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We study how macroscopic superpositions of coherent states produced by the nondissipative dynamics of
binary mixtures of ultracold atoms are affected by atom losses. We identify different decoherence scenarios for
symmetric or asymmetric loss rates and interaction energies in the two modes. In the symmetric case the quantum
coherence in the superposition is lost after a single loss event. By tuning appropriately the energies we show that
the superposition can be protected, leading to quantum correlations useful for atom interferometry even after
many loss events.
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I. INTRODUCTION

In large systems, macroscopic superpositions of quantum
states have extremely small decoherence times, making them
impossible to observe [1]. The largest superpositions generated
so far are superpositions of coherent states (CSs) of a cavity
field, and their progressive transformation into statistical mix-
tures as time evolves has been observed [2]. The first proposal
to generate a macroscopic superposition of CSs (MSCSs)
with light consisted of sending photons through a medium
presenting a strong Kerr nonlinearity [3]. In such media, the
dynamical phases of Fock states are nonlinear in the photon
number, thus the phase of an initial CS is split. In metastable
vapors of ultracold bosonic atoms, interactions between atoms
lead to similar nonlinearities, whose strength can be tuned
experimentally by using Feshbach resonances [4,5]. By trap-
ping optically the condensed atoms in a double-well potential
one realizes an external Bose-Josephson junction (BJJ); an
internal BJJ is obtained by trapping in a single well atoms in
two distinct hyperfine states coupled by a resonant field. In
analogy with light, the nonlinear dynamics generates MSCSs
after a sudden quench to zero of the tunnel amplitude (for
external BJJs) or a switch off of the coupling field (for internal
BJJs) [6,7]. Whereas MSCSs of light are presumably destroyed
after a single photon loss [2], the situation is less clear for
atoms. Up to now only squeezed states—which are produced
at earlier times than MSCSs—have been observed in BJJs with
a few hundreds of atoms [8–10]. In order to know if future
experiments could produce MSCSs in BJJs, it is desirable to
study how robust they are with respect to decoherence.

Decoherence effects due to atom losses and phase noise
on squeezed states have been analyzed in detail [11–13]. For
what concerns MSCSs, only decoherence caused by noise due
to photon scattering [14] and phase noise [15] has been studied
so far. Under current experimental conditions the first noise is
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negligible and the second one can be reduced by using spin
echo [10,16]; in contrast, atom losses are unavoidable.

In this article, we investigate whether a macroscopic super-
position can be formed in a BJJ even in the presence of atom
losses. We are primarily interested in internal Bose-Josephson
junctions, such as those studied experimentally in [9,10]. We
focus on two-body losses, due to scattering of two atoms in the
magnetic trap which changes their spin and gives them enough
kinetic energy to be ejected from the trap. These loss processes
are particularly detrimental in the experiments of Refs. [9,10].
Our analysis, however, also applies to one- and three-body
losses [17]. We first analyze the dynamics of a lossy BJJ from
the point of view of state conditioning, assuming that the total
number N̂ of condensed atoms can be measured precisely, both
initially and at the MSCS formation time tq . We study how
much coherence is destroyed by a single loss event occurring
at a random time between 0 and tq . We find quite different
answers depending on the degree of asymmetry between the
loss rates and interaction energies in the two modes of the
junction. Finally, we show that for strongly asymmetric losses
one can protect the coherence of the MSCSs by suitably tuning
the interaction energies, even after many loss events and in the
absence of measurement of the atom number.

II. QUENCHED DYNAMICS IN BOSE-JOSEPHSON
JUNCTIONS IN THE PRESENCE OF ATOM LOSSES

We consider an internal BJJ in the quantum regime. Initially,
N0 atoms are all in the same single-particle state which is
a symmetric superposition of the two internal states. This
corresponds to the ground state in the regime where tunneling
dominates interactions, described by a spin coherent state

|ψ(0)〉 = |N0; θ,φ〉

=
N0∑

n1=0

(
N0

n1

)1/2 [e−iφ tan(θ/2)]n1

[1 + tan2(θ/2)]N0/2
|n1,N0 − n1〉

(1)
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with θ = π/2 and φ = 0. Here |n1,n2〉 is the joint eigenstate of
the number operators n̂i in the mode i = 1,2 (Fock state). The
dynamics following a sudden quench of the coupling (tunnel
energy) to zero is given by the two-mode Bose-Hubbard
Hamiltonian [18]

Ĥ0 =
∑
i=1,2

(
Ein̂i + Ui

2
n̂i(n̂i − 1)

)
+ U12n̂1n̂2, (2)

where Ei and Ui are the internal energy and the interaction
energy between two atoms in the same mode i, respectively,
and U12 is the intermode interaction energy. Setting n̂2 = N0 −
n̂1, the interactions in Eq. (2) sum up to a nonlinear term
χn̂2

1, with χ = (U1 + U2 − 2U12)/2. The time-evolved state
at time tq = π/|χq| is a superposition of CSs, |ψ (0)(tq)〉 =
e−itq Ĥ0 |ψ(0)〉 = ∑q−1

k=0 ck|N0; π
2 ,φk〉, with φk+1 − φk = 2π/q

and |ck| = q−1/2 [3].
In the presence of two-body losses the Markovian master

equation for the density matrix ρ̂(t) of the condensed atoms
reads [19,20] (setting h̄ = 1)

dρ̂(t)

dt
= −i[Ĥ0,ρ̂] +

∑
i=1,2

γi

(
â2

i ρ̂
(
â2

i

)† − 1

2
{n̂i(n̂i − 1),ρ̂}

)

+ γ12

(
â1â2 ρ̂ â

†
1â

†
2 − 1

2
{n̂1n̂2,ρ̂}

)
, (3)

where γi and γ12 are the loss rates of two atoms in the same
mode i and of one atom in each mode, respectively, and {·,·}
denotes the anticommutator. Since Eq. (3) does not couple
subspaces with different total atom numbers N̂ = n̂1 + n̂2

and N̂ = N0 initially, at all times ρ̂(t) has the block structure
ρ̂(t) = ∑N0

N=0 wN (t)ρ̂N (t), where wN (t) is the probability to
have N atoms at time t and ρ̂N (t) is the corresponding
conditional state. This decomposition is naturally accounted
for by quantum trajectories t �→ |ψJ (t)〉 = |ψ̃J (t)〉/‖ψ̃J (t)‖,
|ψ̃J (t)〉 being the unnormalized wave function when J loss
events occur at times 0 � s1 � s2 � · · · � sJ � t in the
channels m1, . . . ,mJ [2,21,22],

|ψ̃J (t)〉 = e−i(t−sJ )Ĥeff M̂mJ
e−i(sJ −sJ−1)Ĥeff M̂mJ−1

× · · · × e−iĤeff (s2−s1)M̂m1e
−is1Ĥeff |ψ(0)〉. (4)

For two-body losses one has three loss channels, m = 1, 2, and
12. The corresponding jump operators are M̂1 = â2

1 , M̂2 = â2
2 ,

and M̂12 = â1â2. The dynamics between loss events is given
by the effective Hamiltonian Ĥeff = Ĥ0 − iD̂. The damping
operator

D̂ = 1

2

(∑
i=1,2

γin̂i(n̂i − 1) + γ12n̂1n̂2

)
(5)

describes the gain of information on the system resulting from
the knowledge that no loss occurred. The conditional state
ρ̂N (t) after a detection of N = N0 − 2J atoms at time t is
obtained by averaging |ψJ (t)〉〈ψJ (t)| over the J jump times
sK and channels mK ,

ρ̃N (t) ≡ wN (t)ρ̂N (t) =
∑

m1,...,mJ

∫
0�s1�···�sJ �t

ds1 · · · dsJ

×p(t)
m1,...,mJ

(s1, . . . ,sJ ; J )|ψJ (t)〉〈ψJ (t)|, (6)

where p(t)
m1,...,mJ

(s1, . . . ,sJ ; J ) = γm1 . . . γmJ
‖ψ̃J (t)‖2 is the

joint distribution of the sK , mK , and J [22]. By further
summing over the number of jumps J one gets the total density
matrix ρ̂(t) = ∑N0

N=0 wN (t)ρ̂N (t) which is a solution of Eq. (3).
In order to understand the effect of losses we analyze separately
each N -atom sector.

III. CONDITIONAL STATES AND THEIR
QUANTUM CORRELATIONS

A. Density matrix in the subspace with N0 atoms

When no loss occurs in the time interval [0,t], from
Eqs. (4) and (5) we obtain the unnormalized conditional state
ρ̃

(no loss)
N0

(t) = |ψ̃0(t)〉〈ψ̃0(t)| in the Fock basis,

〈n1,n2|ρ̃(no loss)
N0

(t)|n′
1,n

′
2〉

= e−t[dN0 (n1)+dN0 (n′
1)]〈n1,n2|ρ̂(0)(t)|n′

1,n
′
2〉 , (7)

where ρ̂(0)(t) = |ψ (0)(t)〉〈ψ (0)(t)| is the lossless density matrix
and

dN0 (n1) = 1
2 (γ1 + γ2 − γ12)(n1 − n1)2 (8)

up to an irrelevant constant, with 2n1 = [γ1 − γ2 + N0(2γ2 −
γ12)]/(γ1 + γ2 − γ12). For N0 	 1 the matrix elements
of ρ̂(0)(t) have Gaussian moduli peaked at (n1,n

′
1) =

(N0/2,N0/2) with a width ∼ √
N0. For symmetric loss rates

γ1 = γ2 and γ12 = 0, this peak coincides with the center of
the Gaussian damping factor in Eq. (7). Thus the MSCSs
formed at time tq is affected by damping when γ1 � |χ |q/N0.
In contrast, for γ2 = γ12 = 0 the damping factor is centered at
(n1,n

′
1) = (1/2,1/2) and its effect on the MSCSs sets in at the

much smaller rate γ1 ≈ |χ |q/N2
0 .

B. Density matrix in the subspace with (N0 − 2) atoms:
Tuning the energies to protect the coherence

We focus now on trajectories having one loss event in chan-
nel m at the random time s ∈ [0,t]. The instantaneous jump
transforms a CS into a CS, M̂m|N0; θ,φ〉 ∝ |N0 − 2; θ,φ〉. This
CS is rotated on the Bloch sphere by the evolution under
the nonlinear effective Hamiltonian Ĥeff due to changes in
energy and damping before and after the jump, yielding (see
Appendix A)

|ψ1(t)〉 ∝ e−itĤeff |N0 − 2; θm(s),φm(s)〉, (9)

where the random angles θm(s) = 2 arctan(e−sδm ) and φm(s) =
2sχm depend on the random loss time s, the interaction ener-
gies χ1 = U1 − U12, χ2 = −(U2 − U12), χ12 = (U1 − U2)/2,
and the loss rate differences δ1 = 2γ1 − γ12, δ2 = −(2γ2 −
γ12), and δ12 = γ1 − γ2. Hence, apart from reducing N and
producing damping, atom losses are identical to external θ

and φ noises rotating the state around the z axis by a complex
angle φm + i ln tan( θm

2 ) [23]. These noises have fluctuations
δθm � |δm| min{t,δsm} and δφm = 2|χm| min{t,δsm}, where
δsm is the loss-time fluctuation and we assumed δθm � 1.

Let us concentrate on the MSCS formation time t = tq
and take γ12 = 0. We first consider weak losses γm � qχ/N0

and symmetric energies U1 = U2. In this regime the θ noise
is negligible since δθm is much smaller than the quantum
fluctuations ∼1/

√
N0 of a CS. In contrast, one has large φ
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FIG. 1. (Color online) Modulus of the density matrix ρ̂N0−2(t2) in
the subspace with N0 − 2 atoms in the Fock basis at time t2, obtained
by an exact diagonalization of Eq. (3). Upper panels: symmetric
losses rates [γ1 = γ2 = χ/(200π )]; lower panels: asymmetric losses
[γ1 = 4χ/(300π ), γ2 = 0]. Left column: symmetric energies (χ1 =
−χ2 = χ ); right column: asymmetric energies (χ1 = 2χ , χ2 = 0).
Other parameters: γ12 = Ei = 0, N0 = 100.

fluctuations δφm = 2π/q in the two loss channels m = 1,2,
equal to the intercomponent phase separation of the MSCSs
(we use here χ1 = −χ2 = χ and δsm > tq). Such a strong
φ noise has a relatively small effect on the coherences,
albeit it transforms the corresponding statistical mixture of
CSs into a mixture of Fock states (phase relaxation) [15].
Actually, in the absence of losses in the second mode (γ2 = 0),
the off-diagonal elements of the conditional density matrix
〈n1,n2|ρ̂N0−2(tq)|n′

1,n
′
2〉 are weakly affected by losses for

n′
1 �= n1 modulo q, as shown in Appendix C and in Fig. 1

(lower left panel). The global shift to values n1,n
′
1 < N0/2 is

due to the Gaussian damping caused by Ĥeff in Eq. (9). For
γ1 = γ2, instead, ρ̂N0−2(t2) is almost diagonal in the Fock basis;
see the upper left panel in Fig. 1. This is due to a cancellation
(occurring only for q = 2) when summing the contributions
of the two channels (see Appendix C).

We now consider asymmetric energies U1 �= U2, still
assuming weak losses γm � qχ/N0. In order to keep tq =
π/|χq| constant, we vary χ1, χ2 while fixing 2χ = χ1 − χ2.
Interestingly, it is possible to protect against φ noise in one
channel, say m = 1, by choosing χ1 = 0 and χ2 = −2χ , at
the expense of enlarging noise in the other channel. Then
δφ1 = 0 and δφ2 = 4π/q. If only the first channel loses atoms,
the conditional state after a single loss event is then close
to a MSCSs with N0 − 2 atoms, apart from the damping
described in Eq. (7), as seen in the lower right panel in Fig. 1.
For symmetric losses, ρ̂N0−2(tq) has also large off-diagonal
elements in the Fock basis due to the probability 1/2 of losing
atoms in the protected channel (Fig. 1, upper right panel).
Hence, the MSCSs can be protected by tuning the interaction
energies so that χi = 0 in the mode i with the highest loss
rate γi . For 87Rb atoms used in the experiment of Ref. [10],

a magnetic field in resonance with one of the Feshbach peaks
for m = 1, 2, or 12 must be applied in order to have a
nonzero χ (actually, without magnetic field one has nearly
U1 = U2 = U12). Since two-body losses are mostly important
in the upper internal level m = 2, in order to better preserve
the coherence, U1 must be tuned such that χ1 = 2χ �= 0. Let
us remark that, although our results also apply to external BJJs,
for such BJJs U12 = 0 and thus one must tune the interaction
energy Ui to zero to switch-off phase noise in the well i.
But the loss rate γi depends on Ui and this tuning actually
decreases γi , so that the protection of the MSCSs is a trivial
effect. In contrast, for internal BJJs choosing Ui � U12 does
not decrease the loss rates, but it diminishes decoherence in
the loss channel i at weak losses.

Let us now turn to the intermediate loss rate regime. The φ

noise decreases when increasing γm since the loss-time fluctu-
ations δsm decrease. Indeed, we find δsi ≈ (2γi + γ12)−1N−1

0
(i = 1,2) for N0 	 1. Physically, at increasing γm the loss
has more chance to occur at small times, while for small
γm, s is equally distributed in [0,t]. Note, however, that the
probability wN0−2(tq) of losing only two atoms decreases by
increasing γm.

C. Density matrix in the subspaces with (N0 − 2 J) atoms

The wave function |ψJ (t)〉 after J > 1 jumps is still given
by Eq. (9) upon replacing N0 − 2 by N0 − 2J and the angles
of the CS by φ(J ) and θ (J ) with

φ(J ) =
J∑

K=1

φmK
(sK ),

(10)

tan

(
θ (J )

2

)
=

J∏
K=1

tan

(
θmK

(sK )

2

)
,

where φm(s) and θm(s) are the angles corresponding to the
single loss event. Thus the aforementioned effects persist.
For weak symmetric losses, though, keeping coherence by
switching off phase noise in one channel is harder since the
probability that all jumps occur in that channel decreases
exponentially with J . This means that for many loss events our
proposal for protecting MSCSs is only efficient for strongly
asymmetric loss rates.

IV. TOTAL QUANTUM CORRELATIONS AND
SUB-SHOT-NOISE ATOM INTERFEROMETRY

We now show that for strongly asymmetric losses not only
the conditional states but also the quantum correlations in
the full density matrix ρ̂(tq) can be protected by tuning the
interactions. We measure the amount of quantum correlations
with the quantum Fisher information F (ρ̂), related to the best
achievable phase precision in a Mach-Zehnder interferometer
using ρ̂ as input state by (
ϕ)best = 1/

√
F (ρ̂) [24]. Hence

F (ρ̂) > 〈N̂〉 implies phase accuracy beyond the shot noise
limit (
ϕ)SN = 〈N̂〉−1/2 [25]. In our case Ftot(t) ≡ F [ρ̂(t)] =∑N0

N=0 wN (t)FN (t) where FN (t) is the Fisher information of
the conditional state ρ̂N (t) in the subspace with N atoms.
The latter is given by FN = 2

∑
k,l

(pk−pl )2

pk+pl
|〈k|Ĵn|l〉|2 where

ρ̂N |l〉 = pl|l〉 and Ĵn is the angular momentum operator in
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FIG. 2. (Color online) Fisher information in the subspace with
N0 − 2 atoms as a function of the loss rate γ1 (in semilogarithmic
scale) at time t2 = T/4, with T = 2π/χ . Solid black line: γ1 = γ2,
χ1 = −χ2 = χ ; dot-dashed brown line: γ1 = γ2, χ1 = 0, χ2 = −2χ ;
dotted red line: γ2 = 0, χ1 = −χ2 = χ ; dashed blue line: γ2 = χ1 =
0, χ2 = −2χ . The optimization over the interferometer directions
is done independently in the (N0 − 2) subspace. Insets: Husimi
functions for the values of γi and χi corresponding to the circles
on the curves. Other parameters as in Fig. 1.

the direction n. We optimize Ftot(t) over all directions n
of the interferometer. In a lossless BJJ, the two-component
superposition has the highest possible value Ftot(t2) = N2

0 ,
nearly twice larger than that of MSCSs with q > 2 components
[26,27].

Figure 2 shows the Fisher information FN (t2) in the
subspace with N = N0 − 2 atoms, corresponding to the state
conditioned to a single loss event. For symmetric energies,
the low values of FN at small symmetric loss rates are
direct consequences of the cancellation among channels (see
Appendix C). For γ2 = 0 much larger values are found, show-
ing that the aforementioned nonvanishing intercomponent
coherences carry useful quantum correlations. At intermediate
rates, FN (t2) increases and reaches a maximum as a result of
the reduced phase noise when γ1 = γ2 [note that this peak
will not be seen on Ftot(t2) because of the rapid decay of
the probability wN0−2(t) by increasing γm]. This reduction
is clearly seen on the Husimi distributions QN (θ,φ) =
1
π
〈N ; θ,φ|ρ̂N (t2)|N ; θ,φ〉 which display a flat profile for small

losses and two emerging peaks for larger losses (insets in
Fig. 2). For asymmetric losses γ2 = 0, by choosing χ1 = 0
we have FN (t2) → N2 in the small loss limit and the Husimi
function has two peaks at the CS phases φ = ±π/2, in agree-
ment with our prediction that the conditional state converges to
a two-component superposition; at intermediate rates FN (t2)
decreases with γ1 because the Gaussian damping compensates
phase noise reduction. At large losses this damping transforms
ρ̂N0−2(t2) into a superposition of Fock states with n1 = 0 or 1
atoms in the first mode [17]. For symmetric losses and even
N0, ρ̂N0−2(t2) is transformed instead into the Fock state |N

2 ,N
2 〉

having a larger Fisher information ∼N2/2.
Our main result is presented in Fig. 3, which displays

the total Fisher information Ftot(t) obtained from an exact
diagonalization of Eq. (3) for various rates and energies,
keeping the same value of χ and of the mean number of atoms
at time t2 (see the inset). We find that for γ2 = 0, tuning the
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FIG. 3. (Color online) Total quantum Fisher information Ftot(t) vs
time t (in units of T ). From top to bottom: γ1T = 8/300, γ2 = χ1 = 0,
χ2 = −2χ (blue dashed line); γ1T = 8/300, γ2 = 0, χ1 = −χ2 = χ

(red dotted line); γ1T = γ2T = 1/100, χ1 = 0, χ2 = −2χ (brown
dot-dashed line); γ1T = γ2T = 1/100, χ1 = −χ2 = χ (black solid
line). Other parameters as in Fig. 1. Dashed horizontal line: Ftot for
the highest squeezed state in the lossless case. Inset: average number
of atoms vs time for the same parameters.

energies has a strong effect on Ftot(t) at times χt � N
−1/2
0 ,

yielding to larger Fisher informations than for squeezed states.
Quantum correlations in the total density matrix ρ̂(t) are then
preserved even after the loss of 20% of atoms.

V. CONCLUSIONS

We have shown that the interplay of atom losses and
interactions in BJJs leads to different decoherence scenarios
even after a single loss event. In particular, for strongly
asymmetric two-body losses one can protect superpositions
by tuning the interaction energies, leading to useful states
for high-precision atom interferometry applications. Such
asymmetric losses occur in internal BJJs with 87Rb atoms
in the hyperfine states |F,mF 〉 = |2,−1〉 and |1,1〉, subject
respectively to fast two-body and slow one-body losses [16].
Finally, we note that the φ noise associated to the loss times
sK could be used to obtain an indirect measurement of sK

from the interferometric estimation of the phase rotation of
the MSCSs, yielding to an observation of quantum jumps like
in cavity QED [2].
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APPENDIX A: DERIVATION OF EQ. (9)

Let us show that the quantum trajectory t �→ |ψ1(t)〉 having
one loss event in channel m at the random time s ∈ [0,t]
is given by Eq. (9). We prove this formula for m = 1
(the other cases m = 2 and m = 12 are similar). We first
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determine how an initial Fock state |n1,n2〉 is transformed
if two atoms are lost in mode 1 at time s. Using Eq. (4), this
state becomes

√
n1(n1 − 1)e−i�t,s (n1,n2)|n1 − 2,n2〉 at time t ,

where �t,s(n1,n2) = (t − s)Heff(n1 − 2,n2) + sHeff(n1,n2) is
a complex dynamical phase and Heff(n1,n2) are the quadratic
eigenvalues of Ĥeff . Setting n2 = N0 − n1 yields

�t,s(n1,n2) = tHeff(n1 − 2,n2) + n1φ1(s)

+ in1 ln

[
tan

(
θ1(s)

2

)]
(A1)

up to n1-independent constants, with θ1(s) =
2 arctan(e−s(2γ1−γ12)) and φ1(s) = 2s(U1 − U12). The two
last terms in Eq. (A1) correspond respectively to the energy
and damping changes due to the atom loss at time s. Replacing
|n1,n2〉 in the Fock-state expansion of the initial CS [see
Eq. (1)] by the above transformed state, we get Eq. (9).

APPENDIX B: MATRIX IN THE SUBSPACE
WITH (N0 − 2 J) ATOMS

We now determine the conditional density matrix ρ̂N0−2(t)
for a single loss event (J = 1) in the Fock basis. Using Eq. (4)
we find the distribution

p(t)
m (s; 1) = γme−sGm [cosh(sδm)]N0−2

×‖e−itĤeff |N0 − 2; θm(s),0〉‖2 N0(N0 − 1)

4
with Gi = (2γi + γ12)N0 − 2γi − 2γ12, i = 1,2, and G12 =
(γ1 + γ2 + γ12)N0 − 2γ1 − 2γ2 − γ12. Averaging over trajec-
tories as in Eq. (6) yields

〈n1,n2|ρ̂N0−2(t)|n′
1,n

′
2〉

∝
∑
m

γmCm(t ; n1,n
′
1)〈n1,n2|ρ̃(no loss)

N0−2 (t)|n′
1,n

′
2〉, (B1)

where ρ̃
(no loss)
N0−2 (t) = e−itĤeff |N0 − 2; π

2 ,0〉〈N0 − 2; π
2 ,0|eitĤ

†
eff

is the conditional state having no loss in [0,t] for an initial
CS with N0 − 2 atoms, and

Cm(t ; n,n′) = 1 − e−t[Gm+δm(n+n′−N0+2)+2iχm(n−n′)]

Gm + δm(n + n′ − N0 + 2) + 2iχm(n − n′)
.

Equation (B1) shows that the density matrix conditioned to a
single loss event is a superposition of CSs with N0 − 2 atoms
modulated by the envelope

∑
γmCm(t ; n,n′) and the damping

factor of Eq. (7).

The above calculation can be generalized to trajectories
with J > 1 jumps between 0 and t . For γmt � 1 and J �
N0, ρ̂N0−2J (t) is still given by Eq. (B1) upon replacing∑

γmCm(t ; n1,n
′
1) by [

∑
m γmCm(t ; n1,n

′
1)]J .

APPENDIX C: WEAK LOSS REGIME

In this Appendix we study the density matrix (B1) in the
subspace with N = N0 − 2 atoms in the weak loss regime
γm � qχ/N0.

One can show [27] that the density matrix ρ̂(0)(tq) associated
with the superposition of CSs

∑
k ck|N ; π

2 ,φk〉 formed at
time tq in the absence of losses has the following structure
in the Fock basis: 〈n1,n2|ρ̂(0)(tq)|n′

1,n
′
2〉 is the sum of two

matrices, the first one having zero matrix elements for n′
1 �= n1

modulo q and corresponding to the statistical mixture of CSs∑
k |ck|2|N ; π

2 ,φk〉〈N ; π
2 ,φk|, and the second one having zero

matrix elements for n′
1 = n1 modulo q and corresponding to

the coherences
∑

k �=k′ ckc
∗
k′ |N ; π

2 ,φk〉〈N ; π
2 ,φk′ |.

For weak losses γm � qχ/N0 and equal interaction ener-
gies U1 = U2,

|Cm(tq ; n,n′)| � π

|χ |q
∣∣∣∣sinc

(
π (n − n′)

q

)∣∣∣∣ (C1)

vanishes at the values n′ = n + pq (p = ±1,±2, . . .) cor-
responding to the nonzero off-diagonal elements of the
aforementioned statistical mixture of CSs, and decays like
|n′ − n|−1 for the other off-diagonal elements encoding the
coherences. Hence the statistical mixture of CSs is transformed
after one loss event into a mixture of Fock states (complete
phase relaxation). The intercomponent coherences are, how-
ever, nonvanishing, except for γ1 = γ2 and q = 2, because
then the contributions of the two channels cancel each other,∑

m γmCm(t2; n,n′) � 0 for n �= n′. This explains the low and
high values of FN0−2(t2) for symmetric and asymmetric losses
seen in Fig. 2 (recall that the coherences are responsible for the
quantum correlations quantified by the Fisher information).

Taking now asymmetric interaction energies, χ1 = 0 and
χ2 = −2χ , one infers from∑

m

γmCm(t2; n,n′) � π

2χ
(γ1 + γ2δnn′ ) (C2)

that ρ̂N0−2(t2) ∝ ρ̃
(no loss)
N0−2 (t2) when γ2 = 0. Therefore, the

conditional state is a two-component superposition slightly
modified by Gaussian damping.
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