drs(py, 0¢) = @?@H\W — )| = (2—2/(w[e)]) 2, (172)
where the infimum in the second member is over all representatives [¢) of p, € PH and |¢) of
oy € PH (ie. py = 1) (¢ and oy = |¢)(¢]). Observe that the third member is independent of these
representatives. For two mixed states p and o in £(H), one can define analogously [156], [84]

dB(p7J) = 114I,1£ d2(A - B) > (173)

where the infimum is over all Hilbert-Schmidt matrices A and B satisfying AA* = p and BB* =
o. Such matrices are given by A = /pV and B = /oW for some unitaries V' and W (polar
decompositions). If p = py and 0 = o4 are pure states, then A = |¢)(u| and B = |¢)(v| with
llell = |lv|| = 1, so that (I73) reduces to the Fubini-Study distance (I72).

For mixed states p and o, the right-hand side of ([I73]) is given by

NI

(2-2 Sup Re tr(U+/p\V0)) (174)

with a supremum over all unitaries U = WV™*. This supremum is equal to ||/p\/c||1 and is attained

if and only if UUOI\//_)\/E\% = ]\/ﬁ\/a%, where Uy is such that \/p\/o = Up|\/p\/o| (see Sec. 2T]).
Equivalently, the infimum in (I73]) is attained if and only if the parallel transport condition A*B > 0
holds. We obtain the following equivalent definition of dg.

Definition 7.2.1. For any states p,o € E(H),

1
dp(p,0) = (2_2 F(p,o‘))Q (175)
where the Uhlmann fidelity is defined by

F(p,0) = Ivavall = (a[(Vapva)?])

2
. (176)
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The fidelity F(p, o) is symmetric in (p,0) and belongs to the interval [0, 1]. It is clearly a gener-
alization of the usual pure state fidelity F([¢), |¢)) = |(¢|¢)|?. If o, is pure, then

F(p,04) = (¢lpl9) (177)

for any p € E(H).

It is immediate on (I73]) that dp is positive and symmetric, and dg(p,o) = 0 if and only if p = o.
The triangle inequality is more difficult to show. It can be established with the help of the following
astonishing theorem.

Theorem 7.2.2. (Uhlmann [154]) Let p, o € E(H) and |V) be a purification of p on the space HR K,
with dAim K > dim H. Then
Flp.0) = max (o) (178)

where the maximum is over all purifications |®) of o on H @ K.

Proof. We give here a simple proof due to Josza [91]. Let us first assume K ~ H. Let |¥) and |®) be
purifications of p and o on H ® H, respectively. As it has been noticed in Sec. 23] by the Schmidt
decomposition these purifications can always be written as

) =S VEIRIA) L 12) = VaUlk)le) . (179)
k=1 k=1

where p = 3", pilk) (k| and o = >, qxU|k)(k|U* are spectral decompositions of p and o, U is a unitary
operator on #H, and {|fx)}i~, and {|gx)}I, are two orthonormal bases of H. Defining the unitaries

V and W on H by |fx) = V|k) and |gx) = Wk) for any k = 1,...,n, we have
©)=peVIE) , [8)=VoUaWI|L) with |T)=>)[k)k). (180)
k=1

The vector |X) is the vector associated to the identity operator on B(H) by the isomorphism (&l). For
any X,Y € B(H), one obtains by setting O = X” ® Y in (@) and noting that tr(O™) = tr(XY) that

tr(XY) = (X7 @ YD) (181)
(here X7 is the transpose of X in the basis {|k)}). Introducing the unitary Uy = V*WUT, this gives

sup (B} = sup (B0 Vo5 © WVID) = sup| e(vpVa U§)| = [VAvali - (152)

The last equality comes from (B]). This proves the desired result. The supremum is achieved by
choosing |®) as in (I7T9) with U = UF (W*)TVT, Uy being a unitary in the polar decomposition of
NG

If K has a dimension m larger than n, we extend p and o to a space H' ~ K by adding to them
new orthonormal eigenvectors |k) and U|k) with zero eigenvalues pr = ¢ =0, k =n+1,...,m. This
does not change the fidelity F(p,0), thus F(p,0) = max|e [(¥'|®’)|?, where |¥') is a purification of
o= pklk)(k| = p on H' @ H', and similarly for |®’). But [¥’) and |®’) have the form (I79),
hence they belong to H ® K. O
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Let p, o, and 7 be three states of £(H) and |¥) be a purification of p on H ® H. According to
Theorem [TZ2] there exists a purification |®) of o on H ® H such that F(p,o) = [(¥|®)|%2. One can
choose the arbitrary phase factor of |®) in such a way that (¥|®) > 0, whence \/F(p,0) = (V|D).
Similarly, there exists a purification |x) of 7 such that \/F(o,7) = (®|x) > 0. In view of (I75]) and

(m?

da(pr) < (2—2/(T)))?
< (2= 2Re (W) = [||¥) — )|
< 1wy — @)+ [[[8) — | = (2 2w[@))E + 2— 2@ E,  (183)

showing that dp satisfies the triangle inequality dg(p,7) < dg(p, o) + dp(o, 7).

Corollary 7.2.3. The map (p,0) — dp(p,0) defines a distance dg on quantum states, with values in
[0,1]. This distance is contractive. Moreover, d2B is jointly convex.

Note that dp is not jointly convex. One gets a counter-example by choosing pg = oo = |0)(0],
p1=1|1)(1], o1 = |2)(2|, and py = p1 = 1/2, {|0),|1),|2)} being an orthonormal family in #.

It is clear on ([I76]) that F'(p,o) = 0 if and only if p and o have orthogonal supports, ranp L rano.
Therefore, two states p and o have a maximal distance dg(p,o) = 1 if they are orthogonal and thus
perfectly distinguishable.

Proof. We have already established above that dp satisfies all the axioms of a distance. To show the
contractivity, it is enough to check that for any quantum operation M : B(H) — B(H') and any states
p,o € E(M),

F(M(p), M(0)) = F(p,0) . (184)

This property of the fidelity is a consequence of the contractivity of the relative Rényi entropy for
a = 1/2 (Theorem [6.3.T(v)). It is, however, instructive to re-derive this result from Theorem
According to this theorem, there exist some purifications |¥) and |®) of p and o on H ® K such that
F(p,0) = |{(¥|®)|2. Now, thanks to (34) one obtains some purifications |V () = 1x @ U|¥)|eg) of
M(p) and [P ) = 1x @ U|P)|eg) of M(0) on K& H' @ Hi, with |eg) € He and U : HQHg — H @ HE
unitary. Thus

F(M(p), M(0)) = (T pa|@m1)|> = [(¥|®)* = F(p,0) . (185)

The joint convexity of dj is a consequence of the bound™

\/F (S ponY o) = X viaivFlonon (180)

where {p;,p;} and {0y, q;} are arbitrary ensembles in £(H). Note that the statement (I80) is slightly
more general than the joint concavity of \/F(p,o) proven in Sec. (Theorem [6.31](7v)). To show

18 Note that one cannot replace vF by F in this inequality, that is, F(p,o) is not jointly concave (one can take the
same counter-example as that given above for dg). However, by a slight modification of the proof of Corollary [[.2.3] one
can show that p — F(p,o0) and o — F(p, o) are concave. In their book [II7], Nielsen and Chuang define the fidelity as
the square root of (I'TG). This must be kept in mind when comparing the results in this monograph with those of this
article.
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that (I80]) is true, we introduce as before some purifications |¥;) of p; and |®;) of o; on H ® H such
that \/F(p;,0;) = (¥;|®;). Let us define the vectors

W) =D VRille) @)= /pil®le) (187)

in H® H ® Hg, where Hg is an auxiliary Hilbert space and {|¢;)} is an orthonormal basis of HE.
Then |¥) and |®) are purifications of p = . p;p; and o = >, g;0;, respectively. One infers from
Theorem [7.2.2] that

VE(p,0) = (@) = 3 v/pidi( Wil @) = 3 vBigiv/Flpi, 7). (188)

This complete the proof of the corollary. O

Remark 7.2.4. A consequence of {{7) and (I77) and of the monotonicity of the fidelity F with
respect to partial trace operations (see (187)) is that the entanglement fidelity Fo(p, M) of a state p
with respect to a quantum operation M satisfies

Fe(p, M) < F(p, M(p)) . (189)

Remark 7.2.5. As the fidelity satisfies F(p®p',0®0") = F(p,0)F(p',0’), the Bures distance increases
by taking tensor products, dg(p®p',oc®0c’) > dg(p, o) for any p,o € E(H), p',0’ € E(H'), with equality
if and only if p' = o’. This has to be contrasted with the trace distance, which does not enjoy this
property.

In the two following subsections we collect some important properties of the Bures distance. We
refer the reader to the monographs [20, 117] for a list of names to which these properties should be
attached.

7.3 Bures distance and statistical distance in classical probability

The restriction of a distance d on £(H) to all density matrices commuting with a given state pg
defines a distance on the simplex Euas = {p € R7; Y, p; = 1} of classical probabilities on the finite
space {1,2,...,n}. In particular, if p and o are two commuting states with spectral decompositions

p=>_1.rklk)(k| and o = >, qi|k)(k|, then
di(p,0) = di™(p,q) =Y _ |p — %l
k=1

is the ¢!-distance, and

o) = dip=ov) = (L (vmE - V@) = (2-23 Vi)’ (190)
k=1 k=1

is the Hellinger distance. A distance closely related to dﬁlas is the so-called statistical distance

©9%(p,q) = arccos(l — d§*(p,q)?/2), ie. the angle between the vectors x = (\/pr);_, and y =
(V/@k)}{—; on the unit sphere. Given two non-commuting states p and o, one can consider the distance
d®?(p, q) between the outcome probabilities p and q of a measurement performed on the system in
states p and o, respectively. It is natural to ask whether there is a relation between d(p, o) and the
supremum of d°(p, q) over all measurements.
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Proposition 7.3.1. For any p,o € E(H),

clas

di(p,0) = sup di™(p,q) , dg(p,0) = sup d5*(p,q), (191)

% {Mz

where the suprema are over all POVMs {M;} and p; = tr(M,p) (respectively q; = tr(M;o)) is the
probability of the measurement outcome i in the state p (respectively o). Moreover, the suprema are
achieved for von Neumann measurements with rank-one projectors M; = |i){i|.

Proof. We leave the justification of the first identity to the reader. It can be obtained by following sim-
ilar arguments as in the proof of Proposition [[.1.2] (see [I117]). Let us show the second identity. Given
a POVM {M;}, by taking advantage of the definition (I76]) of the fidelity, the polar decomposition

VPVo = Uly/py/c|, and the identity ), M; = 1, one gets

VE(p,0) = 3 (U/py/ Mis/ Miv/) < 37 Vpidi (192)

The upper bound comes from the Cauchy-Schwarz inequality. It remains to show that this bound can
be attained for an appropriate choice of POVM. The Cauchy-Schwarz inequality holds with equality
if and only if /M;\/pU = X\iv/M;\/o with \; € C. Assuming o > 0 and observing that \/pU =
o2 |\/P\/0|, this identity can be recast as

VM;(R=X)=0 with R=o0"2\/p/olo 2. (193)

Let R =), ri|i)(i| be a spectral projection of the non-negative matrix R. Taking M; to be the von
Neumann projector M; = |i)(i| and \; = r;, we find that (I93)) is satisfied for all i. Thus \/F(p,0) is
equal to the right-hand side of (I92]). If o is not invertible it can be approached by invertible density
matrices o, = (1 —€)o + ¢, € > 0, and the result follows by continuity. O

Much as for the quantum relative Rényi entropies (Sec. [6.3]), one may define another distance on
E(H) which also reduces to the Hellinger distance dﬁlas for commuting matrices, by setting

di(p,0) = da(v/5. V) = (2= 2, [F" (4l])) " (194)

where F™ (pllo) is the fidelity associated to the normal-ordered a-entropy (I42]), namely,

L n _
F(pllo) = (ifptot=e)* = sl 5122

- (195)

This distance is sometimes called the quantum Hellinger distance. Thanks to Lieb’s concavity theorem

(Lemma [6.3.2)), P (pllo)® is jointly concave in (p,o) for all & € (0,1). Consequently, the square
Hellinger distance dy(p,o)? is jointly convex, just as dg(p,o)?. From Proposition (.22 one then
deduces that dy is contractive. It is worth noting that dyg does not coincide with the Fubini-study

distance (I72)) for pure states (in fact, one finds Fl(;g(pwHad)) = |(x]¢)|*). For any p,o € E(H), one
finds by comparing (I73]) and ([I94]) that dg(p, o) < du(p, o).
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7.4 Comparison of the Bures and trace distances

The next result shows that the Bures and trace distances dg and dy are equivalent and gives optimal
bounds of d; in terms of dg.

Proposition 7.4.1. For any p,o € E(H), one has

1

an(p.0)” < di(p.0) <2{1 — (1 Lan(o.0)?)}7. (196)

The lower bound has been first proven by Araki [9] in the C*-algebra setting. We shall justify it
from Proposition [[3] as in Ref. [117]. The upper bound is saturated for pure states, as shown in the
proof below. Note that this bound implies that di(p, o) < 2dp(p, o).

Proof. We first argue that if p, = [|¢)(¥]| and o4 = |¢)(¢| are pure states, then di(py,04) =
2y/1 — F(py,04) and thus the upper bound in (I9€) is an equality. Actually, let |¢) = cosf|y) +
e sinf1p1), where 6,5 € [0,27) and [¢1) is a unit vector orthogonal to [¢). Since py — o4 has
non-vanishing eigenvalues % sin 6, one has di(py,04) = 2[sinf|. But F(py,,04) = cos? 6, hence the
aforementioned statement is true. It then follows from Theorem and from the contractivity of
the trace distance with respect to partial trace operations (Proposition [[.1.2]) that for arbitrary p and
oec&(H),

dl(pv 0) <2y1- F(p,O') : (197)

To bound d; (p, o) from below, we use Proposition [.3.J]and consider a generalized measurement {M;}
such that \/F(p,0) =Y. \/Piqi with p; = tr(pM;) and ¢; = tr(cM;). This yields

dB(P7U)2ZZ(\/E’—\/@)zSZ!IH—%\ <di(p,o), (198)

i
where the last inequality comes from Proposition [[.3.1] again. O

The following bound on the relative entropy can be obtained from ([I49), (I45]), and Proposi-
tion [6.3.4]

S(pllo) > —21n<1 - %dB(p, 0)2) > —ln<1 - idl(p,a)2> . (199)

Remark 7.4.2. By taking advantage of the inequality F(p, o) > tr(po), which follows from (176]) and
the norm inequality || A|1 > ||All2, one can establish another bound on S(p||o) in terms of the fidelity,
which reads [152]

S(pllo) > —S(p) — In F(p, ) (200)
Remark 7.4.3. The formula
1. _ 2 . _
F(p,0) = 1 ;Igfo{ tr(Hp) + tr(H 'o)}” = ;Igfo{tr(Hp) tr(H 'o)} (201)

can be easily proven with the help of Lemma[6.3.3 and Theorem [7.2.2, The last expression is due to
Alberti [5].

Remark 7.4.4. We are now in position to show without much effort several results of Sec. [5.2.
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(a) The upper bound (77) on the optimal success probability Py™" in unambiguous discrimination
of two mixed states can be established from Uhlmann’s theorem formula (70]), and the fact that
Opt({pl,m}) < Poﬁt({|\lf ),mi}), where |¥,) is a purification of p; for any 4 [135].

(b) It is instructive to derive in the special case of m = 2 states the lower bound on Py p given in
Proposition [5.5.11 by using the Helstrom formula (68]), the fact that tr(|A[) > >, |4 |A| )| for any
orthonormal basis {|i)}, and Proposition [[.3.1] [26].

(c) The Uhlmann theorem gives an efficient way to calculate the fidelity between the two states (78])
(the result is F'(peq, pairr) = |(1]2)[?).

7.5 Bures and quantum Hellinger metrics, quantum Fisher information

Recall that a Riemannian metric on £(H) is a map g which associates to each p € E(H) a scalar
product g, on the tangent space to £(H) at p. For any state p on H, this tangent space can be
identified with the (real) vector space B(H)s.a. of self-adjoint operators on H. A metric g defines
a Riemannian distance d, which is such that the square distance ds? = d(p, p + dp)? between two
infinitesimally close states p and p + dp is given by

ds® = g,(dp,dp) . (202)

The Hilbert-Schmidt distance dg is obviously Riemannian: its metric is constant and given by the
scalar product (). In contrast, the trace distance d; is not Riemannian.

Let us show that the Bures distance dp is Riemannian and determine its metric gg. It is convenient
to introduce a small parameter ¢ € R. According to Definition [[.2.1] one has

dn(p.p+1dp)® =2 - 20(A®) . A(t) = (Valp + tdp)y/p)? . (203)

The scalar product (gg), will be given in terms of the eigenvectors |k) and eigenvalues py of p in the
spectral decomposition p = Y, px|k)(k|. Using the notation A(t) = dA/dt, A(t) = d>A/dt?, and the
identity A(t)? = ,/p(p + tdp)/p, one finds

A(0)A(0) + A(0)A(0) = pdp/p

A(0)A(0) +2A(0)A(0) + A(0)A(0) = 0 (204)
The first equation yields .
(pr + p)(K[A(O)1) = /Pepi(kldpll) - (205)

Since tr(dp) = 0, it follows that tr[A(0)] = 0. Assume that A(0) = p is invertible. Multiplying the
second equation in ([204) by A(0)~! and taking the trace, one verifies that

tr[A(0)] = — tr[A(0)2A S (RIAO)D)] pil(kldpll) 206
[A(0)] [A(0)2A g:lpk |(kIA0)[1)) kzl:l or + p1)? (206)

Thus, going back to (203) we arrive at

dp(p, p+ tdp)® = —tr[A(0)]t* + O(t%) = (gB),(dp, dp)t* + O(t?) (207)
with [84]
[(k|AJD)[?
(98), g:l gl AeBH)sa , p>0. (208)



The last formula defines a scalar product on B(H)s... by polarization, hence dp is Riemannian with
metric gg. One readily obtains from this metric the infinitesimal volume element. The volume of
E(H) and the area of its boundary are determined in [146].

Definition 7.5.1. Given a state p € E(H) and an observable H € B(H)s.a., the non-negative number

B . —i _ (px — p1)?
Folp, H) = 4(g),(<ilH, ] [H’p])_zkvlvp%wipk | RIHIDP? (209)

is called the quantum Fisher information of p with respect to H.

The quantity Fg(p, H) has been introduced by Braunstein and Caves [30] as a quantum analog
of the Fisher information in statistics. Similarly to the definition of the Bures distance in Sec. [[.2]
these authors related it to the metric — called the “distinguishability metric” by Wootters [168] —
extending the Fubini-Study metric to mixed states. For a pure state py = |¥)(¥|, the quantum
Fisher information reduces to the square quantum fluctuation of H, namely,

Folpw, H) = 4(AH)?)y = 4((V|H?|¥) — (V|H|T)?) . (210)

In general, /Fqg(p, H) gives the speed at which a given state p separates from its time-evolved
state p(t) = e H pel under the dynamics specified by the Hamiltonian H. In fact, by plugging
dp/dt = —i[H, p] into (207) one checks that

a2 o \?2 5dr
Falp H) = (2@d3<p,p<t>> 1t:0) ~vallh (211)

We postpone the discussion on the statistical interpretation of Fg(p, H) to Sec. below. It will be
argued there that Fg(p, H) measures the amount of quantum correlations in the state p that can be
used for improving precision in quantum metrology.

Let us now turn to the quantum Hellinger distance ([I94]). We proceed to determine the metric
Jo associated to the normal-ordered relative Rényi entropy (I42]), from which the quantum Hellinger
metric gy is obtained by setting o = 1/2. We demonstrate that the largest metric g, for o € (0,1) is
achieved for o = 1/2 and is equal to gp/2, a result that will be needed later on (Sec. B1). The metric
Jo is defined by

SO (p+tdpllp) = (1-a) (1= F® (o +tdpllp)?) + O(t*)
= (1 - a) " (ga),(dp.dp) + O(F?) | (212)

where F™ is the a-fidelity, see (I95]). To determine g, for all a € (0,1), we use (AI)) in Appendix [A]
to write

o o sin(am) [ o 1 1
Balt) = 0% = (p+tdp)® =— /0 dva <x+p+tdp_x+p>

i o0 t 1 t2 1 1
_ sin(am) / de 2% ———dp + dp——dp o). (213)
m 0 r+p x+p x+p xT+p T+p

Introducing as before the spectral decomposition p = >, px|k) (k| and using known integrals, one finds
1— FEM™(p+tdpllp)® = tr[Ba(t)Pl_a]

= —tozz k|dp|k) + t2 Z pk )| (kldp|l) | + 03 . (214)
k=1
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Because tr(dp) = 0, the linear term in ¢ vanishes as it should be. Plugging (214]) into (2I2]) one gets

n

l-a _ 11—« a L«
(92)p(A,A) = Y calprp)IKIAD , calpiq) = (P — a0 —g¢)

(215)

— 2
fi=1 2(p—q)
It is easy to show that c.(p, q) < ¢1/2(p, q) for any p,q > 0, hence
~ (KA
max (ga),(A, A) = (g1 A,A:E — = AeBH)sa , 216

as claimed above. Furthermore, in view of (I94]) we deduce that the quantum Hellinger distance dy
is Riemannian and has a metric gy = 29y /2.

7.6 Characterization of the Riemannian contractive distances

The complete characterization of Riemannian contractive distances on £(H) for finite Hilbert spaces
H has been given by Petz [128], following a work by Morozova and Chentsov [113]. Such distances
are induced by metrics g satisfying

Iamip) (M(A), M(A)) < (A, 4) , A€ B(H)eu , (217)

for any p € £(H) and any quantum operation M : B(H) — B(H').

In the classical setting, it is remarkable that the contractivity condition leads to a unique metric
(up to a multiplicative constant). Quantum operations correspond classically to Markov mappings
p — Mp on the probability simplex E.s = {p € R%;> . p; = 1}, see (27), with stochastic
matrices M°? having non-negative elements M;’]l-as such that ), Mf}as =1forany j=1,...,n. The
contractive distances d® on &, satisfy d2(Masp, Mclasq) < d@°183(p, q) for any such matrices.
According to a result of Cencov [35], a Riemannian distance on &.,5 with metric ¢ is contractive if
and only if gf)las (a,a) = ¢, a2 /py for any a € R™ and some ¢ > 0, that is, the infinitesimal distance
between a probability vector p and a neighboring vector p + dp is proportional to

" dp2
ds%ishor = Z ﬂ : (218)
i1 Pk

The associated metric is known as the Fisher metric and plays an important role in statistics. It
induces the Hellinger distance (I90]) up to a factor of one fourth.

Let us come back to the quantum case. Although g, is in principle defined on the real vector space
B(H)s.a. (the tangent space of £(H)), one can extend it as a scalar product on the complex Hilbert
space B(H). Without loss of generality, one may require that this scalar product satisfies

9p(A,B) = g,(B*, A*) = g,(A*,B*) , A,BeB(H). (219)

(for instance, this is the case for the Hilbert-Schmidt product (II)). We first note that one can associate
to g a family {K,; p € E(H)} of positive operators on the Hilbert space B(#) endowed with the scalar
product (), by setting

9p(A, B) = (A, IC;I(B)> , ABeB(H). (220)
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Let us write ppq = M(p). The monotonicity condition (2I7) reads M*ICp_Al/tM < ICp_l, which means
that IC,1,/ 2M*IC;A14MIC,1)/ ? is a contraction. This is equivalent to K, )y /&/ 2MICPM*IC;AIA/ ? being a con-

traction. Therefore g is contractive if and only if
MICPM* < ]CM(p) (221)
for any p and M.

Lemma 7.6.1. [128] The contractivity condition (221)) is fulfilled by the positive operators

1 1
Kp=Rif(Ap)RS (222)

where R, stands for the right multiplication by p (see (7)), A, = A, is the modular operator defined
in (8), and f: R4 — R is an operator monotone-increasing function with values in R.

Proof. Let us recall that the modular operators A, and A,,, on B(H) are (self-adjoint and) positive.
In analogy with the proof of Theorem [6.2.T] we introduce the contraction Caq defined by (I27]). It has
been observed in this proof that C},A,Cyp < A, . Since asking that a continuous function f : Ry — R
be operator monotone-increasing and non-negative is the same as asking that f be operator concave
(see Appendix [A]l and [27], Theorem V.2.5), it follows from the Jensen-type inequality (A4 and the
monotonicity of f that

Cruf(Ap)Ca < F(Apu) - (223)

1
Multiplying both sides by B’ pi, and taking the scalar product by the same vector, this is equivalent
to

(B'. MR} [(A)REM(B')) < (B Riy f(Ap)RA (B)) (224)

for any B" € B(#H'). Thus the operator K, defined in ([222]) satisfies the contractivity condition (22I]).
O

Formulas (220) and (222) yield a family of monotonous metrics, in one-to-one correspondence with
non-negative operator monotone functions f, given by g,(A, B) = (Ap_% , f(Ap)_l(Bp_%» for any
A, B € B(H). More explicitly, for any p with spectral decomposition p = ), px|k) (k| one finds

n

90(A,A) = D c(prop)l(RIAID]? A€ B(H)sa. , (225)
k=1

where ¢(p, q) is given by
_pfla/p) +af(p/a)

0 = F T Falp)

and satisfies c(tp,tq) = t~lc(p,q) for any t € R, t # 0, and ¢(p,p) = f(1)"'p~!. By using A,(B*) =
(A;l(B))*, it is easy to see that the condition (2I9) is satisfied if and only if f(z) = zf(z~!). In
particular, by choosing the following operator monotone functions (see Appendix [Al) :

(226)

2 -1 1 2 1
< g =t < = D 2T o

fHarm($) = Iz

o8



one is led to

p+q Inp—1Ing 4 2
CHarm(P,q) = — =2 ckMm(p,q) = ——— 2 cup,q) = ———5 = cBPqg)=—.
) = 151 () = o 0.0 = e 2 w0 =

(228)
In view of (208) and (2I6]), the last choice fp gives the Bures metrics and fy gives the Hellinger metric
up to a factor of one fourth. The second choice corresponds to the so-called Kubo-Mori (or Bogoliubov)
metric, which is associated to the relative von Neumann entropy. Actually, by substituting (2I3]) into
[212)) and taking o — 1 one obtains

s 1
S(p+dpllo) = 5 > exna(pr.p0) [ (KldplD)|” = Sgru(dp, dp) (229)
k=1

According to the formula S(p + tdp) = S(p) — ttr(dplnp) — S(p + tdpl||p), one also gets

_d?S(p +tdp)

2 )
d t=0

grm(dp, dp) = (230)
S being the von Neumann entropy (since S is concave, the second derivative in the right-hand side is
non-positive and defines a scalar product on B(H)). As stressed by Balian, Alhassid and Reinhardt [13],
this makes the Kubo-Mori metric quite natural from a physical viewpoint.

A result due to Kubo and Ando [96] states that there is a one-to-one correspondence between
operator monotone functions f and operator means, that is, maps m : (R,L) € B(H)4+ x B(H)+ —
m(R, L) € B(H) satisfying

(a) f 0K R<Tand 0 <L <N then m(R,L) < m(T,N) (monotonicity);
(b) C*m(R,L)C < m(C*RC,C*LC).
This correspondence is given by the formula
ms(R,L) = R f(R"2LR 2)Rz . (231)

By taking fham and fg as in ([227)) one obtains the harmonic mean myam (R, L) = (R/2)~! 4 (L/2)~*
and the arithmetic mean mg(R, L) = (R+L)/2, respectively, and for f(z) = \/x one gets the so-called
geometric mean (for more detail see e.g. [33]). The positive operators (222]) can be written as

Kp=ms(Rp, Lp) - (232)

The theory of Kubo and Ando shows that the harmonic mean my,m and arithmetic mean mp are
respectively the smallest and largest symmetric operator means. Thus the Bures metric gg is the
smallest monotone metric among the family of metrics given by ([220) and (222]) with the normalization

gp(1,1) = tr(p~'). It turns out that this family contains all contractive metrics, that is, all such metrics
have the form (225]).

Theorem 7.6.2. (Petz [128]) The distances with metrics g given by (223) are contractive for any
non-negative operator monotone-increasing function f(x) satisfying f(x) = xf(z~'). Conversely, any
continuous metric g : p — g, on E(H) may be obtained from (223) by a choice of a suitable function
f with these properties. In particular, there is a one-to-one correspondence between continuous con-
tractive metrics satisfying g,(1,1) = tr(p~') and operator means. The Bures distance is the smallest
of all contractive Riemannian distances with metrics satisfying this normalization condition.
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This theorem is of fundamental importance in geometrical approaches to quantum information.

Proof. The first statement has been proven above. Conversely, let g be a continuous contractive metric
on £(H) and let us show that there exists an operator monotone function f : Ry — R, such that
for any p € E(H), g, is given by ([220) and ([222) or, equivalently, by ([225) and ([226)). We first note
that g being contractive it is in particular unitary invariant, i.e. gy+,u(U*AU,U*BU) = g,(A, B) for
any unitary U (see Sec[TI]). More generally, if the quantum operations M and 7T are such that p,
A, and B are invariant under 7 o M, then gaq(,)(M(A), M(B)) = g,(A, B). The main idea of the
proof is to combine this invariance property with the uniqueness of the contractive classical distance.
Denoting by (9,)ij.k = 9o(|2) (4], |k)(l]) the matrix elements of the scalar product g, in an orthonormal
eigenbasis {|k)} of p, we need to prove that

(9p)ijkt = dir0j1 c(pi, 0j) (233)

where d;;, is the Kronecker symbol. To show that the matrix elements of g, vanish for i # j and
(k,1) # (i,7), it suffices to establish that

9o (1001 + slk)L 1)l + slk)) = g, (1) Gl — sk 18 (] — slk)) (234)

for s = 1 and s = i (the result then follows by polarization). If one of the indices i, j, k, and [ is
different from the three others, say i ¢ {7, k, [}, this comes from the invariance of g under the unitary
U =3 u |k‘>(k‘| with ulg) = —1if k = i and 1 otherwise. Hence (g,)ijm = 0 when i # j and
(1,7) # (k, ) (I, k). Similarly, by choosing u,(;) =1if i = k and 1 otherwise, this is also true for i # j
and (i,5) = (I,k). The only non-vanishing matrix elements of g, are thus (g, )i xx and (g,)sj,; for
i#].

To determine (g,);i ki, We observe that the restriction of g, to the space of matrices commut-
ing with p induces a contractive metric on the probability simplex &..s, defined by gglas(a, b) =
9p >k ar|k)(K|, D4 bilk)(K|) for any a,b € Eas. Indeed, one can associate a quantum operation M
to a stochastic matrix M by defining M(|k)(l]) = 0x > ./\/ldas\ﬁ(j] (M has the Kraus form (31))
as ./\/lda“S >0and ), ./\/lClas =1 for any k). Then M(p) = zj (./\/lClas )j17) (4| where p is the vector of

elgenvalues of p, and (IEIZD implies that ¢° is contractive under M2, According to the uniqueness
of the contractive classical metrics, one has

Oik
)

o (235)

(gp)u kk = gf)las(‘si, 6p) =c
with ¢ > 0 and &; = (52'1)?:1.

We now turn to the matrix elements (g,)i;i; for @ # j. By unitary invariance, it is enough to
determine (g,)12,12. To this end, we consider the quantum operations M from the space B(H) of
n X n matrices to the space B(C?) of 3 x 3 matrices and T : B(C3) — B(H) with Kraus operators
{A;} 5 and {B;}},, respectively, given by

— By = = 13)(i : VP i = n
A2—B2—‘1><1’+’2><2‘ ) Az—’3><‘ , Bi= m’>< ‘ ) =3,...,n. (236)

A simple calculation yields 7 o M(p) = p. As stressed above, one can deduce from the contractivity
of g, that (g,)12,12 = (9am(p))12,12, thereby showing that this matrix element depends on p; and pp
only. By unitary invariance, (g,)j,;; only depends on p; and p; and one can set (g,)ij,ij = c(pi,pj) for
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i # j, ¢(p,q) being independent of p. This complete the proof of ([233)), excepted that it remains to
justify that ¢(p,p) = ¢/p.

We proceed by showing that ¢(q, p) is given by (228) with f having the desired properties. Thanks
to ([2I9), we know that ¢(p,q) is real and symmetric. One verifies that ¢(p,p) = ¢/p by the follow-
ing argument. Let us assume that p has a degenerate eigenvalue, say p; = pa. Then p = UpU*
for any unitary U acting trivially on span{|3),...,|n)}. By unitary invariance, g,(|¢)(¢|,|¥)(¢]) =
(gp)1111 = ¢/p1 for any [¢) € span{|1),|2)}. Taking e.g. |¢) = (]1) +2))/Vv2 and using [Z33)), we get
(9p)12,12 = c(p1,p1) = ¢/p1. In order to establish that ¢(p, ¢) is homogeneous we consider the quantum
operations M : B(H) — B(H ® Hg) and T : B(H ® Hg) — B(H) defined by M(p) = p® 1/ng and
T (p) = tre(p) (here ng is the dimension of Hg). Clearly, T o M = 1, thus by similar arguments as
above and by taking advantage of (233]), one finds

pir;) = @p)izas = 9o (MUDGD), MU GD) = mg'e( 72, 22) (237)
As this is true for any positive integer ng and any state p, one concludes that c(tp,tq) = t~tc(p, q)
for all p,q € [0,1] and all rationals ¢t with tp, tg € [0,1]. This is the point where we need the
continuity of the metric to make sure that ¢(p, q) is continuous. Then the equality holds for all real t.
Setting f(z) = 1/c(x,1) and using the symmetry of ¢(p, q), one easily derives the identities (226]) and
f(x=Y) = 271 f(x). Furthermore, f(1)~! = ¢(1,1) = c.

To complete the proof, we have to show that f is operator concave. With this aim, let us consider
the inequality (22I]) which is equivalent to g, being contractive. We choose M in this inequality to be
the partial trace operation T : p+ trez(p) ® 1/2 on B(H ® C?) and p = (po ® [0){0] + p1 ® [1)(1])/2.
From (221]) we find that for any A € B(H),

(THA®1), KT (A®1) <(A® 1, Krp(A®1l)). (238)

But K;(A® 1) = (Ky,(A) ® [0)(0] + K,y (A) @ [1)(1])/2. Accordingly, [238) reduces to

1
§<A’ (ICPO + ICPl)A> < <A7 IC(P0+P1)/2A> ) (239)

thereby showing that the map
p—=Ky= f(ﬁpRgl)Rp (240)

is mid-point concave. By a standard argument based on a dyadic decomposition, it follows that
this map is concave [33]. Using the #-isomorphism between the C*-algebras B(B(H)) and B(H @ H)
(Sec2.T]), this is equivalent to say that the map

Am f(Ae (AT 1w AT (241)

is concave. One easily deduces from this that the map (A, B) — f(A® (BT)™')1 ® BT is jointly
concave. In particular, A — f(A) is concave. This shows that f is operator concave. O

61



8 State discrimination and parameter estimation in large systems

In this section we examine two problems related to the state discrimination talk discussed in Sec. [,
namely, the quantum hypothesis testing and parameter estimation. In the first problem, one wants
to determine asymptotically the probability of error in discriminating two states when one has N
independent copies of those states, for N — oo. In the second problem, the goal is to estimate as
precisely as possible a real parameter from measurements performed on a large number of particles in
a state depending smoothly on this parameter.

8.1 Quantum hypothesis testing: discriminating two states from many identical
copies

An important issue in classical information theory is to discriminate two probability measures p; and
p2 on a measurable space (2, F), given the outcomes of N independent identically distributed (i.i.d.)
random variables, whose law is either p; or ps. Since one has to decide among two hypothesis — the
first (second) one being that the observed data is distributed according to p; (p2) — this discrimination
task bears the name of “hypothesis testing”. For a given test function, i.e. a random variable Mj.q

with values in [0, 1], the probability of error is Py ny = mpgN)(Mdas) + 772p§N)(1 — Mss), where
pl(-N) = pf@N is the N-fold product measure and 7; the prior probability attached to p;. It is easy to

cc;l%fince oneself that the minimal error is achieved for the maximum likelihood test function defined
b

MP =1
clas {ﬁQPgN)—ﬁlﬁgN)ZO} s

(N)

[

(242)

PEN) = dpl(.N)/du(N) being the density of p

The corresponding error is

(N) (N)+p(N) — ,ON

with respect to the measure '’ = p; 5 =M

opt Ny _ : (N) (N) (N) 1 _
A O A R G )

. N N
= . dp™ min{m p{™ 125 (243)
One is typically interested in the limit of a large number of tests, i.e. N — oco. One can show that

the error probability decays exponentially like Pe(;?tN ~ e NE&(P1P2)  with an exponent given by the
Chernoff bound [40]

= — 1i i opt (N) . s / a l1—a
§(p1p2) = — lim I Py ({p; 7 mi}) = aéﬂ)f,l) In Qduplpg ; (244)

where we have set p; = pgl). One recognizes in the infimum in the right-hand side the classical Rényi
divergence (I48]) multiplied by (o — 1).

In quantum mechanics, the hypothesis testing can be rephrased as the discrimination of two N-
fold tensor product states p?N and pg@N . The corresponding minimal error probability is given by the
Helstrom formula (68]),

1
PPN mi}) = 5(1 —tr|An]) . Ax =mpPN — P, (245)

19 Here 14 stands for the indicator function on A C Q,ie 1a(w)=11if w € A and 0 otherwise.
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and the optimal measurement consists of the orthogonal projectors Mipt on the supports of the
positive and negative parts of Ay. Note that if p; and ps commute then M°P" can be identified
with the maximum likelihood test function and one recovers the classical formula (243]) from (245]).
Surprisingly, the generalization of the Chernoff bound ([244]) to the quantum setting has been settled
out only recently. It has been highlighted in Sec. that the Rényi divergences appearing in this
bound have several natural quantum extensions, according to the choice of operator ordering. It was
proven by Audenaert et al. [7] and by Nussbaum and Szkola [118] that the right extension is the

normal-ordered relative Rényi entropy S (p||o) defined in (I42]).

Proposition 8.1.1. (Quantum Chernoff bound [7, 1I8]) One has

1
— lim — I PP ({p®V, m}) = — inf {In(tr[pfpi ) ¢ = 1—a)s . (246
i I B ({7 mi) ael(n(),l){ n(tr[pfpy ])} azt(lol?l){( a)Sy (Pl||P2)} (246)

This limit defines a jointly convex function {g(p1, p2) with values in Ry U {+oo}, which is contractive
under quantum operations. Moreover, {q induces the quantum Hellinger metric up to a factor of one
half, that is, if p and p + dp are infinitesimally close then g(p + dp, p) = gu(dp,dp)/2 is given by

(214).

The infimum in (246)) is attained for a unique a € (0, 1) satisfying tr(p$ps~*(In p1 —In p2)) = 0 [7].

Actually, for any fixed p and o, the function a — oS (p||o)® = tr[p®a'=?] is convex (this is a simple

consequence of the convexity of a — p®q'~ for p, ¢ > 0) and ™ (pllo) < Féﬁ) (plle) = 1 by the Holder
inequality (B]). Before entering into the proof, let us also mention that {g(p, o) < oo whenever p and o
do not have orthogonal supports. If p = |1) (1| is pure, the quantum Chernoff bound is related to the
fidelity by £g(p,0) = —InF(p,0) = —In(¢|o|y) (in fact, then M (pl|lo)® = (b|o'=|¢p) is minimum
for a = 0).

Proof. To shorten notation we write PC%ITEV when referring to Pe(;ffN({p(gN 1,09V 1 —n}). The fact
that
1
lim sup N In Pe%%\, < —&o(p,o) = ir(lfl){ln(tr[paal_a])} (247)

N—oo ac 07

follows from (245]) and the trace inequality

1

5 (tr(4) + t0(B) = tr[A = B|) < tr(A°B' ™) | (248)
where A and B are non-negative operators and a € [0,1]. This inequality has been first established
in [7]. A simple proof due to N. Ozawa is reported in Appendix[Bl The reverse inequality to (247) is
a consequence of the classical Chernoff bound. This can be justified as follows [I18]. Let us observe
that the optimal measurement is a von Neumann measurement {II°P*, 1 —II°P'} with IT°P* a projector,
so that

PR =1-P = nte((1—TP)p%N) 4 (1 — p) tr (II°P*0=N)
= 7 (mpal(@il(1 = W) [* 4 (1= ) (wT@)[*)  (249)
k,l

where {|¥))} and {|®;)} are orthonormal eigenbases of p®" and ¢®¥, respectively, and py, and g, are
the corresponding eigenvalues. We may without loss of generality assume that < 1/2. By using the
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inequality |a|? + |b|> > |a + b|?/2 one gets

PN > 772 min{py, ¢} (21T | (250)
il

But p® corresponds to N independent copies of the state p = >, px|tx) (x|, hence its eigenvalues py
and eigenvectors |W) are products of N eigenvalues p, and N eigenvectors |¢,) of p, respectively, and
similarly for o® with the eigenvalues ¢, and eigenvectors |¢;) of o. This means that pg|(®;|¥j)[* can
be viewed as the N-fold product of the probability 71 on {1,...,n}? defined by (m1)x = pr|{¢|vr)|*.
Analogously, q|(®;|W)|? is the N-fold product of mo with (m2)r = q|(¢i|¢k)|*. Consequently, the
sum in (250) is the minimal error probability Poffgv({wl(.m, 1/2}) for discriminating 71 and 7o with
equal prior probabilities (see (243])). One then deduces from the classical Chernoff bound ([244]) that

o L P> it fn( Y i) | = ~go(po). (251)

N—oo a€e(0,1) P

Together with (247) this proves the quantum Chernoff bound.

It is nevertheless instructive to show (251)) directly from (250), without relying on the classical
result, by using the theory of large deviations for sums of i.i.d. random variables and the relative
modular operator A, (see Sec. [2]), which appears here quite naturally [87]. Indeed, let us set § = ,0%
and note that for any real function f : (0,00) — R, according to (§) and by the functional calculus, it
holds

€. FBn) 8= pif () k) (252)
k=1
In particular, (£, In(A,,)§) = tr[p(lno —Inp)] = —S(p[|o), as already observed in Sec. Let

m,, be the spectral measure of —In A, with respect to the vector . This is a probability measure
(¢ is normalized), which is related to the relative entropy by S(p|lo) = [ dm,,(t)t. Taking f(z) =
min{z, 1} = g(—Inx) with g(t) = min{e~?, 1} in ([252)), one finds

olo(

Z min{Psz}’<¢z\¢k>\2 = <§7 g(_ In Ao\p) §> = /Rdmcr|p(t) g(t) > mcr|p(R—) : (253)

k=1

A similar inequality holds for the sum in the right-hand side of ([230)): it suffices to substitute A, , by
Ason|oN = A?g . The spectral measure of —In A?g is a product measure m((}_]‘\;) and thus —In ASQIJPV

)

can be interpreted as a sum of i.i.d. random variables — In Ag{p
principle ensures that if €/, |p(O) <h< eg‘ (1) then [53]

with law m The large deviation

alp

lim %m( 0p< ZlnA(" < 9N>> = — sup {af —¢y()} (254)

N—o0 a€l0,1]

is up to a minus sign the Legendre transform of

Eolp( ln</ dm,,(t) > In((¢, Aa‘p@) = In(tr[p'"*0?]) . (255)
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If p # o then eo‘p(O) —S(pllo) < 0 and eo‘p( ) = S(o]|p) > 0 (the second identity follows from the
first one by symmetry e,|,(1 — a) = e,,()). Thus the large deviation bound (254)) holds for 6 = 0.
Taking advantage of (250) and (253]) one is led to

opt P 1 . 2
l}\%gof N In Per?N > l}\rfgl?of ~ ln< kgl min{py, QL}‘@)H‘PQ‘ > (256)
1 _<N> ZN )
> ]\}1—H>3>o N In <mop <— 2 In Ao‘p < 0>> = aénofl {ea|p } =—¢o(p,o),

in agreement with (25I). Note that these arguments justify in particular that the second member in
the classical Chernoff bound (244]) is bounded from above by the third one, as a consequence of the
large deviation principle. Applying ([247) for commuting matrices p and o, this gives a full proof of
this classical bound.

The joint convexity of £g(p, o) mentioned in the proposition results from the joint convexity of the

relative entropies s (p|lo) for o € (0,1), which follows from the Lieb concavity theorem, see Sec.
One then gets the contractivity of {g with respect to quantum operations from Proposition [6.2.2)
This concludes the proof. O

Remark 8.1.2. The quantum Chernoff bound (246) can be generalized to the case where the two
states p; n € E(HEN) to discriminate are not product states (i.e. for dependent copies).

Actually, the large deviation principle used in the proof is not restricted to sums of i.i.d. random
variables. It must be assumed that the limit e(a) = limy_0o N~ In tr[pf NP ] exists, is continuous
in a on [0,1] and differentiable on (0, 1), and its right derivative ¢/(0) is smaller than its left derivative

€'(1) (see [87]).

Remark 8.1.3. In asymmetric hypothesis testing one is interested by the minimal error probability of
identifying the second state under the constraint that the error on the identification of the first state
18 smaller than €,
N
Parve = omin {erMoE ] erl(1 = M)pP™] < e} - (257)
The quantum Stein’s lemma [76, [121] shows that this probability decays exponentially with a rate given
by the relative von Neumann entropy, i.e.

1
= Jm PR = S(le2) - (258)
The limit one gets by replacing the fized parameter ¢ > 0 by e~ (that is, asking for an exponentially
decaying error on the identification of p1) is, in turn, given by the Hoeffding bound (see e.g. [87] for
more detail).

An interesting link between the quantum hypothesis testing and fluctuation theorems in quantum
statistical physics has been found by Jaksi¢ et al. [87]. They have shown that the quantum Chernoff
bound for discriminating the forward and backward time-evolved states pir/p as 1" — oo appears in
the large deviation principle for the full counting statistics of measurements of the energy/entropy
flow over the time interval [0, 7).
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8.2 Parameter estimation in quantum metrology

The parameter estimation problem is a kind of continuous version of quantum state discrimination,
in which the system state p(6) depends on a continuous parameter §. One aims at estimating this
unknown parameter with the highest possible precision Af by performing measurements on p(#). This
precision is limited by our ability to distinguish the states p(6) for values of § differing by A6.

8.2.1 Phase estimation in Mach-Zehnder interferometers

An important example is phase estimation in the Mach-Zehnder interferometer represented in Fig. Bl
An input photon passes through a beam splitter [28] which transforms its state into a superposition
of two modes propagating along different paths. These two modes acquire distinct phases 6; and 6
during the propagation and are finally recombined in a second beam splitter to read out interference
fringes, from which the phase difference § = 6y — 6> is inferred. The interferometric sequence can be
described by means of rotation matrices acting on the two-mode photon state. We shall assume at this
point that the reader is familiar with second quantizatio. The generators of the aforementioned
rotations are the angular momentum operators J;, J,, and J; related to the bosonic annihilation and
creation operators b; and b} of a photon in mode j = 1,2 by J, = (b7b2+b3b1)/2, J,, = —i(bjb2—b3b1)/2,
and J, = (bjby — b3by)/2 (Schwinger representation). These operators act on the bosonic Fock space
F(C?) associated to the single photon space H ~ C2. The output state of the interferometer is given
in terms of the input state pi, by [172]

Pout (0) = e/ py et/ (259)

where 6 is the phase to be estimated and J, = n,J; + nyJy + n.J. the angular momentum in the
direction specified by the unit vector n € R3.

One can also realize a Mach-Zehnder interferometer with ultracold atoms forming a Bose-Einstein
condensate in an optical trap, instead of photons. Then the two modes correspond to two distinct
atomic energy levels and the total number of atoms N, = N; + N» in these modes is fixed. In such a
case the Hilbert space of the system has finite dimension N, +1 (one deals here with indistinguishable
particles). Atom interferometry in Bose-Einstein condensates is very promising due to the tunable
interactions between atoms, which make it possible to generate dynamically entangled states involving
a large number of particle. We will see below that using such entangled states as inputs leads to
smaller errors A in the phase estimation than for separable inputs. For independent (i.e. separable)
particles the precision is of the order of (Af)sy =~ 1/4/N, (shot noise limit). Higher precisions than
(Af)gn have been reported experimentally [65, [133]. Important potential applications of these ultra-
precise interferometers include atomic clocks and magnetic sensors with enhanced sensitivities [163,
140].

8.2.2 Quantum Cramér-Rao bound

In the more general setting, the problem of estimating an unknown parameter 6 from a #-dependent
state evolution and measurements on the output states can be described as follows. For simplicity we
assume that the evolution is given by a self-adjoint operator H (equal to Jy, in the above Mach-Zehnder
interferometer), i.e.

p(e) _ e—i@Hp ei@H , (260)

20 A good mathematical introduction to this formalism can be found in [29].
21 Tn contrast, because of the absence of direct interactions between photons it is difficult to generate large numbers
of photons having multipartite entanglement.
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BS2 D2

Pin

BS1

Figure 2: In a Mach-Zehnder interferometer, the light entering in one of the two input modes is split
into two beams by a beam splitter (represented by the rectangle BS1 inclined by 45°). The photons
in the first and second beams acquire some phase shifts 1 and 69, respectively. They then go through
a second beam splitter (rectangle BS2) and finally into the detectors D1 and D2, which count the
number of photons in the two output modes.

where p = p(0) = pi, is the input state. One performs generalized measurements given by a POVM
{M;}72, on the output state p(f) = poutr- The probability to get the outcome i is p;p = tr[M;p(0)]
(Sec.B3]). After N independent measurements?3 on copies of p(#) yielding the outcomes 41,19, ..., N,
the parameter 0 is estimated by using a statistical estimator depending on these outcomes, that is, a

function Ot (71,42, . ..,in). The precision of the estimation is defined by the variance

1
. 8<eest>9 -1 2\ 2
A§ = <<‘T‘ Bss — 9> . (261)

where (-)g denotes the average for the product probability measure {p;,jg...piyjo}i) i =1 of the
independent outcomes. The factor |{fest)g/00|~! is put in front of e to remove some possible
differences in physical units between 6 and its estimator 6o (see [30]). We restrict our attention to
unbiased estimators satisfying |(fest)g/00| ! (fest)o = 0. For a given input state p, one looks for the
smallest error A that can be achieved. This involves two different optimization steps, associated to
the optimization over (i) all possible estimators 65 and (ii) all possible measurements. The step (i)
relies on a classical result in statistics known as the Cramér-Rao bound,

1 O{Oest )0\ 2
<(A905t)2>92Nf({pw})( 5 9) , (262)

22 Tn practice the experiment is repeated N times, starting from the same initial state p and in similar conditions, so
that the quantum evolution can be considered to be the same at each run.
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where Afqst = Oost — (Best)g and
1
({Pz\e}) Z

< Dijo

(5 =

is the Fisher information. The inequality (DHZI) is saturated asymptotically for N — oo by the
maximum-likelihood estimator. The second optimization step (ii) has been solved in Ref. [30], leading
to the following important statement. Recall that the quantum Fisher information is defined as (see

Sec. [T.0)
]:Q(p’ H) = 4(QB)p(_i[H7 p]v _i[H’ ,0]) = 4dB(,07 p+ dp)2 ) (264)

where gp is the Bures metric and dp = (9p/00)d8 = —i[H, p|db.

Proposition 8.2.1. (Braunstein and Caves [30]) The smallest error A that can be achieved in the

parameter estimation s
1

VN/Fq(p, H)

where N is the number of measurements and Fq(p, H) is the quantum Fisher information. Thus
AO > (AO)pest and the equality AO = (AB)pest can be reached asymptotically as N — oo.

(Af)pest = (265)

It is worth noting that (265]) can be interpreted as a generalized uncertainty principle [30]. In fact,
if p = |U)(¥| is a pure state, in view of the relation ([2I0]) between Fq(p, H) and the square fluctuation
((AH)?)y of H, the bound Af > (Af)pest can be written as

1
2\/_

In this uncertainty relation H plays the role of the variable conjugated to the parameter 6.

(266)

Em)l»—-

A ((AH)?)

Proof. We present here a direct proof of (265]) based on the results of Sec. [T (see [30] for an independent
proof). Before that, let us explain how the classical Cramér-Rao bound is derived. By differentiating
with respect to 6 the identity

0= Aeost Z Piylo - - piN\GAeest(ily s 7iN) (267)
11,00iN
one obtains N
alnpiu %] . . 0 ees
Z pil‘e"'piN|GZT|AHCSt(Zl7""ZN)_ <69t>9 . (268)
B1,in v=1

Then the Cramér-Rao bound (262]) readily follows from the Cauchy-Schwarz inequality. Of course,
the interesting point is that equality can be achieved in the limit N — oo, but we will not dwell into
that. Going back to the quantum problem, we rearrange (262]) as

(d9)? - (tr[M;dp(0)])
N < (49) 2;T(9)] (269)

with dp(8) = (9p/06)dd. Now, by using Proposition [[.3.1] and performing an expansion up to the
second order in dp, one finds

[ (Mdp(0)2
Falpto), 10 = s 45+ T (270)
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Here, the supremum is over all POVMs {M;} and we have used ), tr[M;dp(0)] = tr[dp(#)] = 0. But
Fo(p(0),H) = Fo(p, H) as a consequence of (209), since p(#) and p are related by a unitary evolution
generated by H. Comparing ([269) and (270), we conclude that infgy;y A0 > (Af)pest, with equality
as N — oo for the maximum likelihood estimator, as stated in the proposition. O

Before proceeding to derive upper bounds on Fqg(p, H), let us observe that the monotonicity of
the Bures metric gg implies [61]:

Corollary 8.2.2. The quantum Fisher information Fq(p, H) is convex in p.

Proof. Given two states pg and p; on H and ng,m1 > 0, no +m = 1, we introduce the state p =
nopo @ [0)(0] + m1p1 @ |1)(1] on H ® C? as in the proof of Theorem [7.6.2l From the expression of Fg
in the right-hand side of (209]) one deduces that

Fop, H® 1) = noFq(po, H) +mFq(p1, H) - (271)

Let 7 : G ~ trc2(3) denote the partial trace on C2. Then T (p) = p = nopo +n1p1 and T((H®1,p]) =
[H,p]. As T is a quantum operation, it results from the contractivity of the Bures metric that

(98)5(—i[H @ 1, 5], —i[H ® 1,p]) = (98),(—ilH, p], —i[H, p]) - (272)

Collecting together ([27I)) and (Z72) yields Fo(p, H) < noFq(po, H) +mFq(p1, H). ]

8.2.3 Interferometer precision and inter-particle entanglement

We now show by relying on Proposition B.2.1] that if the input state has N, particles in a maximally
entangled state, the precision (A#)pest is smaller by a factor 1/ \/Fp with respect to the precision
obtained with separable input states. The Hilbert space of the particles is H(V?) = H; ® --- @ H Np»
‘H, being the Hilbert space of the vth particle. Assuming that the particles do not interact between
themselves, the Hamiltonian reads

H=) 1@ - ®H,® - ®1, (273)

v=1

where H, acts on H,. To simplify the discussion we suppose that the single particle Hamiltonians
H, have the same highest eigenvalue A\, and the same lowest eigenvalue Ani,. This is the case for
instance if H is the angular momentum J,, in the interferometer of Sec. B2.1] (then H, = (nyo., +
NyOyy + N202,)/2 with |n| = 1 and 04, 0y, and 0, the three Pauli matrices acting on H,, ~ C?, so
that Amax = —Amin = 1/2). Let us recall that the quantum Fisher information Fq(|¥), H) of a pure
state |U) is given by the square fluctuation ((AH)?)y = (V|H?|¥) — (U|H|¥)2 up to a factor of four
(see Sec. [[.H). We first observe that the maximum of ((AH,)?),, over all pure states |¢,) € H, is
equal to (Ah)? = (Amax — Amin)?/4, the maximum being attained when |1,) = (|y.max) + |Gy min))/V2,
where |¢y max) and |¢, min) are the eigenvectors of H, with eigenvalues Apmax and Amin, respectively.
Let the N, particles be in a separable state psep, and let {|¥;),n;} be a decomposition of psep into pure
product states |¥;) = |1h;1) ® -+ @ |y, ) € HO). A simple calculation gives [63]

Np
Fo([Wi), H) = 4((AH)?),, =4 (AH,)%)y, < A(AR)N, . (274)
v=1
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By applying Corollary we get
psep Separable = Fo(psep, H) < 4(AR)2N,, . (275)

According to Proposition B.2.1] the phase precision of the interferometer satisfies for separable inputs

Af > (Ad)sn (276)

1
~ 2Ah,/NN,
This means that separable input states cannot do better than N, independent particles sent one-by-
one through the interferometer, henceforth producing an error of the order of 1/,/N,,. Note that (275])
provides a sufficient condition F¢(p, H) > 4(Ah)?N,, for entanglement of p [130]. There are, however,
entangled states which do not satisfy this criterion [130]. Such entangled states are not useful for
interferometry, in the sense that they produce phase errors larger than the shot noise value (Af)gn.
We now argue that much higher Fisher informations, of the order of Ng, can be achieved for
entangled states. By the same observation as above, ((AH)?)y has a maximum given by the square
of the half difference of the maximal and minimal eigenvalues of H. For the Hamiltonian (273]), one
immediately finds
Fo([¥), H) < 4(Ah)*N] . (277)

This upper bound is often called the Heisenberg bound in the literature. It is saturated for the entangled
states [63]

|\II&:3E1‘5> = % <|¢1,max>|¢2,max> e |¢Np,max> + |¢1,min>|¢2,min> e |¢Np,min>) . (278)
For large N, such states deserve the name of macroscopic superpositions, as they are formed by a
superposition of two macroscopically distinct states in which each particle is in the highest energy
eigenstate of the single particle Hamiltonian (for the first component of the superposition) or in the
lowest energy eigenstate (for the second component). If one uses these superpositions as input states of
the interferometer, an error of A6 = 1/(2AhV/NN,,) = (Af)sn/+/ N, can be achieved asymptotically
for N — oo on the unknown phase. According to (265]) and (277]), this is the best possible precision.
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9 DMeasures of entanglement in bipartite systems

Even if it would be better for many computational and communication tasks to work with maximally
entangled pure states, in practice the coupling of the system with its environment transforms such
states into non-maximally entangled mixed states because of the induced decoherence processes [31],
64, [70]. It is thus important to quantify the amount of entanglement in an arbitrary quantum state.
Unfortunately, this amount of entanglement is not a directly measurable quantity. It is quantified
by an entanglement measure, which vanishes if and only if the state is separable and cannot increase
under local operations on each subsystems and classical communication (entanglement monotonicity).
All measures satisfying these two requirements are not equivalent, i.e. a state p can be more entangled
than a state o for one measure and less entangled for the other. In this section, we investigate the
properties of entanglement measures, give their general form for pure states, and study more especially
two of the most popular ones, the entanglement of formation and the concurrence. We restrict our
attention to bipartite entanglement (see [67, [82] for generalizations to entanglement in systems with
more than two parties).

9.1 Entanglement as correlations between local measurements

Let |¥) be a pure state of a bipartite system AB. In view of the discussion in Sec.[Z4] it seems natural
physically to characterize the entanglement in |[¥) by maximizing the correlator G 45 (|¥)) in (I7) over
all local observables A € B(Ha)s.a. and B € B(Hp)s.a. and to define

NI v I - WL )

One must face with some arbitrariness on the choice of the norm used to bound AA=A4 - (AR 1)y
and AB = B — (1 ® B)y. In order to obtain an entanglement measure with the required properties,
we take the U-dependent norm ||AAlje,w = max;; [(a;|AA|a;)|, where {|a;)} is an orthonormal
eigenbasis of the reduced state [py]a, and similarly for [|AB||o, v with the eigenbasis {|8)} of [pw]s.
These norms correspond to the infinity norms of the vectors in Haa and Hgg associated to AA and
AB via the isometry (B). By using the Schmidt decomposition (@) and setting A;; = (a;|A|a;) and
B,; = (B8;|B|Bj), one finds

Gap(|¥)) = (AA® AB)y = > " pi(AA)i(AB)ii + > /iafi; Aij Bij - (280)
i=1 i#j

The Cauchy-Schwarz inequality immediately yields

G(1W) = max_{(Aa)*}+C(|¥)), (281)

= ma
[Aalleo<1

where the overline stands for the average with respect to the Schmidt coefficients p; (e.g. @ =", pia;),
Aa=a—awitha=(411,...,4,,), |[Aalw = max; [(Aa);|, and

o(w) =3 v = (w(VIwla)) — 1. (282)
i#j

Thus C(|¥)) = 0 (similarly, G(|¥)) = 0) is equivalent to p; = 0 save for one index i, that is, to |¥)
being separable. Furthermore, C(|¥)) < n — 1 with equality if and only if u; = 1/n for all 4, that is,
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if and only if |¥) is maximally entangled (Sec. . Finally, we note that G and C' are invariant
under local unitaries, i.e. G(Ug @ Up|¥)) = G(|¥)) for any unitaries U4 and Up on Ha and Hg. For
two qubits one obtains

G) = iy — L+ C(W) ,  C() = 2/fiorin (283)

with fimax = max{po, p1}. It is easy to show that C(|¥)) = [(¥|o, ® 0, J| V)|, where o, = i(|0)(1] —
|1)(0]) is the y-Pauli matrix and J the complex conjugation in the canonical basis. This quantity has
been first introduced by Wootters [169] and is known as the concurrence.

One may wonder how the correlator G4p could be generalized for mixed states. The first guess
would be to replace the expectation value (-)gy by (-), = tr(p-), but one easily sees that then G(p)
can be non-zero even for separable mixed states, because this correlator contains both the quantum
and classical (i.e. statistical) correlations in the density matrix p. Noting that

Can(1¥) = (A4S 1118 B))"), — H(AMAB1)), ~ ((A0©B)), (@89

it is tempting to define a correlator for p in terms of the quantum Fisher information (209), i.e. of the
Bures metric gg,
1

Ganlp) = 3(FalpA®1+19B) = Folp. Aw1) — Folp,1 B))

= Re{(g8),(-i[A®1,p],—i[l ® B,p])} .

By inspection on (2I0), Gap(p) reduces for pure states to the previous correlator. However, the
maximum of |Gap(p)| over all A and B does not fulfill the axioms of an entanglement measure. We
will see in Sec. another way to define the concurrence C for mixed states, by using on a convex
roof construction.

9.2 LOCC operations

The main physical postulate on entanglement measures is that they must be monotonous with respect
to certain state transformations. Such transformations that cannot increase entanglement are called
Local Operations and Classical Communication (LOCC) and can be described as follows [23], [82].
Let us consider an entangled state p shared by two observers Alice and Bob. Alice and Bob can
perform any quantum operations Ma : B(Ha) — B(H,) and Mg : B(Hg) — B(Hg) on their
respective subsystems A and B. Here, the final spaces 1/, and Hg may include local ancillae, or may
be some subspaces of Ha and Hg, respectively. The corresponding transformations on the system
AB are called local quantum operations. They are of the form M;,c = Ma ® Mg and are given by
families {A; ® B;} of Kraus operators, where A; and B; are local observables on A and B. Local
operations are performed physically by coupling each subsystem to a local ancilla and by making joint
unitary evolutions and von Neumann measurements on the subsystem and its ancilla (see Sec. B.2]).
Such processes can clearly not increase the amount of entanglement between A and B. In addition
to performing local generalized measurements, Alice and Bob can communicate their measurement
outcomes to each other via a classical communication channel (two-way communication). No transfer
of quantum systems between them is allowed. Thanks to classical communication, the observers
can increase the classical correlations between A and B, but not the AB-entanglement. A LOCC

23 This last property is not true if one uses the operator norm instead of || - ||co,w in (@79), except in the two-qubit
case n = 2.
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operation is a quantum operation on B(Hag) obtained through a succession of the aforementioned
actions of Alice and Bob, taken in arbitrary order. For example, if Alice performs a measurement on
A and Bob a measurement on B depending on Alice’s outcome i (one way communication), the post-
measurement state in the absence of readout is

Mi_yway(p) = Z 1® Mg)(Ai ®1pAF @1). (285)

This defines a LOCC operation with Kraus operators 4; ® Bj(i), where >, A¥A; = Zj(B](.i))*B](.i) =1
Any LOCC operation can be obtained by composing local operations M. with the maps

MBocalp) =D (Ai®lpA;@1)® k) (ki , MBocalp) =D (1@B;pl®B;) @|e) (e, (286)

¢ J

where >, A7A; = 5, BiB; = 1 and {|k;)} (respectively {|e;)}) is an orthonormal basis for Bob’s
ancilla (respectively Alice’s ancilla) [82]. A strictly larger but much simpler class of transformations,
known as the separable quantum operations [160], is the set of all operations with Kraus operators
A; ® By, i.e.
Maep(p) = A; @ BipA; @ B} (287)
1

with A; € B(Ha,H)y), Bi € B(Hg, M), and >, AfA; ® BfB; = 1. The local operations and maps
([280]) being separable, any LOCC operation is separable. A result from Ref. [24] shows, however, that
certain separable operations are not LOCCs.

It is clear that the set Sag of separable states is invariant under separable operations. It is also true
that every separable state can be converted into any other separable state by a separable operation.
Actually, any separable state can be obtained from the classical state pelas = D1, Pjkld) (7] @ |k) (k|
by such an operation (take A;ji = /ni|¢s)(j| and Byjp = [¢s) (k| with n;, [1;), and |¢;) as in ([I9)).
Furthermore, an arbitrary state p can be transformed into a classical state pcas by a measurement in
the product basis {|7)|k)}, which is a local operation.

When one restricts LOCC transformations to pure states, a great simplification comes from the
following observation. If the space dimensions of A and B are such that nay > ng, any measure-
ment by Bob can be simulated by a measurement by Alice followed by a unitary transformation by
Bob conditioned to Alice’s outcome (such a conditioning is allowed as Alice and Bob can communicate
classically). In fact, let {|a;)} 2, and {|8;)};%; be orthonormal eigenbasis of the reduced states [pw]a
and [py]g, and let B; be the Kraus operators describing Bob’s measurement. Consider the measure-
ment done by Alice with Kraus operators A; = > . ,(B;)i;|ou){e;|, where (B;);; = (6i|BilB;). The

unnormalized post-measurement states

i) = 1@ Bi|W) = > /i (Biilag)|B) 5 195 = A @ 1[®) = > /i(Bi)ilan)|B;)  (288)
75l

j?l

gl

have the same Schmidt coefficients because trg(|®;)(®;|) and trA(|<T>;><<T>;|) are related by an isometry
Hpa — Hg. Thus |<T>;> =U;® VZ|EIV>Z> for some local unitaries U; on Ha and V; on Hg. Consequently,
Bob performing the measurement {B;} is equivalent to Alice performing the measurement {U*A,;}
and Bob performing the unitary transformation V;* when Alice gets the outcome i. Applying this
result to all Bob’s measurements, we conclude that a LOCC acting on a pure state |¥) may always be
simulated by a one-way communication protocol involving only three steps: (1) Alice first performs
a generalized measurement on subsystem A; (2) she sends her measurement result to Bob; (3) Bob
performs a unitary evolution on B conditional to Alice’s result.
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Based on this observation, we say that a pure state |¥) € Hapg can be transformed by a LOCC
into the pure state |®) € Hag if there are families of Kraus operators {A;} on Ha and unitaries {V;}
on Hg such that all unnormalized conditional states A; ® V;|¥) are proportional to |®), irrespective
of the measurement outcome 7. Note that this is equivalent to Myocc(|¥)(¥|) being equal to |®)(P|,
with Mpocc the LOCC operation with Kraus family {4; ® V;}. One defines in this way an order
relation on the set of pure states. Nielsen [116] discovered a nice relation between this order and the
theory of majorization for n-dimensional vectors [27]. Let x = (z1,...,z,) and y = (y1,...,Yn) be
two vectors in R™. We denote by x* the vector formed by the components of x in decreasing order,
and similarly for y*. One says that x is majorized by y and write x < y if Zle :1:2i < Zle yj for any
k=1,...,n, with equality instead of inequality for k = n.

Proposition 9.2.1. (Nielsen [I16]) A pure state |V) of the bipartite system AB can be transformed
into another pure state |®) of AB by a LOCC if and only if pgy < pe, where pyg and pg are the
vectors formed by the Schmidt coefficients of |¥) and |®), respectively.

A detailed proof of this result can be found in [I17] (Sect. 12.5), so we omit it here. This proof
relies on the following theorem: if Ay and Ag are vectors formed by the eigenvalues of two Hermitian
matrices H and K, respectively, then Ay < Ak if and only if H = ), n,U; KU} with {n;} a set of
probabilities and U; some unitary matrices.

Remark 9.2.2. Even if |¥) cannot be transformed into |®) by a LOCC, it may still happen that
|¥) ® |k) can be transformed into |®) & |k) by a LOCC (here the state of the ancilla does not change
during the transformation, i.e. it acts as catalysts in chemical reactions) [90).

9.3 Axioms on entanglement measures

We are now in position to formulate the physical postulates on entanglement measures [23] [160, [161].

Definition 9.3.1. An entanglement measure of a bipartite system AB is a function E : E(Hag) — R
such that

(i) E(p) =0 if and only if p is separable;
(i) E is conver;

(i1i) E cannot increase under LOCCs, i.e. if Myocc is a LOCC operation then E(Mrpocc(p)) <
E(p).

As any two separable states can be transformed one into each other by means of a LOCC operation,
the monotonicity (iii) implies that E is constant on the set of separable states Sag. Taking this
constant equal to zero yields p € Sag = E(p) = 0, so that only the reverse implication is needed
in (i). Furthermore, any state p can be converted into a separable state by a LOCC, thus E(p) is
minimum for separable states and E(p) > 0. The convexity condition (ii) is motivated by the following
observation [I61]. Assume that Alice and Bob share m pairs of particles in the states p1,..., pm. By
classical communication, they can agree to keep the ith pair with probability n;, thus preparing the
ensemble {p;,n;}/",. By erasing the information about which state p; was kept, the state becomes
p=>_nip; (see Sec. Z3)). The inequality E(p) < >, n;E(p;) means that this local loss of information
does not increase the average entanglement.

It results from the monotonicity (iii) that entanglement measures are invariant under conjugations
by local unitaries, i.e. E(Ux ® Ug pUx ® Ug) = E(p). For pure states |¥), this implies that E(|¥))
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only depends on the Schmidt coefficients p; of |¥). Consequently, E(|¥)) = f([pw]a) is a unitary-
invariant function of the reduced state [py]a = trg(|¥)(¥|) (or, equivalently, of [py]g = tra(|¥)(¥])).
Given that a pure state is separable if and only if it has a single non-vanishing Schmidt coefficient,
one deduces from axiom (i) that f(pa) vanishes if and only if pa is of rank one. The result below
due to Vidal [161] characterizes all entanglement measures on pure states satisfying a slightly stronger
condition than (iii). This shows in particular that there are many measures of entanglement fulfilling
the three physical requirements (i-iii) of Definition [0.3.1] given by concave functions f.

Proposition 9.3.2. (Vidal [161]) Let f : E(Ha) — R be concave, unitary invariant, and such that
f(pa) =0 if and only if pa is a pure state. Then

Ep(1¥)) = f([pwla) (289)

defines an entanglement measure on the set of pure states of AB, which satisfies the monotonicity
condition

(iii’) 3, piE(|0;)) < E(|)), where p; = ||A; ® Bi|W)|% and |®;) = p; /> A; ® B;|¥) and the probabil-

(2
ities and conditional states of a separable measurement with Kraus operators A; @ B;.

Conversely, any entanglement measure on pure states fulfilling (i1i’) is given by (289) for some function
f satisfying the above assumptions.

It should be noted that asking E(|®;)) < E(]¥)) for all outcomes ¢ would put a too strong condition
on E. Indeed, local measurements can in principle create entanglement on some conditional states,
but not on average (see below).

Proof. Let f be like in the proposition. We have already argued above that E fulfills axiom (i), and
(ii) is empty because of the restriction to pure states. Recall that for such states any measurement on
B can be simulated by a measurement on A followed by a unitary operation on B conditioned to the
measurement result. Hence it suffices to show the monotonicity (iii’) for B; = V; unitary. Let us set
peji = tra(|®:){(®;]). Then {V;*pg|;Vi,pi} is a pure state decomposition of [py]g, i.e. Y, piV;"pp;Vi =
[pw]s. This can be interpreted by saying that a local measurement on A does not modify the state of
B when B has no information on the measurement outcome. The concavity and unitary invariance
of f imply

> iEr(1®:) =Y pif (VipgVi) < flpwls) = Ef(|9)) . (290)

7 (2

This shows (iii’). Thus Ey is an entanglement measure.

Reciprocally, let E be an entanglement measure on pure states satisfying (iii’). From the discussion
before the proposition we know that E(|¥)) = f([pw]a) = f([pw]g) for some unitary-invariant function
f vanishing on pure states only. It remains to show that f is concave. We may assume that the space
dimensions of A and B are such that na < ng (otherwise one can exchange the role of A and B in the
arguments below). Let pa be an arbitrary state of A and a&l), 02\2) be such that pa = plag\l) + pgal(f)
with p1 + p2 = 1. As na < ng, one may find a purification |¥) of pa on Hag (Sec. 23). If one
can exhibit a measurement on B with outcome probabilities p; and conditional states |®;) having

24 If this would not be true, information could be sent faster than light in contradiction with Einstein’s principle of
relativity [127].
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marginals trg(|®;)(P;]) = a/(f) for i = 1,2, then the concavity of f can be deduced from (iii’) thanks

to the bound
F(pa) = E(0)) > p1E(|®1)) + p2E(|2)) = pif (o)) + paf (o) . (291)

The measurement we are looking for is just the square root measurement associated to {a/(f),pi}
(Sec. E3). Indeed, let {|a;)}72, and {|Bk)};2, be eigenbases of [py]a and [py]g and MP™, i = 1,2,
be the operators on Hg with matrix elements given by (compare with (57))
(] _%a(i) _%]a) if j,l=1 n
<5j|Mllsm|ﬁl>: YZACAT NN N J It =L ...,NA (292)
0 otherwise.

If ng > na we add a third measurement operator, equal to the projector onto span{|8x); na < k < ng}.
Then M{S™ + MS™ + MP™ = 1. With the help of the Schmidt decomposition (@) one finds that (¥|1®

MP™|W¥) equals p; for i = 1,2 and zero for i = 3, and the conditional state |®;) = pz-_l/21 ® \/ MBS0 |0)

)

has marginal trg(|®;)(®;|) = UX for i = 1,2. This concludes the proof. O

Proposition can be partially justified with the help of Proposition More precisely, the
latter implies that E¢(|¥)) > E¢(|®)) if [®)(P| = Mrocc(]¥)(¥]), that is, if there exists a LOCC
measurement on |¥) with all conditional states |®;) equal to |®). This comes from the fact that, by
unitary invariance, f([pw]a) is a symmetric function of the eigenvalues (ug)1,. .., (uw), of [py]a. But
concave symmetric functions f : R” — R are Schur-concave, i.e. x <y = f(x) > f(y) (see [27],
Theorem 11.3.3).

Many entanglement measures satisfying the axioms (i-iii) of Definition have been defined in
the literature. Their restrictions to pure states are all given by (289) for specific concave functions f.
We present in the next subsection a few of these measures, namely, the entanglement of formation, the
concurrence, and the Schmidt number. An integer-valued entanglement measure has been introduced
in [I39] by using a symplectic geometry approach, but this goes beyond the scope of this article.

9.4 Entanglement of formation
9.4.1 Entanglement of formation for pure states

A natural choice for the function f is the von Neumann entropy. We set

Eror(|¥)) = S([pw]a) = S([puls) = —ZM In g . (293)

Then Egop(|¥)) = 0 if and only if |¥) is separable and Egpor(|¥)) is maximum (and equal to Inn
with n = min{na, ng}) if and only if |¥) is maximally entangled. Since the von Neumann entropy is
concave, Proposition ensures that Fgor is an entanglement measure on pure states.

An important result due to Bennett et al. [22] relates Epor(]¥)) to entanglement distillation
and entanglement cost, which consist in the following problems. The EPR two-qubit state |®,) =
(]0Y|0) + [1)]1))/+/2 € C* corresponds to an e-bit of information shared by Alice and Bob. One such
e-bit is required, for instance, if Alice wants to teleport an unknown quantum state to Bob [117].
Entanglement distillation is the transformation of N copies of |¥) onto M < N copies of |®). It was
demonstrated by Bennett et al. that in the large N limit, Eror(|¥)) is equal to the maximal rate of
distillation M /N, the maximum being over all LOCC operations. Stated differently, Egor(|¥)) is the
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highest number of e-bits per input copy of |¥) that can be distilled from |¥) via LOCCs. Conversely,
Egror(|¥)) is the smallest number of e-bits per unit copy of |¥) from which |¥) may be obtained via
LOCCs. The precise mathematical statement is given in the proposition below.

Proposition 9.4.1. (Bennett et al. [22])

EEoli(QI\m) - Sup{“ ngnoo(ngcuMLoccﬂ‘I’@NM‘I’@ND BN Y (DTN, >:0} (294)
= inf{r; ]\}i—l>noo<L1C§1£CH‘\IJ®N><\II®N‘ _ iocc(‘q)®rN><(I)®rN’ H > —0 } . (295)

Let us stress that these identities are no longer valid for mixed states: then the right-hand sides
of (294) and (295)) are, in general, not equal. They define two measures of entanglement called the
distillable entanglement and the entanglement cost (see [82] and references therein). The fact that
these quantities coincide with Egop(|¥)) for pure states basically indicates that, among all the possible
entanglement measures, only one (namely Egop(|¥))) becomes relevant asymptotically when dealing
with many copies of |¥).

Proof. A simple and illuminating proof due to Nielsen [I16] is based on Proposition and the
Shannon equipartition theorem. It runs as follows. Let p; be the Schmidt coefficients of |¥). Consider
N ii.d. random variables with distribution {x;} and values in I = {1,...,n}. The joint probabilities
of these random variables are p(i) = g, ... jtiy, With i = (i1,...,in) € I"V. Given ¢ > 0, the “most
likely set” Ay C IV is by definition the set of all i € IV such that 2~ N +e) < p(i) < o~ NH=e) [
being the Shannon entropy of {u;}, which is defined here by using the binary logarithm (in our case,
H = Egor(]¥))/In2). The Shannon equipartition theorem [143] tells us that Ay has probability
Py. > 1—¢ and cardinality | Ay .| satisfying (1 — )2V =2) < | Ay .| < 2NH+) for sufficiently large
N. The idea of Nielsen’s proof is to approximate

‘\I/®N> = Z V(@) |, ) . ’aZN ) @ |Bir) - - ‘BZN>

ieIN

[Pne) = Y Va@)lai) - Jaiy) ©16;) - 1Biy) (296)

ZE.AN e

12

with ¢(i) = p(i)/ Py and |o), |3;) as in Theorem 22Tl Observe that the fidelity [(¥®V|®y )2 = Py .
is almost one for small . For any A C |An,|, one has

1 — 2—2N€ 22N€
|AN,€| zeA 1_5)|AN5|
The second inequality implies that q = (q(7))icay. < (=M ..., 27M 0,...,0) with
M =Iny(|Anc|(1 —€)) —2Ne . (298)

By Proposition @.2.T], this means that |®x ) can be transformed by a LOCC into the M-qubit state

M . . . .
[2M) = Z 272 j1) i) @ Jg) - i) (299)
jefo,1}3M
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We conclude that for N sufficiently large there exists a LOCC operation ./\/lg(\;’é)c from B(’Hffév ) into
B(C®2M) such that

IMEGEC(TEN) (TN — 82y (@M,

IN

125N (@EN] — (@) (@,
< 201 [(@Vjen )2 < 2vE  (300)

N

(we have used Propositions and [T4T] to get the first and second inequalities, respectively). In
addition, the distillation rate M /N is bounded from below by H — 3¢ + 2N ~'In(1 — ¢). Taking e.g.
e = 1/v/N, this proves that Egor(|¥)) < Ep(|¥)), where Ep(|¥)) denotes the right-hand side of
().

Similarly, the first inequality in (297) implies that |® ) can be obtained asymptotically by trans-
forming M’ copies of |®,) with LOCCs, more precisely it shows the existence of a LOCC operation
Mgéé)c such that

1) (2| - MEgae(@2M ) (@M ||, < 2ve (301)
for N large enough, with
=Iny(JAne|/(1 —€)) +2Ne . (302)

The production rate M’/N is bounded from above by H + 3¢ — N~1In(1 — ¢). This establishes that
Eror(|¥)) > Ec(|¥)), where Ec(|¥)) denotes the right-hand side of (293]). But Ep(|¥)) < Ec(|V)),
as otherwise one could transform asymptotically by a LOCC 7' N e-bits into rIN e-bits with ' < r,
which is impossible. Hence Egor(|V) = Ep(|¥)) = Ec(|¥)). O

9.4.2 Convex roof constructions

The extension of Eror to mixed states is done via a convex roof construction [23].

Definition 9.4.2. The entanglement of formation of a mized state p € E(Hag) is

Eror(p) = mln {ZmEEOF | P, >)} (303)

{1es),
where the minimum is over all pure state decompositions p = Y, n;|¥;)(¥;| of p.

Proposition 9.4.3. (Vidal [161]) Egror(p) is an entanglement measure with values in the interval
[0,Inn]. It satisfies the monotonicity condition (which is stronger than (iii))

(iii”) >, piEror (p; 1/\/1(2)( )) < Egor(p) with p; = tr[M(l (p)], for any family of CP local maps MY

loc\P loc\P loc

with Kraus operators {A;j @ By, }jx such that Z” kA Aij @ B Bip = 1.

Note that the maps M( ) are not required to be trace preserving (but tr[Ml(é)c( )] < 1). Modulo
a state normalization, they descrlbe wavepacket reduction processes, see (37)).

Proof. One has clearly 0 < Egor(p) < Inn. We now argue that Ep.p satisfies all the axioms (i-iii)
of an entanglement measure. In fact, Fg.p is convex by construction. Moreover, it follows from the
aforementioned properties of Egor(|¥)) and the definition of mixed state entanglement (Sec. 2.4) that
Egor(p) = 0 if and only if p € Sag. Finally, the monotonicity with respect to LOCC operations
is a consequence of the convexity and can be shown as follows. Let p = >, 7;|¥;)(¥;| be the pure
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state decomposition minimizing the average entanglement in the right-hand side of (303]). Let M be a
separable operation with Kraus operators A;® B;. We denote by n;); = ||A; ® B;|¥;)||? the probability
of outcome j given that the state is |¥;). From the convexity of Fgor and its monotonicity (iii’) for
pure states (which holds by Proposition 0.3.2)) one finds

Eror (M(p)) < ZUZEEOF U (W) < mimjjiBror () ) A ® B;|¥;))
ij
< ZmEEoF(l‘I’i>(‘Ifz‘|) = Egor(p) - (304)
i
Thus Egor is an entanglement measure. A similar reasoning shows that Egop satisfies (iii”). O

More generally, one can construct entanglement measures by extending to mixed states any entan-
glement measure on pure states via a convex roof construction analog to ([B03]). One gets in this way
a family of measures Ey depending on the choice of the function f in Proposition Conversely,
any entanglement measure E satisfying the axiom (iii”) above coincides with Ey on pure states for
some function f fulfilling the assumptions of Proposition [@.3.2] [I61]. In particular, this suggests to
define the concurrence for mixed states as

C(p) :{Iémn {Zn (J0;) } (305)

where C(|W;)) is given by ([282). It is known that pa +— [|palli/2 = (‘61‘[,0;/2])2 is concave (see (BI)) in
Appendix[Bl), whence C(p) is an entanglement measure. Another measure of entanglement of common
use for pure states is the Schmidt number obtained by choosing f(pa) = 1/ tr(p3) in Proposition

As stated above, (iii”) means that separable measurements cannot increase the average entan-
glement, but entanglement can increase if one considers conditional expectations over subgroups of
outcomes, i.e. one may have Egor(p; 1/\/11((2))6( )) > Epor(p) for some i. An example is given by the
qutrit-qutrit system in the state

p=3I0@ + 322 L 18 = —=(010)+ 1)) (306)

Assume that Alice and Bob perform each a von Neumann measurement with projectors II; onto
span{|0), [1)} and Tl onto C|2). The conditional states pagj11 = |®+)(P1| and pagjee = |2)(2| ®[2)(2]
have entanglement of formations In 2 and 0, respectively. The first value is larger than Egop(p), which
is equal to In2/2 according to the following result.

Corollary 9.4.4. Let p1 and py be two states on Hag with bi-orthogonal supports ran p; C VA ® VB
where VA C Ha and VB C Hp are such that V5 = (VML and VB = (VB)L. Let p = nip1 + nap2 with
ni >0, m +m2=1. Then Egor(p) = mEror(p1) + n2Lror(p2)-

Proof. The inequality Fror(p) < mEgor(p1) + n2Eror(p2) follows from convexity. The reverse in-
equality is a consequence of the monotonicity property (iii”) applied to the maps
M(i)(p)zwf@)wfpﬂf‘@ﬂP, 1=1,2 M(g)(p):Wf®7r28p7rf‘®7r'23+77§®7718p7r§‘®7r13, (307)

loc loc

where 7 and 72 are the projectors onto VA and VB, respectively. O
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It is worth realizing the link between Egop(p) and the classical mutual information Ix.y, where
X = {n;} is associated to a pure state decomposition {|¥;),n;} of p and Y to the outcomes of a local

measurement on A (Sec. [0.0). Indeed, the maximum of Ix.y over all pure state decompositions and
all POVMs on A is bounded by

max IX:y < S(pA) - EEOF(/)) . (308)

This inequality is a direct consequence of the Holevo bound (II3]) and the definition ([B03]) of Egor(p).

9.4.3 The Wootters formula for two qubits

The main problem with the convex-roof construction (B03]) is that finding the pure state decomposi-
tion minimizing the average entanglement is a non-trivial task. Nevertheless, an astonishing formula
enabling to evaluate Egop(p) explicitly for two qubits was found by Wootters [169]. It reads

Egor(p) = h(C(p)) (309)

where C(p) is given by [B05) and A : [0,1] — [0,Inn] is the convex increasing function

L VITC2 . A4 VI=Ch  1-VI=C2 1 VT=C2
- 2 hl( 2 >_ 2 hl( 2 >

h(C) = (310)

The main point is that C'(p) can be calculated explicitly as follows. Let A\; > Ao > A3 > A4 be the
square roots of the eigenvalues of po, ® o, po, ® oy (here o, is the y-Pauli matrix and p = JpJ the
complex conjugate of p in the canonical basis). Then

C(p) = max{O, )\1 - )\2 - )\3 - )\4} . (311)
For pure states this yields C(|¥)) = |(¥|oy, ® 0, J|¥)|?, in agreement with the result of Sec. The
proof of ([B09) is somehow tricky but relies on simple linear algebra arguments (see [169]).

9.5 Maximally entangled states

One may expect intuitively that the most entangled states are extremal states in £(Hag), that is,
they are the pure maximally entangled states described in Sec. 2.4l If one uses as a criterion for
being mostly entangled the property of having the highest entanglement of formation, this is indeed
correct when the dimensions of Ha and Hg are such that na/2 < ng < 2na. When ng > 2na, convex
combinations of pure maximally entangled states with reduced B-states living on orthogonal subspaces
of Hp are also maximally entangled (a similar statement holds of course by exchanging A and B).

Proposition 9.5.1. Assume thatn =na < ng and let r =1,2,... be such that rna < ng < (r+1)na.
Then the states p € E(Hag) having a mazimal entanglement of formation Egpop(p) = Inn are convex
combinations of the r orthogonal mazximally entangled states

Ky =n"2Y oM eg") |, k=1...r, (312)
i=1

with (o?|af") = 55 and (818{") = 5dy;.
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Proof. Let p be a state with Egor(p) = Inn. According to Definition and given that Eror(|¥)) <
Inn with equality if and only if |¥) is maximally entangled, this means that any pure state decompo-
sition of p is made of maximally entangled states. This is the case in particular for the spectral decom-
position p = >, pi|k)(k|, from which one can obtain all other pure state decompositions {|¥;),n;} by
the formula /7;|V;) = >, wiky/Drlk) with n; = Y |ui|*pr (see ([@0)). Let us set Dy = trg(|k)(1]).
We would like to show that Dy; = n =10y if prp; # 0. We already know that Dy = 1/n if pj, # 0, since
|k) is maximally entangled. By plugging the above expression of \/7;|¥;) into trg(|W;)(¥;|) = 1/n,
one is led to

Z VPEPIUkT Dy = 0 . (313)

k1 kL

This equality holds for any ¢ and any unitary matrix (u), hence \/pppiDy = 0 if k # | and the
above claim is true. One deduces from Dy = 1/n that the eigenvectors |k) with eigenvalues pyp > 0

have Schmidt decompositions given by ([B12). For k # I, Dy = 0 is then equivalent to Vék)LVg)
with Vék) = Span{|ﬁz~(k)> ", C Hp. If ng < (r + 1)n then at most r subspaces Vék)
orthogonal. Thus at most r eigenvalues pj are non-zero. O

may be pairwise
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10 The quantum discord

The quantum discord was introduced by Ollivier and Zurek [120] and Henderson and Vedral [75] as
an indicator of the “degree of quantumness” of mixed states. For pure states it coincides with the
entanglement of formation. Certain separable mixed states have, however, a non-zero discord. These
states are obtained by preparing locally mixtures of non-orthogonal states, which cannot be perfectly
discriminated by local measurements. Such separable states cannot be classified as “classical” and
actually contain quantum correlations that are not captured by the entanglement measures reviewed in
Sec.[@ Apart from this observation, a motivation for the quantum discord came out in the last decade
from the claim that it could play the role of a resource in certain quantum algorithms and quantum
communication protocols [49, 97, [123] 107, [66] 47]. In particular, it has been suggested [49, 97, 123]
that the discord might capture the quantum correlations at the origin of the quantum speedup in
the deterministic quantum computation with one qubit (DQC1) of Knill and Laflamme [93]. The
DQC]1 algorithm computes the trace of a 2V x 2V unitary matrix exponentially faster than all known
classical algorithms. The entanglement produced during the computation with (N + 1) qubits is
bounded independently of N, for any bipartition of the (N + 1) qubits [48]. This means that the
total amount of bipartite entanglement is a negligible fraction of the maximal entanglement possible.
However, a non-vanishing quantum discord between the control qubit and the N target qubits appears
during the computation [49], save for particular unitaries [46]. The DCQ1 algorithm is singled out
by the fact that it uses mixed states, the N target qubits being initially in a Gibbs state at infinite
temperature. In contrast, for quantum computations using pure states, Jozsa and Linden [92] have
shown that in order to offer an exponential speedup over classical computers, the computation must
produce entanglement which is not restricted to qubit blocks of fixed size as the problem size increases.

The definition of the quantum discord is given in Sec. [0.I] We then characterize the states with
vanishing discord in Sec. and exhibit some important properties of the discord in Sec. I0.3
The so-called monogamy relation linking the discord and the entanglement of formation in tripartite
systems is stated and proven in Sec. 10.4

10.1 Definition of the quantum discord

Let us first consider some classical discrete random variables A and B with joint probabilities p;; and
marginals pa(i) = Zj pij and pp(j) = >, pij. The correlations between A and B are measured by
the mutual information I4.p = H(A) + H(B) — H(A, B). We recall from Sec. that

Lip = H(B)— H(BJA), (314)

where H(B|A) = Y .pa(i)H(BJi) is the conditional entropy, see (II0). This conditional entropy
describes the amount of information on B left after the value A = i has been measured, averaged over
all possible outcomes i.

In the quantum setting, the analog of the random variables A and B is a bipartite quantum system
AB in a state p. The marginals are the reduced states pp = trg(p) and pg = tra(p). The generalization
of the mutual information reads

Ing(p) = S(pa) + S(ps) — S(p) , (315)

where S(-) is the von Neumann entropy (II4]). Similarly to the classical case, one has Ia.g(p) > 0 and
Ing(p) = 0 if and only if p is a product state, i.e. p = pp ® pg (this is nothing but the subadditivity
property of S, see Sec. [6.1]). It is easy to verify that Ia.g(p) is related to the relative entropy (I22]) by

Iag(p) = S(pllpa @ pB) - (316)
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By the monotonicity of the relative entropy (Theorem B.2.1]), Ia.5(Moc(p)) < Ia.g(p) for any local
operation Mo, = Ma ® Mg, where the operations Ma : B(Ha) — B(H}) and Mg : B(Hg) — B(Hg)
may have different initial and final spaces (for instance, Ma can be the partial trace over a part of
A).

However, there is no quantum analog of the identity (B14]). Let us define a conditional entropy of
B given a von Neumann measurement {7/} on A by Sga(pl{7*}) = >, m:5(pg);), where

peii =1 " tra(mt @1p) , mi=tr(m} @ 1p). (317)

Here n; is the probability of the measurement outcome i and pgj; = tra(pag|;) is the corresponding
conditional state of B (see Sec. [B). The ensemble {pg;,7;} defines a convex decomposition of pg
(ie. pg =>;mi pg|i) describing a state preparation of the subsystem B realized by the measurement on
A. The quantum version of the right-hand side of (314]) is the maximal reduction of entropy of B due
to a von Neumann measurement on A,

T5N(p) = S(ps) - l{a;;r;{z m-s<,o3i>} , (318)

the minimum being over all orthonormal families of projectors on Ha. This quantity represents the
classical correlations between A and B (see the discussion after Proposition below). Note that
JB‘ A (p) places an upper bound on the classical mutual information between the ensemble {pgj;,7;}
and the outcome probabilities when performing measurements on B to discriminate the states pgy;
(Sec. B6). Actually, Jgi N-(p) coincides with the corresponding Holevo quantity ([[I3). By con-
cavity of the von Neumann entropy, one has JB‘ A (p) > 0. Furthermore, (I2I) entails JB‘ A (p) <

maX{TFZ—A} H({Th})

It also follows from the concavity of S that the minimum in (BI8) is achieved for rank-one pro-
jectors. In fact, by decomposing each projector 7TZA of rank 7; as a sum of r; rank-one projectors ﬁﬁf,
one finds that pg; = >, (nik/7:)pgjir is a convex combination of the states pgj;, = ni_kl trA(ﬂﬁC ® 1p)
if i = > g mix > 0. Thereby >, m:5(pgji) = >k MikS (PBik)-

Ollivier and Zurek [120] and Henderson and Vedral [75] proposed in two independent works pub-
lished in 2001 to characterize the amount of non-classicality in the state p by forming the difference

between the total correlations given by Ia.g(p) and the classical correlations given by JB| A (p)

Definition 10.1.1. The quantum discord of the bipartite system AB in state p is

5XN(10) _ IA:B(P) _ Jg‘g(p) - S(pA) —|— glAn}{Z 771 pB|z } . (319)

In [75], the minimization is done over generalized measurements given by POVMs {M*} on Ha,
instead of von Neumann measurements. The conditional states and outcome probabilities are then

(Sec. B)
peii =n;  tra(MP @ 1p) , mi=tr(M}@1p). (320)

We denote the corresponding discord by da(p). As in the case of von Neumann measurements, the
minimum is achieved for rank-one measurement operators M. A In general, the inequality ialp) <
SxN-(p) is stric 9. Nevertheless, by the Neumark extension theorem Sa coincides with 65N up to an

% See e.g. [68] [62] for a comparison of the von Neumann and POVM discords for two qubits.
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enlargement of the space Ha. More precisely, by plugging M2 = (¢g|TIE|¢g) (see Remark 3.3.3) into
B20)) and using the additivity of S under tensor products, a simple calculation gives

Ia(p) = 6Xe" (P ® leo)(eol) , (321)

the right-hand side being independent of the ancilla state |ey) € HE.

The discords d5N(p) and 6a(p) thus measure the amount of total correlations between A and B
which cannot be accessed by local measurements on the subsystem A. Note that they are asymmetric
under the exchange A <» B. One can define similarly the discords d§™(p) and dg(p) by performing
the measurements on the subsystem B.

For pure states pg = |¥)(¥|, the mutual information Ia.g(py) is equal to 25([pw]g), see (17,
and the measurement minimizing the conditional entropy of B is the measurement in the eigenbasis
{]a;)} of the reduced state [py|a. In fact, according to (@) the corresponding post-measurement states
peji = |Bi)(Bi| are pure and thus have zero entropy. Then (3I8) yields Jga(pw) = S([pw]s). As a
result, the discords coincide for pure states with the entanglement of formation,

Sa(19)) = o5 (|9)) = de(|P)) = 6§™ (V) = Epor(|P)) - (322)

For mixed states, it was pointed out in [I20] that if the measurement operators M” are of rank
one then

ZU:’S(PBH) = S(Ma®1(p)) = S(IMa @ 1(p)la) = —Ias(Ma @ 1(p)) + S(ps) , (323)

where M is the quantum operation on A associated to the measurement. Actually, consider the
family of Kraus operators for Ma given by {A; = |i)(i;|}, where |;) are unnormalized vectors such
that M2 = |fz;){fi;| and {|i)} is an orthonormal basis of a pointer space Hp. Then Ma ® 1(p) =
> mili)(i| ® pgj; and the reduced state [Ma @ 1(p)|a = > ;mili)(i| has entropy —> ;m;lnn;. A
simple calculation yields the first equality in ([323]). The second equality is clear once one notices that
[Ma @ L(p)]e = pe.

Therefore, by combining (318]]), (B19), and (316]) one obtains the following result.

Proposition 10.1.2. [105] The discord 6(p) = Ian.8(p) — Jja(p) is the minimal difference of mutual
information of AB before and after a measurement on A, i.e.

Jgia(p) = %ﬁ{IA:B(MA @1(p)} , (324)

where the mazimum is over all POVMs on A with rank-one operators MZ-A and Mp is the associated
quantum operation on B(Ha). As a result,

Oa(p) = i {S(llon® pe) — S (Ma 2 1(p)] [ Ma(pn) © p8)) } (325)

Similarly, Jéi%(p) is gwen by maximizing In.g(M a ® 1(p)) over all von Neumann measurements
A

Q-

M. a on A of the form (28) with rank-one projectors 7

Observing that a measurement on A with no readout removes the quantum correlations between
A and B, the right-hand side of ([824]) can be interpreted as the amount of classical correlations
between the two subsystems. These subsystems are not correlated classically, i.e. JB‘A(,O) = 0, if
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and only if p = pa ® pg is a product state. This result holds for Jgﬁ'(p) as well. Actually, by
(B324), Jgja(p) = 0 is equivalent to Ma ® 1(p) being a product state for any collection of operators
M = |;)(ji;| forming a POVM. This implies nipeli = (filplit;) = nips for all i (see the discussion
before Proposition [[0.1.2]). Choosing the |iz;) to be the eigenvectors of the observable A, one obtains
that (A® B), = (A®1),(1® B), for any A € B(Ha)s.a. and B € B(Hg)s.a., with (), = tr(-p).

Let us emphasize that finding the optimal measurement which maximizes the post-measurement
mutual information, and hence calculating the discords 65N-(p) and da(p), is a difficult problem in
general. Fven for two qubits, this problem has been solved so far for a restricted family of states
only, namely, the states p with maximally mixed marginals ppo = pg = 1/2 [104]. In other cases?d the
discords must be evaluated numerically (however, da(p) can be determined analytically for low-rank
density matrices with the help of the monogamy relation, see Sec. [[0.4] and [110]).

10.2 The A-classical states

The monotonicity property of the relative entropy and formula ([825]) imply that da(p) is non-negative.
The states with vanishing discord can be determined with the help of Theorem [6.2.1] leading to the
following result?.

Proposition 10.2.1. The quantum discord is non-negative and da(c) = 0 if and only if

nA
o= ailpi)(vil @ opyi , (326)
=1

where {|pi)}i2, is an orthonormal basis of Ha, og|; are some (arbitrary) states of B depending on the
index i, and g; > 0 are some probabilities, >, ¢; = 1.

The non-negativity of da(p) means that one cannot gain more information on a bipartite system
AB by performing a measurement on the subsystem A than the entropy of A, namely, S(pag) —
> niS(pagji) < S(pa) for any pag € E(Hag). The important point is that if pag is not of the form
[B24]), then any measurement on A gives less information on AB than S(pa). Stated differently, one
can not retrieve all the information on A by a local measurement, because of the presence of quantum
correlations between A and B.

Proof. It remains to show the second affirmation. It is easy to convince oneself that the states
([326)) have a vanishing discord. In fact, one finds Ia.g(0) = S(oB) — >_; ¢iS(o);) < Jgﬁ'(a) (the
inequality follows by noting that og|; and ¢; are the conditional state and outcome probability for a
measurement on A in the basis {|p;)}). Hence da(c) = §5N(0) = 0 as a consequence of the non-
negativity of 6. Reciprocally, let o € £(Hag) be such that 65xN-(0) = 0. As we shall see below it is
enough to work with the von Neumann discord, the result for dp will then follow from (B21]). According
to (325) and Theorem B.2.1] 65N (o) = 0 if and only if there exists a von Neumann measurement Ma
on A with rank-one projectors 77%A = |¢;)(p;| such that 0 = RaMa®1(0), where Rao = Ra,01,00 1S the

26 An incorrect work [6] claiming to extend the result of Ref. [T04] to the larger family of the so-called X-states
has generated a profusion of articles. Comparing with numerical evaluations, the result of [6] apparently gives good
approximations of the discord for randomly chosen X-states (see the discussion in [110]).

7 In Ref. [120], the authors argue that the non-negativity of 55"~ (p) is a direct consequence of ([B23)) and the concavity
of S(p) — S(pa) with respect to p. I do not see how such a claim could be justified and believe that the simplest proof of
Proposition [0.2.1] is to rely on Theorem [6.2.11 Alternatively, the non-negativity of the discord can be justified with the
help of the strong subadditivity of the von Neumann entropy (which is closely related to Theorem see Sec. [6.2]),
as shown in Ref. [106].
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transpose operation of Ma ® 1 for the state oy = oa ® og. Without loss of generality we may assume
n;i = (piloalei) > 0 for all . Thanks to (I23)) and to the identity Ma ® 1(00) = >, nilwi) (i ® o8,
the transpose operation Ra has Kraus operators R; = 1), 1 2‘/0A|<pi>(<pi| ® 1. We now argue that this

implies that ¢ = M\A ® 1(o) with M\A the von Neumann measurement with projectors 74 onto the
subspaces span{|p;);i € I}, where {I1,...,I;} is a partition of {1,...,na}. Actually, the condition
0 = RaMa ® 1(0) reads

(piloles) Z”l Vona(Vonilellole) , d,5=1,...,na (327)

with (y/a)ij = (@ily/Talp;) € R. Let us set og; = n; ' (¢ilo|ei) and my; = |(y/a)al?/ni- This defines
respectively a state on Hg and a probability distribution for any fixed ¢. With this notation, (327
can be rewritten for ¢ = j as

A
UB\i:ZWHiUBU ;o 1=1,...,na. (328)

Let I; = {j;0p|; = ogji} C {1,. nA}. Clearly, the sets I; are either equal or disjoint. Hence one can
extract from them a partition { ivs Ligy -5 Ligy of {1,...,na}. We claim that (328)) implies ;; = 0 for
[ ¢ I;. This is a consequence of the following lemma.

Lemma 10.2.2. Let x = (x1,...,24) be a vector of X% with distinct components xy,, where X is a
real vector space, and {£k‘m}g:1 be some probability distributions such that g = 0 < &y = 0 and
the components of X have convexr decompositions

xm:Z@ﬂm:ﬂk Vm=1,...,d. (329)
k=1
Then g = Ogm for any k,m =1,...,d.
We postpone the proof of this result to the next paragraph. By rewriting ([B28) as
OB|im = Zﬁk\mUB\ik with & = L |7 Z Mi 5 (330)
= (l,i)e]ik XIim

one concludes from Lemma that &y, = 0 for k # m, i.e. my; = (y/oa)q = 0 for any (i,1) such
that [ ¢ I;. One then obtains from (B27)

d
o= Z > (Von)a(Vamsledesl @ osi =Y > (oa)ijlei) e @ ogy, - (331)
i,j=11lel;NI, k=11ij€l;,
This gives
d
Z% UAﬂ-k ® OBlip, > %]':\ = Z ‘902><()01’ : (332)
k=1 ie]ik

The last expression is of the form (326]) (note that the vectors |p;) in the latter formula are the
eigenvectors of %@JA%Q, so that they are in general linear combinations of the vectors |p;) defined
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above). To get the result for the discord da we take advantage of (32I)). From the foregoing result,
5a(0) = 0 is equivalent to o ® |ey)(eo| being of the form (B286]) for some orthonormal basis {|¢?E)} of
Hag. This straightforwardly implies |@2E) = |¢;)|€o) with {|p;)} an orthonormal basis of Ha. O

Proof of Lemma [10.2.2. One proceeds by induction on d. The result is trivial for d = 2. Let us
assume that it holds true for d > 2 and that one can find a vector x € X4t and some probabilities
{fk|m}zii like in the lemma such that &, < 1 for some ko € {1,...,d+1}. We are going to show that
this leads to a contradiction. By plugging zp, = (1 — fko\ko)_l Zk?éko Ek|ko®k into the p other convex
decompositions, one gets zm = ;. Cejm®x for k # ko, with Cgjm = Egm + (1 — 5ko\ko)_15ko\mfk|ko-
As {Ck|m}k;«éko is a probability distribution satisfying (yjm, = 0 < (. = 0, by the induction hypothesis
one has (i, = Ogm for any k,m € {1,...,d + 1} \ {ko}. Now &, x, > 0 for some index mg # ko
(because Ekolko < 1)- One deduces from the above identities and the hypothesis on y,,, that the only
non-vanishing probabilities are i imq» Emolkor a0 Sk £ =1,...,p+ 1. The problem then reduces to
the case p = 2. Thus &k, = &mglme = 1, In contradiction with our assumption. O

Definition 10.2.3. The zero-discord states of the form (326) are called the A-classical states. We
denote by Ca the set of all A-classical states. Similarly, Cg is the set of all B-classical states, namely,
the states with vanishing B-discord. A classical state is a state which is both A- and B-classical. We
write Cag = Ca NCg.

Our terminology can be justified by noting that if AB is in a state of the form (B20]) then the
subsystem A is in one of the orthogonal states |¢;) with probability ¢;, whence A behaves as a classical
system being in state ¢ with probability ¢;. Alternatively, a state o is A-classical if and only if there
exists a von Neumann measurement on A with rank-one projectors 72 = |¢;)(;| which does not
perturb it in the absence of readout, i.e. 0 = M (A} ®1(o). The unfortunate name “classical-quantum
states” has become popular in the literature to refer to the A-classical states, the B-classical states
being called “quantum-classical”. Using the spectral decompositions of the og;’s, any A-classical state
oA—cl € Ca can be decomposed as

nA 1B

oa-a =Y > gl (el @ ) (il (333)

i=1 j=1

where ¢;; > 0, 37, ;¢i; = 1 and, for any i, {|x;};)};2, is an orthonormal basis of Hg (note that the
| Xj\i> need not be orthogonal for distinct i’s). A classical state o, € Ca N Cp possesses an eigenbasis
{lpi) ® | Xﬁ}?ﬁ’ff:l of product vectors. It is fully classical, in the sense that any quantum system in
this state can be “simulated” by a classical apparatus being in the state (7, j) with probability g;;.
Let us point out that Ca, Cg, and Cag are not convex. Their convex hull is the set Sag of separable
states. It is also important to realize that for pure states, A-classical, B-classical, classical, and
separable states all coincide. Actually, according to (833)) the pure A-classical (and, similarly, the pure
B-classical) states are product states. In contrast, one can find mixed separable states which are not

A-classical. An example for two qubits is
1
p =7 (@ [0)0]+ |=-) (=] @ [1){L] +[0){0] @ [=) (=] + [1)(1] @ [+)(+]) (334)
with |+) = (|0) &+ [1))/v/2. It is clear that p € Sag, but p is neither A-classical nor B-classical. A

schematic picture of the sets Sag, Ca, Cg, and Cag for a general bipartite system AB is displayed in
Fig. B
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10.3 Properties of the quantum discord
10.3.1 Invariance and monotonicity properties

Unlike entanglement measures, the quantum discord is not monotonous with respect to LOCCs. In
particular, local operations on the measured subsystem A can create discord. For instance, consider
the classical state

o = 5 (10)(0] @ o) (0] + [1y{1] @ 1) (1)) (335)

of two qubits. One can transform this state by a local operation Ma on A into
1
p=Ma@1(0) = 5 (10)(0] @ 0)0] + | +)+] @ [1)(1]) (336)

where Mp has Kraus operators Apg = [0)(0] and A; = |+)(1]. The final state p has less total
correlations than o, its mutual information Ia.g(p) = —plnp — (1 — p)In(1 — p) being smaller than
Ing(c) = In2 (here p = 1/2 4 v/2/4). However, it has a positive discord da(p) > da(c) = 0. This
means that the loss of classical correlations Jg|a () — Jg|a(p) is larger than the loss of total correlations
In(0) — Ins(p).

In contrast, as far as local operations on B are concerned everything goes as expected, as shown
by the following result.

Proposition 10.3.1. The quantum discord da and classical correlations JB|A(,0) are invariant with
respect to unitary conjugations Up : pa — UapaUx on A and monotonous with respect to quantum
operations Mg on B, namely,

SAlpa®1(p)) = dalp) , a(l®@Mg(p) < dalp) (337)
Jeala®@1(p)) = Jgalp) , Jga(l®@Msg(p)) < Jgalp)

and similarly for 5X‘N "~ and Jgif .

Proof. The unitary invariance is trivial. The monotonicity of Jg| A(p) with respect to operations on B
comes from the monotonicity of the relative entropy and the formula

Toia(p) = mae{ 37 S oeyil o)} (338)

which is a consequence of the definition [BI8)) and of pg = ), mipg;- A simple justification of the
monotonicity of dp with respect to operations on B uses the following reasoning [131]. Let us consider
a generalized measurement {MZA} on A with associated quantum operation Mpa. By invoking the
Stinespring theorem, one can represent Ma as Ma®1(p) = tre(oage) with cage = Uaep® |eo) (€0|Uag
pertaining to an enlarged space Hage and Uag a unitary on Hag. Thanks to the additivity and unitary
invariance of the von Neumann entropy and to the relation trag(oage) = ps, one finds

Ing(p) = Ine:B(0aBE) , IaB(MaA ®1(p)) = Ia:B(0AB) - (339)

Plugging these expressions into (325]) gives the following expression of da(p) in terms of the conditional
mutual informations

6a(p) = min {Iae:a(0ase) — Ias(oag)} = min {Iag.e(oase) — Jae(oAE) } - (340)
! {MP}

The monotonicity of da then follows from the monotonicity of the mutual information with respect to
local operations (Sec. [0.1]). O
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10.3.2 States with the highest discord

As stated at the beginning of this section, the quantum discord da(p) is an indicator of the degree
of quantumness of p. It is thus natural to ask whether the “ most quantum” states having the
highest discord are the maximally entangled states characterized in Proposition The answer is
affirmative when na < ng.

Proposition 10.3.2. For any state p of the bipartite system AB, one has
5a(p) < 8™ (p) < S(pa) < Inna . (341)

If na < ng then the mazimal value of op(p) over all states p € E(Hag) is equal to Inna and Sa(p) =
Innpa if and only if p has highest entanglement of formation. Thus, the states pent with highest discord
are the mazimally entangled states given by Proposition [9.5.1), which satisfy

5A(pent) = 5,‘/.]\.N.(pent) = EEOF(pent) =In na . (342)

The statements in this proposition are probably well known in the literature, although I have not
found an explicit reference.

Proof. Let p =), pi|k)(k| be the spectral decomposition of p and r = rank(p). As mentioned earlier,
the von Neumann measurement minimizing the conditional entropy ), 7:S(pg|;) consists of rank-one
projectors T8 = |;){¢;|. The conditional states ([317) take the form

Pri|k

)

T
PB|i:ZPk|i’¢ki><¢ki’ with  py; =
=1

and .\ /niklori) = (pilk) € He (343)

where 1;, = [[(¢s]k)||? is the probability of outcome i given the state |k) and py; is the “a posteriori”
probability that the state is |k) given the measurement outcome i (Bayes rules). Since {|¢r;), pyi} is
a pure state decomposition of pgj;, the formula (II8)) yields

Zm 0 <Zm {pwi}) - (344)

The right-hand side is the classical conditional entropy given the measurement outcomes, see (I10]).
By the non-negativity of the classical mutual information, it is bounded from above by the Shannon
entropy H({pr}) = — > p peInpr = S(p). Hence XN (p) < S(pa) by BI9). But S(pa) < Inna, thus
we have proven (341)).

Let us assume that da(p) = S(pa). We know from Sec. [6.I] that a necessary and sufficient condition
for ([344) to be an equality is that {|¢;), pr;} be a spectral decomposition of pgj;, for any . Setting
Dy = trg(|k)(l]) as in the proof of Proposition B.5.1] one gets |/Timir{(¢ui|ki) = (@il Drilpi) = 0
if & # 1 and pypy; > 0. Since da(p) = S(pa), [B44) holds with equality for any orthonormal
basis {|¢;)} and thus Dy; = 0 for such k£ and [. In addition, the conditional entropy in the right-
hand side of ([344) is equal to its upper bound H({px}) = S(p). This can happen only if py; = py,
i.e. mik = (@il Dilpi) = ni, for all i and k (indeed, the mutual information vanishes for independent
random variables only). Hence da(p) = S(pa) if and only if Dy is independent of k& and Dy = 0
when k # | and pgp; > 0. Suppose now that da(p) = Inna. Then da(p) = S(pa) = Inna and the
foregoing conditions on Dy, are fulfilled. In addition, ppo = > px Dk = 1/na, whence Dy = 1/na for
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all k with px, > 0. One concludes that the eigenvectors |k) are as in Proposition 0.5.1] by following the
same steps as in the proof of this proposition. O

Note that when na > ng, d0a(p) is strictly smaller than Inna for any p € £(Hag). In fact, in that
case rank(Dy) < ng < na by the Schmidt decomposition (), and the necessary condition Dy = 1/na
for having da(p) = Inna cannot be fulfilled.

10.3.3 Monotonicity when disregarding a part of the measured subsystem

We close this review of the properties of the discord by a simple remark concerning tripartite systems
ABC. If such a system is in the state pagc, it is easy to show that

Jgiac(paBc) > Jgjalpas) - (345)

This means that if B is coupled to both A and C, the gain of information on B from joint measurements
on A and C is larger than the gain of information by measuring A only and ignoring C, as this sounds
reasonable. A similar bound exists for the total correlations: by (BI6]) and the monotonicity of the
relative entropy (or, equivalently, the strong subadditivity of \S),

Inc:s(paBc) > IaB(paB) - (346)

Remark 10.3.3. The Holevo bound (I13) can be derived by using the monotonicity of the quantum
mutual information under operations acting on one subsystem (Sec.[I01) and the property (346]).

Sketch of the proof [I17]. Given an ensemble {p;,n;}I2; of states on Ha and a family {A;}7_; of
Kraus operators describing the measurement on A, consider the state parp = >, 7ipi ® |v3) (5] ©10) (0]
on Harp, where R and P are auxiliary systems with orthonormal bases {|v;)}7, and {|j) ?;é. These
systems represent a register of the state preparation and a pointer for the measurement, respectively.
Let Map be the quantum operation on B(Hap) with Kraus operators A; ® Uj, U; being the unitary
on Hp defined by Uj;|l) = |l + j) for any [ = 0,...,p — 1 (the addition is modulo p). It is an easy
exercise to show that the Holevo bound (I13)) is equivalent to Ir.p([Map @ 1(parp)|rp) < Iap.r(PARP)-

10.4 Monogamy relation

Consider a tripartite system ABC in a pure state |Uagc). If B and C are entangled, is there a limit
on the amount of entanglement B can have with A? In other words, can entanglement be freely
shared between different subsystems? A negative answer to the last question has been highlighted
in [44], where it is shown that when A, B, and C are qubits, the sum C(pag)? + C(ppc)? of the square
concurrences is smaller or equal to 4 det(pg). It is instructive to consider the limiting case where B and
C are maximally entangled. Then, if one also assumes that rng < nc < (r + 1)ng with 1 < r < na,
A and B cannot be entangled and even have vanishing discords da(pag) = dg(pag) = 0. In fact, the
state of BC being maximally entangled, one has pgc = ), pi|k)(k| for some orthogonal maximally
entangled states |k) satisfying Dy, = trc(|k)(l|) = ng 6k (see Proposition @.5.1]). Hence the pure state
of ABCis |Wagc) = > /Pklow) k) with {|ay)} an orthonormal family of Ha (Sec.23). Consequently,
paB = (Do Prlak)(ak]) ® (1/ng) is a product state and thus a classical state.

The proposition below exhibits an astonishing bound, called the monogamy relation, between the
entanglement of formation of pgc and the POVM-discord of pag measuring A.
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Figure 3: Schematic view of the set of quantum states Eag = E(Hag) of a bipartite system AB. The
subset Cag of classical states (in magenta) is the intersection of the subsets Ca and Cg of A- and
B-classical states (in red and blue). The convex hull of Cp (or Cg) is the subset Sag of separable states
(gray square). All these subsets intersect the border of Eag (pure states of AB) at the pure product
states, represented by the four vertices of the square. The maximally mixed state pag = 1/(nang)
lies at the center (cross). The two points at the left and right extremities of the ellipse represent the
maximally entangled pure states, which are the most distant states from Sag (and also from Ca, Cg,
and Cag). The closest distances of a state p to Sag (black line) and of p to Ca (red line) define the
square roots of the geometric measure of entanglement Epy(p) and of the geometric discord Da(p),
respectively. Note that this picture is for illustrative purposes and does not reflect all geometrical
aspects (in particular, Ca, Cg, and Cag typically have a lower dimensionality than Eag and Sag).
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Proposition 10.4.1. (Koashi and Winter [94]) Let ABC be a tripartite system in the state pagc. Let
paB = trc(pasc) and pgc = tra(pasc) denote the reduced states of the bipartite systems AB and BC,
respectively. Then

Eror(pec) < S(ps) — Jejalpas) = da(pas) + S(pas) — S(pa) - (347)
Moreover, the inequality is an equality if pasc s a pure state.

The inequality (B847) tells us that the more classically correlated are A and B, the less B can be
entangled to a third system C. If ng < nc and B and C are maximally entangled, i.e. Egor(ppc) =
In(ng), then this inequality entails Jga(pa) = 0 (since S(pg) < In(ng)). Thus A and B are not
correlated classically, in agreement with the above statement that pag is a product state.

The entropy difference Sgja(paB) = S(pas) — S(pa) in the right-hand side of (347) is called the
conditional von Neumann entropy. It is known that Sgja(pag) > 0 if pap is separable [79, [36]. Thanks
to the subadditivity of S one has —S(pg) < Sgja(pas) < S(ps) (the first inequality is obtained
by considering a purification of pag on Hagc and using the subadditivity for pgc together with the
identities S(pgc) = S(pa) and S(pc) = S(pas)). The quantity —Sga(paB) is the coherent information
introduced by Schumacher and Nielsen in the context of the quantum channel capacity [142].

Two consequences of the claim that (347) is an equality for tripartite systems ABC in pure states
deserve further comments. First, one easily deduces from this claim and the identity (II7) that [58]

Eror(paB) + Eror(pec) = da(pas) + dc(pBC) - (348)

Hence the sum of all entanglement of formations describing the bipartite entanglement shared by B is
equal to the sum of the corresponding quantum discords with measurements on the other subsystems.
Second, if B is a qubit and pag is of rank two, then pag admits a purification |¥agc) on Hag ® C?
(see (I2)) and the entanglement of formation of the two-qubit state pgc can be computed with the
help of the Wootters formula ([309]). One may in this way determine 0a(pag) via (B47]).

Proof. We first assume that ABC is in a pure state |¥agc). Let {Mxpit} be an optimal measurement
on A maximizing the gain of information on B, that is, such that Jg|a(pas) = S(ps) — >_; nfptS(p‘éIT:),
where nfpt and p(él‘)it are the outcome probabilities and conditional states of B for this measurement.

Without loss of generality one may assume that My" = |fisP")(fi*"| are of rank one (see the discussion

after (3I8)). Since pag = trc(|Pasc)(Papcl), one has nP" = tr(pABMXf)it ® 1) = [P [ Wasc) .
Moreover, the post-measurement conditional state of BC is the pure state

opty—L /~o
Wgcp) = (15°) 72 (5P| P agc) (349)

and the conditional state of B is ,0%1‘9; = trc(|Wpcli)(¥acjil)- The ensemble {|\I'qu>,17?pt} gives a

pure state decomposition of pgc. Actually, let us consider the post-measurement state of ABC in the
absence of readout, phge = Mipt ® 1(|Tac){¥agc|). The measurement being performed on A, it
does not change the state of BC, i.e.

pBC = PBC = Zﬂfpt"l’scuﬂ‘ysqz’\ : (350)

From the definition ([B03]) of the entanglement of formation one has

Eror(pc) < anpts(ﬂgff) = S(ps) — Jaja(paB) - (351)
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Conversely, let {|¥gc;),7:} be a pure state decomposition of pgc which achieves the minimum in the
definition of the entanglement of formation. Let us show that there exists a generalized measurement
{MZA} on A such that n; is the probability of outcome ¢ and |Ugc;) the corresponding conditional
state of BC, i.e.

tra(MP @ 1|Uapc) (Wagc|) = 7i|¥rc.) (¥ac.l - (352)

In fact, let us observe that |Wagcg) = >, v/7il¥Bc,i)|¢:) is a purification of pgc on Hapce for some
ancilla E, where {|¢;)} is an orthonormal family of Hag. Given an arbitrary state |eg) € Hg, |Yasc)|€o)
is also a purification of pgc on the same space. As a result, there is a unitary Uag on Hag such that
|Vhsce) = 1 ® Uae|¥aBc)|€o) (see Sec. 2.3)). Define

MP = (eo|Ung|¢:) (#i|Uakeo) (353)
(note the analogy with (4I))). Then (B52)) is satisfied. Let pg;; = trc(|Wsc;:)(¥Bc,|) be the post-
measurement states of B, so that Eper(|¥sc:)) = S(ppji). Since by assumption Eger(pc) =

> miEror (|¥Bc ), one infers from the definition (BI8)) of the classical correlations that

Jeia(pas) > S(ps) Zm (peji) = S(pB) — Eror (pBC) - (354)

Together with (B5I]) this proves that

Egor(pec) = S(ps) — Jpja(pras) - (355)

Let us now turn to the case of a tripartite system ABC in a mixed state pagc. Consider a purifica-
tion [Wapce) of papc in the Hilbert space Hapc ® He. Thanks to (343]) one then has Jgja(pas) <
Jejae(paBe)- The inequality (347) then follows by applying (B355) with A — AE. O
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11 Distance and entropic measures of quantum correlations

In this section we study the measures of entanglement and quantum correlations based on the Bures
distance and the relative entropies. First, we introduce in Sec. [I1.1] the geometric measure of entan-
glement, defined as the minimal square distance between the state p and a separable state, as well
as similar measures obtained by replacing the square distance by relative entropies. We define analo-
gously in Sec. the geometric discord as the minimal square distance between p and an A-classical
state. We show there that this discord is related to a quantum state discrimination task and determine
the closest A-classical states to p in terms of the corresponding optimal measurements.

11.1 Geometric and relative-entropy measures of entanglement
11.1.1 Definition and main properties

From a geometrical point of view, it is natural to quantify the amount of entanglement in a state p of
a bipartite system AB by the distance d(p,Sag) of p to the subset Sag C E(Hap) of separable states
(see Fig[3). As it will become clear below, in order to obtain an entanglement monotone measure the
distance d must be contractive. Choosing the Bures distance, it is easy to verify that

Egu(p) = dp(p,Sas)? = min {dp(p,0wp)’} (356)
Osep ESAB

satisfies all the axioms of an entanglement measure in Definition Actually, the axiom (i) holds
because dp is a distance on £(Hag). The convexity property (ii) is a consequence of the convexity of
Sag and the joint convexity of the square Bures distancd% (Corollary [[.23]). Finally, the monotonicity
(iii) is shown in the following way. Let o, € Sag be a closest separable state to p, i.e. Egu(p) =
dp(p, O'p)z. Let us recall from Sec. that any LOCC is a separable quantum operation and can be
written as M(p) = >, A; ® BijpA; ® B;. Furthermore, one has M(Sag) C Sag. One can then use
the contractivity of dg to obtain

Epu(p) > dp(M(p), M(0,))* > Epa(M(p)) . (357)

This shows that Eg, is monotonous with respect to separable operations and, in particular, to LOCCs.
The entanglement measure Ep, has been first introduced by Vedral and Plenio [I60]. Another measure
was considered in [I59} [I60] by replacing the square distance in (356)) by the relative entropy S(p||osep)-
More generally, we can define

Ea(p)= min {Sa(pllown)} | (358)

Tsep GSAB

where S, is the quantum relative Rényi entropy (Sec. [6.3]). For 1/2 < a < 1, this defines an entan-
glement measure by the same arguments as above, because S, is jointly convex and contractive (see
Theorem [6.3.1} the property (i) in this theorem ensures that E,(p) > 0 with equality if and only
if p € Sag). One establishes the following result by invoking the fact that S, is non-decreasing in
a (Proposition [6.3.4) and by using (I75) and the relation (I49) between S;/5(p||o) and the fidelity

F(p,0).

Corollary 11.1.1. {Ea}1/2§a§1 constitutes a mon-decreasing family of entanglement measures and

B0 = —2m(1-220) < gy lcacn, (359)

1
2

28 This justifies the square in our definition (B58).
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The measure F; associated to the relative entropy (I22)) is less geometrical than Ep, (it is not
associated to a distance) but has the following interesting property.

Proposition 11.1.2. (Vedral and Plenio [I60]) The entanglement measure Ey coincides with the
entanglement of formation Egep for pure states, and for mized states p € E(Hag) it is bounded from
above by Egor,

E1(p) < Egor(p) - (360)

Proof. We refer the reader to [I60] for a detailed proof of the first statement. It is based on the
observation that for a pure state with Schmidt decomposition |¥) ="\ /1ti|a;)|5;), the minimum in
([B58)) is achieved when oy, is the classical state

o =Y pilaidail © BB - (361)
i=1
Since S(pw||low) = —(¥[Inoy|¥) = — >, i In p;, the equality £q(|¥)) = Fror(]V)) follows once one
has proven that S(pw||osep) > S(pwl||os) for all ogp € Sag. This is done in Ref. [I60] by showing that
for any ogp € Sag,

df\I/ (t7 Usep)

| :1_/ dt tr((0 + 1) pu(0n + ) 'owp) > 0 (362)
dt t=0 0

with fg(t,0) = S(pw||(1—t)o.+to). Indeed, assume that S(pw||osep) < S(pwl|o) for some ogep € SaB-
By taking advantage of the right convexity of the relative entropy, one then finds for any ¢ € (0, 1]

f\Il(t, Jsep) - f\Il(Oa Usop)
t

< =S(pwllow) + S(pwllosep) <0, (363)

in contradiction with (862]). Note that it suffices to prove the non-negativity in ([862]) for the pure
product states osep = |¢ ® X)(¢ ® x|, because of the linearity in oy, of the trace in the right-hand
side.

The second statement in the proposition is a consequence of the first one and of the convexity of
Eq. Actually, if {|¥;),n;} is a pure state decomposition of p minimizing the average entanglement,
then

Bror(p) = D miBeor(193)) = > mBa(03) = By (o mlad{Wil) = Bi(p) . (364)

a

Note that the inequality (B60]) can be strict. Examples of two-qubit states p for which E;(p) <
Egor(p) are given in [I59]. Thanks to (859) and (360]), one can place an upper bound on Epy(p) by
a function of the entanglement of formation Fr.r. Such a bound does not seem to be known in the
literature, but it is not optimal for pure states as a consequence of the next proposition.

Remark 11.1.3. As shown in [160], E, fulfills the stronger monotonicity condition (iii”) of Sec.[9.7.2
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11.1.2 Geometric measure of entanglement and convex roof constructions

Let F(p,Sag) denote the maximal fidelity between p and a separable state,

F(P,SAB) max {F pyo-sep)} : (365)

Tsep ESAB

Proposition 11.1.4. (Streltsov, Kampermann, and Bruf} [152]) The geometric measure of entangle-
ment is given for pure states by

Epu(|¥)) = 2 — 2(/F(19), Spp) = 2(1 — /Fima) - (366)

where fimax = max{u;} is the largest Schmidt coefficient of |¥). For mized states, F(p, Sag) is obtained
via a mazimization over the pure state decompositions of p,

F(p,Sag) = max {Zm (|%;) SAB)} (367)

{1,

The nice relation (367 is intimately related to Uhlmann’s theorem (Sec. [7.2]) and to the convex-
ity of Sag. Note that the relative-entropy measure E; does not fulfill a similar property (compare
with Proposition [T.1.2)). Even though Eg, is not a convex roof, it is a simple function of another
entanglement measure E¢ defined via a convex-roof construction like in (B03]) and from its expression

EG(|#) =1~ max {|(@])’} (368)

for pure states [144] [164]. Actually, we will see that a pure state always admits a pure product state
as closest separable state, hence the maximum in (B68]) coincides with F(|U),Sag) and Eg(p) =
1 — F(p,Sag) by the proposition above. According to ([B60), Eq(|¥)) = 1 — fimax is of the form
@89) with fa(pa) = 1 — ||pall satisfying all hypothesis of Proposition Therefore, by a similar
reasoning as in the proof of Proposition [0.4.3] E¢ is an entanglement measure which fulfills the strong
monotonicity property (iii”). In contrast, Ep,(|¥)) = fu([pw]a) = 2(1 — /||[pw]al]) but fpy is not
concave, whence Proposition indicates that Epy does not fulfill (iii’). We should not be bothered
too much about that, the two measures Fp, and Eg being equivalent (that is, they define the same
order of entanglement) and simply related to each other.

Proof. For a pure state py = |U)(V|, the fidelity reads F'(py, 0sep) = (¥|0sep| V). Writing the decom-
position of separable states into pure product states, osep = D, &l @ Xi) (i @ Xil, we get

Flpy,Sag) = {Zf (i ® xi|¥)] }—

U 369
(e &) {l{e & x|T)|*}, (369)

IIsDII || || 1

where we have used ), & = 1. For any normalized vectors |p) € H4 and |x) € Hp, one derives from
the Schmidt decomposition (@) and the Cauchy-Schwarz inequality that

Ke@xIT) < > Vgl {elan)(xI8i)] < vVimax 3| {elas)(x]5;)]

J=1 Jj=1

m@ r<so\aj>\2)l/2 @ r<ij>12)1/2 < i (370)

IN
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All bounds are saturated for |p) = |aj,..) and |X) = |Bjnax)s Where jmayx is the index for which p; is
maximum. Thus F(py, SAB) = Hjmax = Hmax and the formula (B66) is proven. It is of interest to note
that the pure product state |j,,..)|Bjmax) 15 @ closest separable state to |¥) (a characterization of all
these closest separable states will be given in Proposition below).

We now proceed to show (B67). Consider a fixed separable state ogep = > b_j &|Pi)(®;| with
|®;) € Sag and & > 0. Without loss of generality one may assume p = (nang)? + 1 (see the
discussion after Definition 2.41)). Let {|f;)}}_; be an orthonormal basis of an ancilla space K and
|®) = >, V&|®i)|fi) be a purification of g, on H @ K. Thanks to Theorem [7.2.2] F(p, osep) is the
maximum over all purifications |¥) of p on H ® K of the transition probability |(¥|®)2. Writing
|¥) in the form (I5]) and using the one-to-one correspondence between pure state decompositions and
purifications (see Sec. [2.3]), one can equivalently maximize over all pure state decompositions {|¥;),;}
of p. Moreover, the maximization of F'(p, osp) over the separable states ogep leads to a maximization
over the pure state ensembles {|®;),&;} in Sag. This yields

Z Vi (W5|®;)

But, using once more the Cauchy-Schwarz inequality and ). & = 1, one has

P 2
{Eiﬁ}{ pa } Zm max {[(i[®)[*} . (372)

|B)ESAs
It has been argued above that the maximal fidelity between |¥;) and a separable state is attained for
pure product states, thus F(|¥;), Sag) = max|g)es,s |(Vi|®)[*. Substituting this expression into (372)
and (BT7I), we arrive at the required relation (B367]). O

F(p,Sag) = max max
(0 5a8) = 05% (i {

} . (371)

n:i&i (W

According to ([B66), Ep,(|¥)) = 0 if and only if |¥) is a product state, in agreement with the
fact that separable pure states are product states. Another consequence of ([B60) and of the bound
Hmax > 1/n (which follows from ). p; = 1) is F/(|¥), Sag) > 1/n, with n = min{na, ng}. Furthermore,
F(|¥),Sag) = 1/n if and only if |¥) is maximally entangled (Sec. 24]). One deduces from (B67) that

2
E <2——. 373
bulp) <2 (373)
By the same arguments as in the proof of Proposition [0.5.1] this bound is saturated if and only if p
has maximal entanglement of formation Fg.r(p) = Inn. This means that Ep, and Eg.p capture the

same maximally entangled states.

11.1.3 Geometric measure of entanglement for two qubits

In the case of two qubits, a closed formula for Ep,(p) can be obtained with the help of Proposi-
tion [T.T4] and of Wootters’s result on the concurrence (Sec. @ 43]). It reads [152]

1
Bou(p) =2~ V3(1 + /1= CP) (374)
with C(p) given by (BII). Actually, for pure states one finds by comparing C'(|¥)) = 2,/mop1 and

B66) that F(|¥),Sag) = g(C(|¥))) with ¢(C) = (1 + V1 —C?)/2. As g is decreasing and concave,
B03) and ([B67) yield F(p,Sag) < g(C(p)). But it is shown in [169] that there is an optimal pure state
decomposition {|¥;),n;} of p such that C(p) = C(|¥;)) for any i. Thus

9(C(p)) = F(p,Sag) > Zm (19:), Sag) = ng =9(C(p)) , (375)
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which justifies ([374).

11.2 Geometric quantum discord
11.2.1 Discord-like measures of quantum correlations

In the same spirit as for the geometric measure of entanglement, one defines the geometric quantum
discord as

Da(p) = dg(p,Ca)* =2(1 —=\/F(p,Ca)) , F(p,Ca) = max {F(p,oa-a)}, (376)

oa—c1€CaA

where Ca is the (non-convex) set of A-classical states (see Definition [[0.2.3]). One can introduce
similarly the relative-entropy discords

DY (p) = min {Sa(plloa—a)} - (377)

oa—c1€Ca

As in Corollary [T.1.1] one has D/&I/m (p) = —2In(1 — Da(p)/2) < D/&a) (p) for any « € [1/2,1].

An analog of the geometric discord Dp based on the Hilbert-Schmidt distance dy has been first
introduced by Dakié, Vedral, and Brukner [46]. We hope to have convinced the reader in Sec. [7] that
the Bures distance is a more natural choice in quantum information. We will see that the discord
(BT76]) shares many of the properties of the quantum discord da of Sec. [0} while its analog with the
ds-distance has unpleasant features. In particular, like 5 the Bures geometric discord is invariant
under conjugations by local unitaries and contractive with respect to quantum operations Mg on B.
For indeed, the set of A-classical states is invariant under such transformations (see (326l)), whence

Da(Un @ UgpUx @ Ug) = Dalp) . Da(1® Mg(p)) < Dalp) (378)

by unitary invariance and contractivity of dg. These properties also hold for D(a), 1/2 < a <1,
because the relative Rényi entropy is also contractive (Theorem [6.31]). This should be contrasted
with the non-monotonicity with respect to operations on B of the Hilbert-Schmidt geometric discord,
which is due to the lack of monotonicity of ds (Sec.[T.I]). An explicit counter-example is given in [131].
We now precise the axioms on discord-like correlation measures.

Definition 11.2.1. A measure of quantum correlations of a bipartite system AB with respect to sub-
system A is a function Dp : E(Hag) — [0,00) satisfying

(i) Da(p) =0 if and only if p is A-classical;

(ii) Da is invariant under local unitary transformations and contractive under quantum opera-
tions on B, that is, (378) holds true;

(iii) Da coincides with an entanglement measure for pure states.

This definition is at the time of writing of this article believed to capture all relevant physical
requirements for quantifying the amount of quantum correlations in AB given that one can access
to subsystem A only [I34]. The axioms (i-iii) are in particular satisfied by the quantum discord da
(Propositions I0.2.T] and [[0.3:1]). This is also true for the geometric discord Da. Actually, we have just
shown above that Da satisfies (ii), and (i) is trivial. Since the closest separable state to a pure state is
a pure product state, which is A-classical, Da coincides with the geometric measure of entanglement
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Ep, for pure states (see (381I]) below). Hence Dp is a measure of quantum correlations. Similarly, the

relative-entropy based discord D,(Al) is a measure of quantum correlations. The property (iii) follows in
this case from the fact that if py is a pure state then a separable state ogep minimizing S(pw||osep) is
the classical state given by (B61]) (see the proof of Proposition IT1.1.2]), so that D&l)(pq;) coincides with
the entanglement measure F1(py) defined in (B58]). It is an open problem to show that Dg\a) satisfies
(iii) when o # 1/2,1.

The B-discords Dg and Déa) are defined by exchanging A and B in ([B70) and [B77). As for the
quantum discord of Sec. [I0, in general Da # Dg. Symmetric measures of quantum correlations are
obtained by considering the square distance to the set of classical states Cag = Ca N Cpg,

Das(p) =2(1— max {VF(p.oaw)}) . Dig(p)= min {S(plloaws)}.  (379)

Tclas €CAB Oclas €CAB

Let us mention that a similar symmetric information-based discord can be defined by modifying the
maximization procedure in ([B25]) so as to involve projectors 7TZ-A ® 7TZB (or generalized measurement
operators MA @ MEB), instead of MA ® 1. It is called the measurement-induced disturbance [103].
The relative-entropy symmetric discord D/&lé has been studied in [109], together with other quantities
characterizing quantum and classical correlations. We will not elaborate further here on the numerous
discord-like measures defined in the literature and their operational interpretations (see e.g. [110]).

We emphasize that since Cag C Ca C Sag (see Fig. B]), the geometric measures are ordered as

Egu(p) < Da(p) < Dag(p) - (380)

This ordering is a nice feature of the geometrical approach. It also holds for the relative-entropy
measures. In contrast, depending on p the entanglement of formation EFg.r(p) can be larger or smaller
than the quantum discord da(p).

Before going on to general results, let us say few words about explicit calculations of the discords.
In the special case of two-qubit states p with maximally mixed marginals pp = pg = 1/2, the relative-
entropy measure Dg\lé(p) coincides with the usual discord §5N-(p) [109, [108]. For the same states,
a closed formula for Da(p) has been found in [Il 150] and the closest A-classical states to p have
been determined explicitlyl%gl. The Hilbert-Schmidt geometric discord is much easier to calculate. A
simple formula for arbitrary 2-qubit states is derived in [46] and has been later on extended to higher
dimensions. The geometric discord defined with the trace distance d; has been determined recently
for certain families of two-qubit states (the so-called X-states, containing in particular the states with
maximally mixed marginals, and the B-classical states) [43, [115]. Note that since d; is contractive,
this geometric discord fulfills the axiom (ii) of Definition [T.2.1]

11.2.2 (Geometric discord for pure states

We now proceed to determine the geometric discord Da for pure states. It has been seen in the proof
of Proposition [[T.1.4] that the family of closest separable states of a pure state |¥) contains a pure
product state, which is a classical state. By inspection of (366]) and (380), one gets

Da(|¥)) = De(|¥)) = Das(|¥)) = Epu(|¥)) = 2(1 = V/kimax) - (381)
One deduces from the bound fimax > 1/n (which follows from " | p; = 1) that

Da(w)) <2(1 - %) . = min{na,ng} . (382)

29 This is done in [I50] with the help of Corollary below.
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This bound is saturated when p; = 1/n for any i, that is, for the maximally entangled states. We will
see below that this statement is still true for mixed states provided that na < ng.

The identities ([B8I]) are analogous to the equality between the entanglement of formation Epop
and the discord dp for pure states (Sec. [0.J]). As said before, they reflect the existence of a pure
product state which is closer or at the same distance from |¥) than any other separable state. It is of
interest to find all the closest A-classical states to |¥). This is done in the next proposition.

Proposition 11.2.2. (Spehner and Orszag [149]) Let py = |U)(¥| be a pure state of AB with largest
Schmidt coefficient pimax- If pmax 1S non-degenerate, then the closest A-classical (respectively clas-
sical, separable) state to pg for the Bures distance is unique. It is given by the pure product state
|omax )| Bmax ), where |max) and |Bmax) are eigenvectors with eigenvalue pimax of [pw]a and [pw]s, re-
spectively. If pmax @5 T-fold degenerate, Say pmax = 1 = .- = fp > Hptl,---, [y, then infinitely
many A-classical (respectively classical, separable) states o minimize dg(py,o). These closest states
are convex combinations of the pure product states |¢;)|x;) with

o) =D walas) 5 ) =D malB) . l=1....r, (383)
i=1 =1

where {|ai;)}i_y and {|B;)}i_, are orthonormal families of Schmidt vectors associated to fimax in the
Schmidt decomposition (3), and (uil)g,lzl 1s an arbitrary r X r unitary matric.

It should be noticed that when piyax is degenerate, the vectors (B883]) provide together with |ay),
|B:), i=741,...,n, a Schmidt decomposition of |¥) (in that case this decomposition is not unique,
see Sec.[2.2]). Conversely, disregarding the degeneracies of the other eigenvalues p; < fimax, all Schmidt
decompositions of |¥) are of this form for some unitary matrix (u;);,_,. Thus, the existence of an
infinite family of closest A-classical states to |¥) is related to the non-uniqueness of the Schmidt
vectors associated to fimax, and this family contains the products |¢;)|x;) of these vectors and convex
combinations thereof. This shows in particular that the maximally entangled pure states are the pure
states with the largest family of closest state@.

Proof. An arbitrary A-classical state o can be decomposed as o = Zij Qijlpi) (0l @ [xj1a) (Xl In
much the same way as in the proof of Proposition TT.1.4] F'(|¥),Ca) = imax and the closest A-classical
states to p fulfill

{01 @ x;1:| W) > {I[t¢ @ X|¥)|*} = ftmax  When g;; > 0. (384)

= max

lell=lxll=1
We have thus to determine all |p) € Ha and |x) € Hp such that [{¢ ® x|¥)|* = pimax. This occurs if
all inequalities in ([B70]) are equalities. Let us first assume that (11 = fimax > H2, - - ., fin. After a close
look to ([B70) one immediately finds that |(p @ x|¥)|? = pmax if and only if [p) = |a;) and |x) = |581)
up to irrelevant phase factors. Hence (384]) is satisfied for a single pair (4, j). Therefore, all the g;;
vanish except one and the closest A-classical state to |¥) is the pure product state |a1)|f1).

We now proceed to the degenerate case 1 = ... = lty = fmax > Mr+1,-- -, n. Let us establish the
necessary and sufficient conditions for the inequalities in (B70) to be equalities. For the first inequality,
the condition is arg({(¢|c;)(x|F;)) = 6 with 6 independent of j. For the second one, the condition is that
) belongs to Vinax = span{|a;)}i_; or |x) belongs to Wiax = span{|8;)};_;. The Cauchy-Schwarz
inequality in (B70) is saturated if and only if |(p|a;)| = A|(x|F;)| for all j, with A > 0. Finally, the

30 This family forms a (n® + n — 2) real-parameter sub-manifold of £(Hag)-
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last inequality holds with equality if and only if |¢) € span{|a;)}7_; and [x) < span{|8;) }7_;. Putting
all conditions together, we obtain |¢) € Vinax, [X) € Winax, and (x|8;) = () for j = 1,...,r
Therefore, from any orthonormal family {|y;)}]_; of Vinax one can construct r orthogonal vectors
lor @ 1) satisfying [(o1 @ xi|¥)|? = pmax for all I = 1,...,7, with (x;|8;) = (a;|¢1). The probabilities
{qi;} are then given by ¢;; = ¢; if i = j < r and zero otherwise, {¢;}]_; being an arbitrary probability
distribution. The corresponding A-classical states o maximizing the fidelity F'(py, o) are the classical
states

o= aqlau®p)u®p]. (385)
=1
O

11.2.3 Geometric discord for mixed states and quantum state discrimination

As for all other measures of entanglement and quantum correlations, determining Da(p) is harder for
mixed states than for pure states. Interestingly, this problem is related to an ambiguous quantum
state discrimination task.

Proposition 11.2.3. (Spehner and Orszag [149]) For any state p of the bipartite system AB, the
maximal fidelity between p and an A-classical state reads

,Cp) = max POptVN i i —maxmax{ s tr (11 Z}, 386
F(p,Ca) = max { ({pism}) } = o ma RELE (386)

where the mazima are over all orthonormal bases {|¢;)}i2, of Ha and all von Newmann measurements

gwen by orthonormal families {I1;}72, of projectors of Hag with rank ng. Here, POptVN {pi,ni}) is
the mazimal success probability in discriminating ambiguously by such measurements the states p; with
probabilities n; defined by

ni = (pilpalei) »  pi=n Voleided @ 1yp , i=1,...,na (387)

(if n; = 0 then p; is not defined but does not contribute to the sum in (380)). Furthermore, the closest
A-classical states to p are given by

Zw‘)pt e (e VeIl (388)

where {|pPY} and {TIP'} are any orthonormal basis of Ha and von Neumann measurement maii-
mizing the right-hand side of (386]).

The p; are quantum states if ; > 0 because p; > 0 and 7; is chosen such that tr(p;) = 1. Moreover,
{n:}:, is a probability distribution (since 7; > 0 and , 7, = tr(p) = 1) and the ensemble {p;, n;};*,
is a convex decomposition of p, i.e. p =" nip;.

Corollary 11.2.4. If p is invertible then one can substitute POptV N-({pi,mi}) in ([380) by the mazimal
success probability Ps,a ({pi,mi}) over all POVMs, given by @)
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Proof. This is a simple consequence of Corollary 5.4.3l Actually, if p > 0 then the states p; defined in
(BRT)) are linearly independent, thus the optimal measurement to discriminate them is a von Neumann
measurement with projectors of rank r; = rank(p;). The linear independence can be justified as
follows. Let us first notice that p; has rank r; = ng (for indeed, it has the same rank as mp_l/ 2p; =
l0i) (@il ®1,/p). A necessary and sufficient condition for |;;) to be an eigenvector of p; with eigenvalue
Xij > 01s &) = ()\,-jm)_l\//_)]cpi> ® |¢ij), where |(;;) € Hp is an eigenvector of R; = (p;|plp;) with
eigenvalue \;;n; > 0. For any 4, the Hermitian invertible matrix R; admits an orthonormal eigenbasis
{I¢ij) }72,- Thanks to the invertibility of \/p, {l&) Y] 1’ e is a basis of Hag and thus the states p;
are hnearly independent and span Hag. O

Before going into the proof of the proposition, let us discuss the state discrimination problems
when p is pure or A-classical. Of course, the values of Da(p) are already known in these cases,
being given by ([BR8I) and by Da(p) = 0, respectively, but it is instructive to recover that from
Proposition I1.2.3l If p = py is pure then all states p; with 1; > 0 are identical and equal to py, so
that PSOEWN = max, 22 iYL W) } = Nmax- One gets F(pw,Ca) = ftmax by optimization over
the basis {|<,02>} If p is an A-classical state, i.e. if it can be decomposed as in (326]), then the optimal
basis {|p;” >} coincides with the basis appearing in this decomposition. With this choice one obtains
ni = ¢ and p; = |p;)(pi| ® ogy; for all 7 such that g; > 0. The states p; are orthogonal and can thus
be perfectly discriminated by von Neumann measurements. This yields F'(p,Ca) = 1 and Da(p) =0
as it should be. Reciprocally, if F(p,Ca) = 1 then PSOStV'N'({pi,m}) = 1 for some basis {|¢;)} and
the corresponding p; must be orthogonal (Sec. ). Hence one can find an orthonormal family {IL;} of
projectors with rank ng such that p; = IL;p;11; for any ¢ with n; > 0. It is an easy exercise to show that
this implies that II; = |¢;)(@;| ® 1 if p|m,5 is invertible. Thus p = >, n;p; is A-classical, in agreement
with the fact (following directly from the definition) that Da(p) = 0 if and only if p is A-classical.

The above discussion provides a clear interpretation of the result of Proposition IT.2.3} the states p
with non-zero discord are characterized by ensembles {p;,n;} of non-orthogonal states, which thereby
are not perfectly distinguishable, for any orthonormal basis {|¢;)} of Ha. The less distinguishable are
the p;’s, the most distant is p from the set of zero-discord states.

We will establish Proposition I1.2.3] by relying on the slightly more general statement summarized
in the following lemma.

Lemma 11.2.5. For a fized family {oa;}i—, of states op); € E(HA) having orthogonal supports and
spanning Ha, with 1 < n < na, let us define

Ca({oaji}) = {a = ZQz’UA\i ® ol ; 14i,08ji}i=1 15 a state ensemble on Hp } . (389)
i=1

Then
F(p.Calloni) = _max  {Fip.o) —max{ZHW I} (390)

a€Ca({oa)i})
where the last maximum s over all unitaries U on Hag and
Wi(U) = tra(\/oa; ® 1/pU) . (391)
Moreover, there exists a unitary Uopy achieving the mazimum in (390) which is such that W;(Uopt) > 0.
The states oopy satisfying F(p, oopt) = F(p,Ca({oa;i})) are given in terms of this unitary by

1
Oo
P Fp,Ca{oan

5 Z oali @ Wi(Uopt)? - (392)
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Proof. Using the spectral decompositions of the states og;, any o € CA({oa);}) can be written as

n B
o =Y aijon; @ ) Ol with g3 >0, Y g =1, (393)
i=1 j=1 ij

where {[x;i;)};2; is an orthonormal basis of Hg for any i (compare with (333])). By assumption, if

i # 1 then ranoa); L ranopy, so that /o =37, .\ /Gij/Tau @ [Xji) (X;)il- We start by evaluating the
trace norm in the definition (I76]) of the fidelity by means of the formula ||Ol|; = maxy | tr(UO)| to
obtain

Flp.Calfoai}) = max  max{|a(U"vpvo)[* |

a€Ca({oa):})

2} . (394)

= max max V@i; OG1IWa(O)* x4
& {{qﬁ},{xm}‘% 30l WilU) D)

The square modulus can be bounded by invoking twice the Cauchy-Schwarz inequality and ), G5 =1,

2

Z|<Xj\i|W'(U)*|Xj\i>‘2
< ZHW Eemils ZHW )3 - (395)

@i X1 Wi(U)* x4

The foregoing inequalities are equalities if the following conditions are satisfied:
(1) Wi(U) = Wi (U)* = 0;
(2) ¢ = <Xj\i\Wi(U)\Xj\i>2/(zz',j<Xj\i’Wi(U)\Xj\i>2);

(3) {Ixji)}j2, is an eigenbasis of W;(U) for any i.

Therefore, ([390) holds true provided that there is a unitary U on Hag satisfying (1). For a given
U, let us define Uypy = U ), 7TZA ® V.*, where 7TZA is the projector onto rano,; and V; a unitary on
‘Hg such that Wi(U ) = |Wi(U)*|V; (polar decomposition). Then Uy is unitary since by hypoth-
esis mirh = Sy and Y, 7 = 1, and one readily shows that W;(Uyp) = Wi(U)V* > 0. As
> HW( N3 =3 HW( Uopt)|13, the identity ([B390) follows from (394) and ([B95). From condition (3)
one has W;( 0Pt)|Xg\z ) = wﬂ|xmt> with >, w]zi = F(p,Ca({on)i})), see [395). Condition (2) entails

W'(U )2

opt __ opt opt opt 1\Yopt

P = 396
I8l = Zq J\z le | F(/LCA({UAH})) ) ( )
which together with (93] leads to (392]). 0

Proof of Proposition IL.23. Let {|¢;)}2, be an orthonormal basis of Ha. Applying Lemma TT.2.5]
with oal; = |@i)(wi| one gets

F(p,Cal{lei)}) = mgX{Ztr[U!w(%!®1U*\/5!<pi>(<pi\®1\/ﬁ}},

i=1

= max {Ztr [iv/plei) (il @ 1f]} = PN ({pmi}) . (397)
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The last maximum is over all orthonormal families {II;}; of projectors of rank ng and the suc-
cess probability Pso’st VN-({ps,mi}) is given by ([@). Since the fidelity F(p,Ca) is the maximum of
F(p,Ca({|pi)})) over all bases {|p;)}, this leads to (B80) and (388)). O

11.2.4 The qubit case

It has been emphasized in Sec. Bl that the optimal success probability and measurement for discrim-
inating ambiguously more than two states are not known explicitly in general. Nonetheless, if the
subsystem A is a qubit, the ensemble {p;,7;} in Proposition [1.2.3] contains only na = 2 states and
the optimal probability and measurement are easily determined. Following the steps yielding to (68])
we find

ng
(1T—trA)+> N, (398)
=1

N =

opt v.N.
PPN ({pi i) =

where Ay > --- > )\, are the ng largest eigenvalues of A = nppg — n1p1. The optimal von Neumann
measurement is formed by the spectral projector HOPt of A for these ng eigenvalues and its complement
P = 1 — TIP". For the states p; associated to the orthonormal basis {|¢;)}1_, of C? via formula
(BEZI) one has A = \/p (|¢o)(vol — |¢1){(p1]) ® 1\/p. The operator inside the parenthesis in the last

identity is equal to oy = 27 _| U0y, for some unit vector u € R3 depending on {|¢;)} (here oy, o9,
and 03 are the Pauli matrices). Conversely, one can associate to any unit vector u € R3 the eigenbasis
{|pi)}g of oy. According to Proposition II.23] F(p,Ca) is obtained by maximizing the right-hand
side Of ([B98)) over all Hermitian matrices

A(u) =/pou®1,/p (399)
with u € R3, |u| = 1. The following corollary of Proposition IT.2.3]is a refinement of a result in [I50].

Corollary 11.2.6. Let A be a qubit, i.e. npo = 2. The fidelity between p and the set of A-classical
states is given by

1
F(p,Ca) = 5 max {1+ A} (400)
where A(u) is the 2np X 2npg matriz (399). The closest A-classical states to p are given by (388) where

ISP s the spectral projector associated to the ng largest eigenvalues of A(u®Pt) and u®?* € R? is a
unit vector achieving the mazimum in ([{00).

Proof. Let \j(u) be the eigenvalues of A(u) in non-increasing order. We claim that

1 ng 2ng 1
——tr +Z)\l 5?}“ ——l ZHA, ) =5 trlAw)]. (401)
= ne

To prove this claim it suffices to show that A(u) has at most ng positive eigenvalues A\;(u) > 0 and at
most ng negative eigenvalues A\;(u) < 0, counting multiplicities. As ker p C ker A(u) one may without
loss of generality restrict A(u) to the subspace IIHag, with IT the projector onto ran(p). A standard
linear algebra argument shows that if S is a finite invertible matrix and ¥ a self-adjoint matrix, then
the number of positive (respectively negative) eigenvalues of 3 is equal to the number of positive
(respectively negative) eigenvalues of S*XS. Let Pg be the spectral projectors of ¥ = Iloy ® 111
on Ry \ {0}. Since /p : IHag — [IHap is invertible, in order to prove ([@QI)) it is thus enough to
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verify that rank(Pi) < ng. This is evident if rank(II) < ng. If rank(II) > ng, then :I:(\If|au ® 1|¥) =
+(U|Z|T) > 0 for any |¥) € PaHag C ITHag. This 1mphes that rank(Pg) < rank(PJ ©1) = B,
as otherwise one could find a non—vanlshlng vector |U) € P Hag belonging to the ng-dimensional

eigenspace of oy ® 1 with eigenvalue F1, in contraction with the foregoing inequality. This establishes

(@01)). Then (@00Q) follows from (B98]) and Proposition IT.2.3] O

11.2.5 States with the highest geometric discord

The geometric discord Da, as the quantum discord da, quantifies the degree of quantumness of a state.
Let us recall from Sec. that when the space dimensions of A and B are such that na < ng, the
“most quantum” states p having the highest discord da(p) are the maximally entangled states, i.e. the
states with the highest entanglement of formation Egop(p) = Inna. It is comforting that a similar
result holds for the geometric discord.

Corollary 11.2.7. If na < ng, the highest value of Da(p) on E(Hag) is equal to 2 — 2/ /na. The
most distant states p from the set of A-classical states, which are such that Da(p) = 2 — 2/\/na, are
the mazimally entangled states given by Proposition [9.5.1l

Comparing with the results of Sec. [L.T.2] we see that when na < ng the most distant states from
Ca are also the most distant from the set of separable states Sag. If na < ng < 2na, these most
distant states are maximally entangled pure states, as illustrated in Fig. Bl

Proof. This is again a corollary of Proposition II1.23l The success probability Py Optv

" is clearly
larger or equal to the highest prior probabilityP] Nmax = max;{n;}. In view of Proposmon [11.2.3] and
Tlmax > 1/71/_\, we get

Flp,Ca) > — (402)
na

for any state p. When n = na < ng this bound is optimal, the value 1/n being achieved for the
maximally entangled pure states (Sec. [1.2.2]). This proves the first statement. Let p be a state such
that F'(p,Ca) = 1/n. According to ([B86]) and since it has been argued above that Psfgt VNS ek >

1/n, this implies that POptv N-({pi,mi}) = 1/n whatever the orthonormal basis {|p;)}. It is intuitively

cleal. 32 that this can happen only if the receiver gets a collection of identical states p; with equal prior
probabilities n; = 1/n. From (B87) and p = > n;p; one obtains pp = 1/n and p; = p for any i and
{l¢i)}. Plugging the spectral decomposition p = 3, pi|k)(k| into (B8T), the second equality yields
Dy = trg(|k)(l]) = n='6 for all k and I such that prp; # 0. One concludes that p has maximal
entanglement of formation by following the same steps as in the proof of Proposition O

One may wonder if Corollary [1.2.7] could also hold for na > ng (modulo the exchange na <> ng),
as what happens for the geometric measure of entanglement (see Sec. IT.I.2]). However, unlike Ep,(p)
the geometric discord is not symmetric under the exchange of the two subsystems. The problem of
determining its highest value and the corresponding “most quantum” states is still open for np >
ng. For such space dimensions the bound (402]) is still correct but it is not optimal, that is, there
are no states p with fidelity F((p,Ca) = 1/na. Indeed, one can show as in the proof above that

31 A receiver would obtain Psa = Nmax by simply guessing that his state is pi,,.,, With 7., = 7max, Whatever the
measurement outcomes. A better strategy is of course to perform the von Neumann measurement {II;} such that 1T,
projects onto a ng-dimensional subspace containing ran(p;,,,.). This range has a dimension rank(p;,...) < ng by a
similar reasoning as in the proof of Corollary [1.2.41

32 An explicit proof of this fact can be found in [149].
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Entanglement of
formation

Quantum discord

Geometric
entanglement

Geometric discord

AB in a pure state

Epor (IV)) = 0a(I¥)) = H({ni})

Epu([¥)) = Da(l¥)) =2(1 —

Hmax )

Da(p) = 2(1—
Bpor(p) = min 5a(p) = Ing(p)— Epu(p) = 2(1— max{/F(p, on—c1)})
AB in a mixed state {Zl 77iEEoF(“I’i>)} max{Ia.g(Ma ® 1(p))} max{ F(pvgscp)}) —_—

(convex roof)

classical correlations

—_— —

= convex roof

= max. success proba.
in state discrimination

Vanishes iff

p is separable

p is A-classical

p is separable

p is A-classical

Maximal iff

p is max. entangled

J

EgoF: true V nag

p is max. entangled

}

Egy: true V np g

with maximal value Inn Sp: true if np < ng 2(1 —1/v/n) Dp: true if ny < ng
Local unit. invariance v v ' v
Monotonicity w.r.t. LOCCs operations on B LOCCs operations on B
Convexity v no v no
Ordering no Epy(p) < Da(p)
ABC in a pure state EEor (Pec) = 9a(paB) + S(paB) — S(pa) ?

Table 1: Summary of the definitions and properties of the entanglement of formation (Sec.[d), quantum
discord (Sec. [I0)), geometric measure of entanglement (Sec. [1.1]), and geometric discord (Sec. IT1.2]).
Here na and ng are the space dimensions of the subsystems A and B, n = min{na,ng}, and p; are
the Schmidt coefficients in ().

if F'(p,Ca) = 1/np then the eigenvectors |k) of p with eigenvalues pr > 0 have maximally mixed
marginals Dy = (|k)(k|)a = 1/na. But this is impossible since rank(Dyx) < ng by ().

Remark 11.2.8. One can place a lower bound on F(p,Cp) for na > ng by invoking the inequality [179]

1 —|lpll ng — 6,
ng

ol

F(pch) >
B na

(403)

where §, = 0 if rank(p) < ng and 1 otherwise.

Table [I] presents a comparison of the properties of the entanglement of formation, the quantum
discord, and their geometrical analogs based on the Bures distance.

11.2.6 Geometric discord and least square measurements

The ensemble {p;,7;} in the discrimination task associated to the geometric discord in Proposi-
tion [T.2.3] turns out to be related to the transpose operation of the von Neumann measurement in
the basis {|p;)}. In fact, let us denote by Ma the measurement on A with rank-one orthonormal
projectors & = |¢;){(p;|. Let

ni = (piloales) . pagi = n; i) (@il ® (wilples) (404)
be the corresponding probabilities and post-measurement conditional states when the initial state is
p. The transpose operation of Ma for p is (see (43]))

Ratan(0) = S Voleon) (il ® (pilples) "2 (pilolen) (wilpled) 2 /5 (405)

1=1

We observe that

pPi = RMA,p(pABH) , t=1...,na. (406)

Comparing ([44) and (406]), one expects from the discussion in Sec. 3] that the least square mea-
surement {M[®™} for the ensemble {p;,7;} is associated to the transpose operation of R4, , for
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Ma RMAaP
Ma(p)

<{PABM% {pi;mi}

Figure 4: State changes under the von Neumann measurement Mp with rank-one projectors
7T;-L\ = |pi)(pi| followed by its transpose operation Raq,,,. The upper line corresponds to a mea-
surement without readout and the other lines to the different measurement outcomes.

Ma(p) = > ;mipagji- But this two-fold transpose operation coincides with Ma, hence {M}m} s
nothing but the von Neumann measurement on A in the basis {|p;)}. This can be readily checked:
since {p;,n;} is a convex decomposition of p, (E7)) leads to

MP™ =np Ppp P =l @1, (407)

One can bound PSOStV'N'({pi, 7;}) from below by the success probability obtained by discriminating the

pi with {M}®™} and from above by the square root of this probability, see (83). By Proposition [T.2.3),
this yields

1

max{ztrs (eilvAle?) | < Flp.Ca <max{ztr3 elvae)} . o

{lei)} {lei)}

The left- and right-hand sides become nearly equal when F(p,Ca) is almost one, that is, if p is close
to Ca. Other inequalities on F'(p,Ca) can be obtained in terms of the fidelities F'(p;, p;) with the help
of Proposition B.5.11

The aforementioned observations are summarized by Fig. @l
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A Operator monotone and operator convex functions

We recall in this appendix some basic facts about operator monotone and operator convex functions.
We refer the reader to the lecture notes [33] and the book [27] for more complete presentations of
these notions.

We denote by B(H),+ the set of non-negative operators on H, with dim(H) = n < co. A function
f : Ry — R is operator convex if for any n x n matrices A,B € B(H)+ and any 0 < n < 1, it
holds f((1 —=n)A+nB) < (1 —n)f(A) +nf(B). It is strictly operator convex if the inequality holds
with equality if and only if n € 0,1 or A = B. It is operator concave if —f is operator convex. It
is operator monotone-increasing if for any A,B € B(H)+, A < B = f(A) < f(B), and operator
monotone-decreasing if the reverse equality holds.

It is not hard to show (see e.g. [33]) that f(z) = ! is operator monotone-decreasing and strictly
operator convex. Clearly, this is then also true for f(z) = (x +t)~! for any ¢+ > 0. According to the

integral representation
i o 1 1
Aa:M/ dtta<___), (A1)
v 0 t t + A

it follows that f,(z) = x® is operator monotone-increasing and strictly operator concave for 0 < o < 1.
Similarly, one shows that f, is operator monotone-decreasing and operator convex for a € [—1,0] and
operator convex for a € [1,2]. However, for instance the square function f5 is not operator monotone
and the cube function f3 is not operator convex. One can establish that g(z) =Inz and f(z) =zlnzx
are operator concave and operator convex, respectively, thanks to the identities

InA=lima (4% -1) , AlnA = tim 2224

a—0 a—1 a—1

(A2)

Another example of monotone-increasing function is f(z) = (x — 1)/Inx = fol dax®.

Operator monotonicity is much stronger than usual monotonicity of real functions. This is clear
from Lowner’s theorem, which states that if f: (—1,1) — R is operator monotone and non-constant,
then f admits the integral representation

1

@)= F0)+ £10) [ dut== |

(A3)

where p is a probability measure on [—1,1] (see [27], Corollary V.4.5). Furthermore, if f: Ry — R4
is continuous, then f is operator monotone if and only if it is operator concave ([27], Theorem V.2.5).
The fact that concavity implies monotonicity is easily obtained by noting that if 0 < A < B, C =
B—A>0,and 0 <n <1, then f(nB) > nf(A)+ (1 —n)f(n(1—n)"1C) (by concavity). As f(z) >0
the second term in the right-hand side is non-negative and thus f(nB) > nf(A). Letting n — 1 we get
f(B) > f(A). The converse implication can be shown by similar arguments as those used to establish
(A4)) below and by invoking the fact that if (A4]) is satisfied for any contraction C' then f is operator
convex (see [27] for more detail).

Another remarkable result valid for continuous functions f : [0,a) — R is that f is operator convex
and f(0) < 0 if and only if g(x) = 2~!f(x) is operator monotone on (0,a) ([27], Theorem V.2.9).
Similarly, for functions f : (—1,1) — R of class C?, if f is operator convex and f(0) = 0 then g(z) is
operator monotone ([27], Corollary V.3.11). An integral representation for non-linear operator convex
functions f can be obtained with the help of the last property, by applying (A3) to g(x).

If f: Ry — R is operator convex and f(0) < 0, then

f(CTAC) < CTf(A)C (A4)
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for any contraction C' € B(H), ||C|| < 1, and any A € B(H);. This inequality can be shown as
follows [69]. Let us consider the matrices

~ A0 ~ C 4D

=(aa) (522 9
with D = /1 - CC* and E = /1 — C*C (the latter operators are well defined since ||C]| < 1). An
explicit calculation shows that Uy is unitary and

C*AC 0 I PN N
< 0 DAD>_§;_L AU (46)

If f is operator convex and f(0) < 0, then

<f(C:)AC) f(D(llD)) - f( *640 DS&D)
< QL A0:AT)
< %Fil* < f(gl) 8 >z7€= ( cride Df&)D > . (A7)

This implies in particular the bound (A4]). Conversely, it is shown in [69] that if this bound is satisfied
for any orthogonal projection C' and any A € B(H)4, then f is operator convex and f(0) < 0.

Let M be a quantum operation on B(H) and f : R; — R be operator convex. Then the following
Jensen-type inequality holds [51]:

FIMH(A)) < MP(f(A) , AeB(H)y. (A8)

A simple justification of this inequality is as follows. Since M*(¢1) = ¢1 for any constant ¢ € R, one
may assume without loss of generality that f(0) = 0. Let A € B(H)4+. According to Stinespring’s
theorem (Sec.[3]) one can find a unitary operator U on an enlarged space H®Hg and a vector |eg) € Hg
such that M*(A) = (eo|U*A ® 1Ulep). Let us set Py = |eg){€g|. Applying (Ad) with C =1 ® Py, one
gets

FMA)@ P = fARUA®1UL® Ry)
10 Pyf(UA®1U)1® Py = M*(f(A) @ P, . (A9)

IN

B Trace inequalities
In this appendix some inequalities involving the || - ||,-norms are stated or derived.

1. Let us first recall the triangle and “inverse triangle” inequalities: for any matrices A and B one

has
<Al +Bll, ifp=>1

A+B
| Iy { > Al + |IBll, f0<p<l.

This shows that the map A — ||Al|, defined by (@) is a norm for p > 1, but this is not the case
for p < 1. One deduces the bound

tr[v/|A|? + |B|?] < tr |A] + tr | B] (B2)
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by applying (BIl) for p = 1 to the matrices

~ A0 N 0 0
(1) a-(0).
. Another standard result is the Lieb-Thirring inequality [100]. We quote here without proof a

generalization of this inequality derived by Araki [12]. Let & > 0 and A and B be non-negative
operators. If @ > 1 then

(B3)

Taking o — a~! and k — k/a, one can deduce that the reverse inequality holds trueif 0 < o < 1.

|B2 4B |5, < |BEA°BE], .

. Next, let us show that for any square matrices A, B, C, and D of the same size, the following
bound generalizing the Cauchy-Schwarz inequality ||AB|; < ||Al|2||B]|2 holds true [112]
IAB +CD|f < (IlAl13 + IDI3) (I1BI + C113) - (B4)

Actually, let us form the 2 x 2 block matrices
~ A* 0 = B 0
P=(e0) - F=(50)

|AB+CDI} = |E*F|[; < |EI3IFN3 = (1415 + IC13) (18115 + I1DII3) -

Then

But CD = UD*C*U with U unitary by the polar decomposition. Applying the above inequality
with C' and D replaced by UD* and C*U and using the unitary invariance of || - ||2, one gets the
desired result (B4).

. Let B = (B,-j-)?”;:1 be a non-negative m x m operator-valued matrix, whose entries B;; are given

by p; x p; matrices. Denote by A = VB = (Aij)i%=1 the square root of B. Then for any

j=1,...,m, one has [19]
2 1
Sl < 25, (B5)
i,i#] i,i#]
Let us first establish (BE]) for m = 2. Thanks to the singular value decomposition and the unitary
invariance of the || - ||,-norms, we may assume without loss of generality that A;s is a diagonal

p1 X pp matrix, i.e. Ajg = > h_; /Vk|k) (k| with p = min{p;,p>}. By a standard argument, the
non-negativity of A implies

(1] A12]2)|* < (1] A11]e1) (2| Azz|2)

for any vectors |p1) € CP! and |ps) € CP2. Using this bound and the relation By = A1 A1 +
A12A22, we find

hS]

N | —

[A2)l3 = v <> Vu(klAnlk) (Bl Anlk) < 5> Vor((kl A k) + (k| Ag|k)) = %HBlel -

k=1 k=1 k=1

Consider now the general case m > 2. The idea is to write B as a 2 x 2 block matrix such
that the upper left and lower right blocks are the (m — 1) x (m — 1) matrix (Bij)?fj_:ll and the
single entry By, respectively, whereas the upper right (lower left) block forms a column (line)

110



vector with entries By, (Byi). A similar block decomposition can be made for A. Applying the
foregoing result for m = 2, one gets

Alm 2 1 Blm
Z || Aiml|5 = 3 < 5 :
izm Apn-tym / ||, Bin-1ym /|
1 1
= 3 Bim2 <c Bzm )
21&%%\ 2| <3 5 1Bl

1,i#m

where we have used (B2) in the last bound. This proves (BE) for j = m. By an appropriate
unitary conjugation, one deduces that the bound holds for any j.

5. The following trace inequality plays a central role in the derivation of the quantum Chernoff
bound [7]: for any positive square matrices A > 0 and B > 0 and any 0 < s < 1,

%(tr(A) +ir(B) —tr|A— B|) < tr(4'B") (B6)

This inequality was first shown in [7], but the proof in this reference is not very transparent. We
present here a much simpler proof due to Ozawa, which has been first reported in [87]. Denoting
by O+ = (|O| £ O)/2 > 0 the positive and negative parts of O, one may express tr |A — B| as
2tr(A — B)4 — tr(A) + tr(B). Thus (BE]) is equivalent to

tr((A* — B%)A™) < tr(A - B); .

Since f(x) = * is operator monotone (see Appendix[A]) and A < A+ (A—B)_ = B+(A—B)4,
one has A° < (B + (A — B)+)®. Hence

(45— BYA"Y) < u([(B+(A-B)y)* — B*]A)

<
< w([(B+(A-B)) - B](B+(A-B))"™),

where the second inequality relies on the similar bound B* < (B + (A — B)4)®. By rearranging
the product in the last trace and using the latter bound with s <> (1 — s), one gets

tr((A® — B5)A"™®) < tr(B) + tr(A — B)y — tr(B*(B+ (A — B)+)' %) <tr(A— B). .

This concludes the justification of (BG]).
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