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Noise in Bose Josephson junctions: Decoherence and phase relaxation
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Squeezed states and macroscopic superpositions of coherent states have been predicted to be generated
dynamically in Bose Josephson junctions. We solve exactly the quantum dynamics of such a junction in the
presence of a classical noise coupled to the population-imbalance number operator (phase noise), accounting
for, for example, the experimentally relevant fluctuations of the magnetic field. We calculate the correction to
the decay of the visibility induced by the noise in the non-Markovian regime. Furthermore, we predict that such
a noise induces an anomalous rate of decoherence among the components of the macroscopic superpositions,
which is independent of the total number of atoms, leading to potential interferometric applications.
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I. INTRODUCTION

It has been realized in the past decade that an ultracold
Bose gas trapped in an optical potential offers the possibility
of manipulating coherently entangled many-body quantum
states, with interesting applications in precision measurements
and in quantum information. For instance, spin-squeezed
states and macroscopic superpositions of coherent states are
generated by the dynamics of a Bose Josephson junction
(BJJ) [1–3]. The usefulness of squeezed states in improving
phase sensitivity in interferometry has been demonstrated in a
recent experiment [4]. An even better sensitivity is predicted
to arise by employing macroscopic superpositions [5]. The
presence of noise and of coupling with the environment
causes decoherence and limits the experimental time for
coherent manipulations. Decoherence may even prevent the
production of certain entangled states, a fundamental issue in
the quantum-to-classical transition [6]. It is thus important
to study the robustness of these nonclassical states in the
presence of noise. Several sources of decoherence in BJJ,
such as particle losses [7], collisions with thermal atoms [8,9],
interaction with the electromagnetic field [10], and random
fluctuations of the trapping potential [11], have been identified
and analyzed theoretically.

In this work we solve the quantum dynamics of a BJJ in the
presence of a noise coupling linearly to the number-imbalance
operator. This noise results from the fluctuations of the optical
potential and of the magnetic field, which are, together
with atom losses, the main sources of decoherence in the
experiments of Refs. [4,12,13]. Our solution is exact and makes
it possible, in particular, to capture the decay of the Ramsey
fringes’ visibility at short times (non-Markovian regime).
Furthermore, it shows that the macroscopic superpositions
of phase states generated by the unitary dynamics are rather
robust with respect to the noise considered. According to
the usual scenario for decoherence [14,15], by increasing
the intensity of the noise these superpositions should be
transformed into statistical mixtures of the same phase states
at a noise intensity proportional to a negative power of the
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number of atoms, which characterizes here the “distance”
between the phase states. For the aforementioned noise, we
find that this is not the case. The typical noise intensity at
which the coherences between the distinct phase states are
lost is independent of the atom number and equal to (or even,
for many-component superpositions, larger than) the noise
intensity at which phase relaxation occurs. Phase relaxation
means that each phase state of the superposition converges to
a mixture of Fock states and acquires a completely undefined
phase. At intermediate noise, the phase has spread significantly
but some entanglement remains due to the nonvanishing
coherences among the phase states of the superposition. We
quantify this entanglement by computing the quantum Fisher
information [5] and estimate the gain in phase sensitivity with
respect to separable states.

The article is organized as follows. After introducing in
Sec. II the two-mode approximation for the BJJ, we review
in Sec. III the quenched dynamics of the junction in the
absence of noise, leading to the formation of nonclassical
states. Section IV presents our results on the effect of the noise
on the density matrix of the atoms and on the visibility of
the Ramsey fringes, while Sec. V analyzes the degradation of
the coherence of macroscopic superpositions. Finally, Sec. VI
offers a summary and some concluding remarks.

II. MODEL

We describe the BJJ by a two-mode Hamiltonian [16]

Ĥ (0) = χĴ 2
z − λĴz − 2KĴx, (1)

where the angular momenta operators Ĵx , Ĵy , and Ĵz are
related to the annihilation operator âj of an atom in the mode
j = 1,2 by Ĵx = (â†

1â2 + â
†
2â1)/2, Ĵy = −i(â†

1â2 − â
†
2â1)/2,

and Ĵz ≡ n̂ = (â†
1â1 − â

†
2â2)/2, the latter being the number

imbalance operator. We assume a fixed total number of atoms
N ; that is, we do not account for atom losses. We take N

to be even for simplicity, the odd case being qualitatively
similar. The Hamiltonian (1) models both a single-component
Bose gas trapped in a double-well potential [12] (external
Josephson junction) and a binary mixture of atoms in distinct
hyperfine states trapped in a single well [4,17] (internal
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Josephson junction). In the external BJJ the two modes i

correspond to the lowest-energy spatial modes in each well.
For the internal BJJ, the two relevant modes are the two
hyperfine states. The first term in (1) describes the repulsive
atom-atom interactions; for the external BJJ, χ is the half
of the sum of the interaction energies Ui in the two modes,
whereas for the internal BJJ χ = (U1 + U2)/2 − U12 also
depends on the interspecies interaction U12. In both cases,
λ = �E + (N − 1)(U2 − U1)/2 is related to the difference
�E = E2 − E1 between the energies of the two modes. The
last term in (1) corresponds to tunneling between the two wells
or, in the internal BJJ, to a resonant laser field coupling the
two hyperfine states. Both χ and K are experimentally tunable
parameters.

It is convenient to characterize a state |ψ〉 of the BJJ by its
Husimi function Q(θ,φ) = |〈θ,φ|ψ〉|2 on the classical phase
space (the Bloch sphere of radius N/2), where

|θ,φ〉 =
N/2∑

n=−N/2

(
N

n + N
2

)1/2
αn+N/2

(1 + |α|2)N/2
|n〉 (2)

is a SU(2) coherent state [18], α ≡ tan(θ/2) exp(−iφ), and |n〉
is the Fock state satisfying Ĵz|n〉 = n|n〉. For a coherent state
(2) Q is peaked around the vector N (sin θ cos φ, sin θ sin φ,

− cos θ )/2, the components of which are the expectation
values of Ĵx , Ĵy , and Ĵz in this state. In particular for a
phase state, that is, a coherent state with θ = π/2, such a
peak is located on the equator of the Bloch sphere. A Fock
state has a φ-independent distribution, with a peak in θ at
θ = arccos(−2n/N ).

III. DYNAMICS IN THE ABSENCE OF NOISE

In the absence of noise, let us describe the quenched
dynamics of the BJJ induced by a sudden switch off of the
Josephson coupling K in (1) at time t = 0. We take λ = 0
for simplicity. Initially, the BJJ is in the phase state with
φ = 0 (i.e., α = 1). This state is the ground state of the
Hamiltonian (1) in the regime KN � χ , where tunneling
dominates interactions. In the internal BJJ, it can be produced
by applying a short π/2 pulse to the atoms initially in the
lower level. Under the effect of the quench the phase starts
diffusing along the equator of the Bloch sphere. The visibility
of Ramsey fringes [19] at time t > 0 reads [7]

ν(0)(t) ≡ 2

N

〈
Ĵ (0)

x (t)
〉 = cosN−1 (χt) . (3)

At small times, the BJJ is in a squeezed state [20]. Later
on, it returns to the initial state |α = 1〉 at the revival time
T ≡ 2π/χ ; at intermediate times tq ≡ T/(2q) it is in a
superposition |ψ (0)(tq)〉 = u0

∑q−1
k=0 ck|e−i2πk/q〉 of q phase

states [2,3] with |u0|2 = 1/q and ck = eiπk(k+N)/q (we have
taken q even). By (2), the matrix elements of the density
matrix ρ̂(0)(tq) = |ψ (0)(tq)〉〈ψ (0)(tq)| in the Fock basis are the
sum over all k,k′ = 0, . . . ,q − 1 of

〈n|ρ̂(0)
kk′(tq)|n′〉 = 1

q

1

2N

(
N

n + N
2

) 1
2
(

N

n′ + N
2

) 1
2

× e−2iπ(kn−k′n′)/qeiπ(k2−k′2)/q, (4)

with ρ̂
(0)
kk′(tq) = q−1ckc

∗
k′ |e−i2πk/q〉〈e−i2πk′/q |. Since the dy-

namics does not couple the two modes, Ĵz is a constant
of motion. Thus 〈n|ρ̂(0)(t)|n〉 is constant in time and equal
to Pα=1(n) = 2−N

(
N

n+N/2

)
. In order to address later on the

decoherence and phase relaxation of the superpositions of
phase states, we decompose ρ̂(0)(tq) as

ρ̂(0)(tq) =
q−1∑
k=0

ρ̂
(0)
kk (tq) +

q−1∑
k �=k′=0

ρ̂
(0)
kk′(tq). (5)

The first sum in (5), which we will refer to as the “diagonal
part” ρ̂

(0)
d (tq), is a statistical mixture of phase states. It is mainly

responsible for the structure of the phase profile given by the
Husimi distribution [21]. The second sum in (5), to be referred
to in what follows as the “off-diagonal part” ρ̂

(0)
od (tq), accounts

for quantum correlations and interference effects, such as, for
example, fringes in the eigenvalue probability distributions of
Ĵx and Ĵy [21].

IV. DYNAMICS IN THE PRESENCE OF PHASE NOISE

We now account for the effect of noise by considering the
Hamiltonian

Ĥ (t) = χĴz
2 − λ(t)Ĵz, (6)

where λ(t) is a classical stochastic process. Since [Ĥ (t),Ĵz] =
0 at all times, Ĵz is conserved as in the noiseless case.
Neglecting the fluctuations of Ui (which seems justified in
the experiments), the fluctuations of λ are equal to those
of �E and are independent of N . For a given realization
of the process λ, the Schrödinger-evolved state is obtained
from the state |ψ (0)(t)〉 = e−iχĴ 2

z t |α = 1〉 in the absence of
noise through a rigid rotation around the z axis by a random
angle φ(t) ≡ − ∫ t

0 dτλ(τ ), that is, |ψ(t)〉 = e−iφ(t)Ĵz |ψ (0)(t)〉.
The phase φ has a distribution f (φ,t) = ∫

dP [λ]δ[φ(t) − φ],
where P [λ] is the probability distribution of the process λ.
Averaging over all realizations of λ leads to the density matrix
ρ̂(t) = ∫

dP [λ]|ψ(t)〉〈ψ(t)|. This is the analog of tracing out
the bath degrees of freedom in models of systems coupled to
quantum baths. We obtain

ρ̂(t) =
∫ ∞

−∞
dφf (φ,t)e−iφĴz ρ̂(0)(t)eiφĴz , (7)

where ρ̂(0)(t) = |ψ (0)(t)〉〈ψ (0)(t)| is the density matrix in the
absence of noise. By projecting Eq. (7) over the Fock basis,
we get

〈n|ρ̂(t)|n′〉 =
∫ ∞

−∞
dφf (φ,t)e−iφ(n−n′)〈n|ρ̂(0)(t)|n′〉

= f̃ (n′ − n,t)〈n|ρ̂(0)(t)|n′〉, (8)

where f̃ (m,t) = ∫ ∞
−∞ dφf (φ,t)eimφ = eimφ(t) is the Fourier

transform of f (φ,t) with respect to φ and the overline denotes
the average over the realizations of the noise λ according
to the probability distribution P [λ]. To be specific, let us
consider a Gaussian noise. Then f̃ (m,t) = e−a2(t)m2/2e−iλtm,
where the variance a2(t) is given in terms of the noise correla-

tion function h(τ − τ ′) = λ(τ )λ(τ ′) − λ
2 = �E(τ )�E(τ ′) −

�E
2

by a2(t) = ∫ t

0 dτ
∫ t

0 dτ ′h(τ − τ ′) = 2
∫ t

0 dτ
∫ τ

0 duh(u).
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(Note that h depends on the time difference τ − τ ′ by the
stationarity of the process, which also implies λ(t) = λ(0) ≡
λ.) This yields

〈n|ρ̂(t)|n′〉 = e− a2(t)(n−n′)2
2 eiλt(n−n′)〈n|ρ̂(0)(t)|n′〉. (9)

The effect of the noise is to spread the noiseless evolution
ρ̂(0)(t) along the equator of the Bloch sphere by the amount
a(t); in this sense, it is a pure-dephasing noise. Since our
result (9) does rely neither on a perturbative approach nor on
a Markov approximation, it is valid also for strong noise and
at short times. The variance a2(t) does not depend on N and
completely characterizes the effect of the noise on the BJJ. It
is given by

a2(t) 	
{

h(0)t2 if t � tc (small time),

2
∫ ∞

0 dτh(τ )t if t � Tc (Markov),
(10)

where we have introduced the noise time scales tc and Tc,
tc being the largest time such that h(τ ) 	 h(0) = δλ(0)2 for
|τ | � tc and Tc the smallest time such that h(τ ) 	 0 for τ � Tc.
Equation (9) shows how the noise suppresses the off-diagonal
elements of the density matrix in the Fock basis. At long
times t � [

∫ ∞
0 dτh(τ )]−1 the state of the BJJ converges to a

statistical mixture of Fock states with the same probabilities
as the initial state,

ρ̂(∞) =
N/2∑

n=−N/2

Pα=1(n)|n〉〈n| =
∫ 2π

0

dφ

2π

∣∣∣∣π2 ,φ

〉〈
π

2
,φ

∣∣∣∣. (11)

The last equality is obtained from (2). It means that at large
times the phase φ is uniformly spread on [0,2π ], as is the case
for Fock states (Fig. 1, right column).

For a non-Gaussian noise, the two exponentials in the
right-hand side of (9) coincide with the cumulant expansion
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FIG. 1. (Color online) Phase relaxation of the q = 4 and q = 2
macroscopic superpositions in the presence of noise sketched along
the equator θ = π/2 of the Bloch sphere. Top row: q = 4 (t4 = T/8)
and a4 = 0, 0.64, 2.05 (from left to right). Middle row: q = 2 (t2 =
T/4) for the same noise intensities

∫ ∞
0 dτh(τ ) in the Markov regime

(a2 = 0, 0.9, 2.9). The circle sizes illustrate qualitatively the phase
distribution f (φ,t2,4). For intermediate noise (middle column), the
superposition is closer to the steady state (last column) for q = 4
than for q = 2. Bottom row: Husimi distribution Q(θ = π/2,φ) for
q = 2 for the same values of a2. Here λ = 0 and N = 10.
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FIG. 2. (Color online) Visibility ν(t) as a function of time (in
units of seconds) for χ = π × 0.05 Hz, π × 0.13 Hz, π × 0.25 Hz
(from top to bottom), N = 400. Solid lines: decay of ν(t) in Eq. (12)
in the limit χt 
 1 and λt 
 1 with a2(t) = h(0)t2 and h(0)1/2 =
8 Hz. Dashed lines: decay of ν(0)(t) under the unitary evolution only.
For small values of the interactions the decay is mainly due to the
noise.

of f̃ (m,t) = eimφ(t) up to the second cumulant [22] and higher
cumulants yield extra factors ebp(t)(n−n′)p , p = 3,4, . . .. For
small times t � tc, these factors are close to unity and the
right-hand side of (9) still gives a good approximation of the
matrix elements of ρ̂(t).

Under the effect of the noise, the visibility (3) acquires an
additional decaying factor due to the aforementioned phase
spreading. Indeed, one easily obtains from (9)

ν(t) = 2

N
tr[ρ̂(t)Ĵx] = e− a2(t)

2 cos (λt)ν(0)(t). (12)

As found for example in superconducting circuits [23] and
in quantum dots [24], the dephasing factor e−a2(t)/2 displays
a Gaussian decay at short times t � tc, corresponding to
the universal regime of Ref. [15], and an exponential decay
at long times t � Tc (Markov regime). A Gaussian decay
of the visibility (12) has been observed experimentally in
the internal BJJ at small values of the interactions χ [25].
This indicates that the experiment was performed in the
small-time, non-Markovian regime. The effect of the noise
on the visibility decay in this regime is shown in Fig. 2 for
experimentally relevant parameters [25]. A direct comparison
with the experiment requires the inclusion in the model of
atom losses.

V. DECOHERENCE AND RELAXATION
OF MACROSCOPIC SUPERPOSITIONS

Let us then study the impact of decoherence and relaxation
on a macroscopic superposition at the fixed time tq as a function
of the noise intensity. We assume that q is even. Using (9) and
the decomposition (5) of the density matrix into diagonal and
off-diagonal parts and setting aq ≡ a(tq), one gets

〈n|ρ̂d,od(tq)|n′〉 = e− a2
q (n−n′)2

2 〈n|ρ̂(0)
d,od(tq)|n′〉 (13)

up to a phase factor irrelevant for decoherence. Since the effect
of the noise in Eq. (13) factorizes out let us concentrate on the
structure of the density matrix in the absence of noise. By (4)
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and the definition following Eq. (5) we have 〈n|ρ̂(0)
d (tq)|n′〉 ∝∑q−1

k=0 e
− 2iπ

q
k(n−n′) = 0 if n′ �= n modulo q and

〈n|ρ̂(0)
d (tq)|n′〉 = 1

2N

(
N

n + N
2

)1/2 (
N

n′ + N
2

)1/2

otherwise. Therefore,

〈n|ρ̂(0)
d (tq)|n′〉=

{ 〈n|ρ̂(0)|n′〉 if n′ = n modulo q,

0 if n′ �= n modulo q,
(14)

and

〈n|ρ̂(0)
od (tq)|n′〉=

{
0 if n′=n modulo q,

e
i π

q
(n′2−n2)〈n|ρ̂(0)|n′〉 if n′ �= n modulo q.

(15)

The last equality follows from (14) and from the iden-
tity ρ̂(0)(tq) = e−itqχĴ 2

z ρ̂(0)eitqχĴ 2
z . In particular, we get

〈n|ρ̂(0)
od (tq)|n ± 1〉 �= 0 from (15) (since q � 2 is even).

Thus, from (13)–(15) we obtain that ρ̂d (tq) → ρ̂(∞) when
aqq � 1 (phase relaxation) and ρ̂od(tq) → 0 when aq � 1
(decoherence). Hence, in the strong noise limit the diagonal
part of ρ̂(t) relaxes to the steady state (11) and the off-
diagonal part is washed away (see Fig. 3, right column).
Remarkably, the decoherence factor in Eq. (13) does not
depend on the atom number N . Also note the different noise
scales relevant for decoherence, aq , and phase relaxation,
aqq. When increasing the noise intensity, ρ̂d (tq) approaches
ρ̂(∞) before ρ̂od(tq) vanishes. The higher the number of
components q in the superposition, the more pronounced is
this effect. In fact, superpositions with higher q are better
protected against decoherence since they are formed at shorter
times and a(t) increases with time. Moreover, in the Markov
regime tq � Tc, for a fixed noise intensity phase relaxation
has a stronger effect on states with higher q, as illustrated
in Fig. 1. Indeed, by (10), (13), and (14), the n �= n′ matrix
elements of ρ̂d (tq) are damped by a factor equal to or smaller
than e−a2

qq2/2 	 exp[−(πq/χ )
∫ ∞

0 dτh(τ )]. In the small-time
regime tq � tc, all the q-component superpositions relax to
ρ(∞) at the same (q-independent) noise intensity (since aqq

FIG. 3. (Color online) (Top) Relaxation of the diagonal part of
the density matrix in the Fock basis (13) for q = 2 and N = 10 to the
diagonal matrix (11) as the noise is increased from a2 = 0 (left) to
a2 = 0.9 (middle) and a2 = 2.9 (right). (Bottom) Off-diagonal part of
the density matrix for q = 2 and the same values of a2; its vanishing
indicates decoherence among the components of the macroscopic
superposition.

is independent of q). As a consequence of the distinct noise
scales for decoherence and phase relaxation, the BJJ does not
turn into a statistical mixture of phase states but relaxes directly
to the mixture of Fock states (11). This is illustrated in Fig. 3
for the two-component superposition.

Phase relaxation can be represented by the Husimi distribu-
tion of ρ̂d (tq) [21], which for q = 2, N � 1, and a2 � N−1/4

is given by Qd (θ,φ) = ∑1
k=0

∫
dφ′f (φ′,t2)|〈θ,φ|π

2 ,φ′ +
πk〉|2/2 	 Q∞(θ )3(−φ − πλ/(2χ ),e−2a2

2 ), with 3 the
Theta function [26] and Q∞(θ ) 	 ( 1+sin θ

2 )N+1/2/
√

πN sin θ

the distribution of the state (11); Q(π/2,φ) is plotted for
various values of a2 in Fig. 1. In the absence of noise, it
shows peaks at φ = 0 and π , which correspond to the two
coherent states of the superposition. The peaks are smeared
at increasing a2, and finally at a2 � 1 the Husimi distribution
reaches the flat profile Q(π/2,φ) = Q∞(π/2).

An important consequence of the anomalous decoherence
found in this model is that at intermediate noise strength
associated to an already important phase relaxation, that
is, such that ρ̂d (tq) is close to ρ̂(∞) (e.g., for a2 = 0.9 in
Fig. 3), the system still displays quantum correlations, which
could be exploited in interferometry. These correlations can
be quantified by computing the quantum Fisher information
FQ(ρ̂) associated to the N -particle density matrix ρ̂ [5,27].
The quantum Fisher information makes it possible to estimate
the best possible phase sensitivity �θ in an interferometric
scheme according to the generalized uncertainty principle
�θ � 1/[

√
m

√
FQ(ρ̂)], m being the number of measurements

performed [27]. For separable states we have FQ(ρ̂) � N

and �θ � �θSN = 1/
√

mN . Subshot noise sensitivities �θ <

�θSN can be achieved for states ρ̂ satisfying FQ(ρ̂) > N ,
which is also a sufficient condition for multiparticle entangle-
ment [5]. For a2 = 0, the two-component superposition ρ̂(0)(t2)
has FQ = N2 [28], corresponding to the Heisenberg limit
�θ = 1/(

√
mN ). For noise strength a2 = 0.9 and N = 10 we

find [28,29] FQ[ρ̂(t2)] 	 58, which is indeed still larger than
FQ[ρ̂(0)

d (t2)] = N and leads to a sensitivity gain �θ/�θSN

of −3.8 db with respect to the use of separable states. In
the limit a2 � 1, ρ̂(t2) 	 ρ̂(∞) has a Fisher information
FQ = N (N − 1)/(2N + 2) < N [29].

VI. SUMMARY AND CONCLUDING REMARKS

We have treated analytically the time evolution of a phase
state driven simultaneously by the atomic interactions and by
a noise coupled to the number imbalance operator Ĵz. We have
derived an exact expression for the density matrix, as well as
for the noise-induced decay of the Ramsey visibility. The effect
of the noise on the creation of macroscopic superpositions of
phase states is to cause decoherence, that is, the vanishing of
quantum correlations. We have found that if the fluctuations
of the atomic interactions are negligible, decoherence is “less
efficient” than phase relaxation, especially for superpositions
with a large number of components. As a consequence, the
states generated by the noisy dynamics could in principle lead
to subshot noise precision in interferometry.

The surprising fact that decoherence is not enhanced by in-
creasing the atom number N is specific to the noise considered.
Indeed, such a noise is applied perpendicularly to the equator
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of the Bloch sphere where the phase states of the superpositions
lie. As a result, the noise is insensitive to the separation
between these states, which scales with N . However, such
superpositions are very fragile under a noise applied parallel
to the equatorial plane, which resolves the separation between
the components. This yields an indication as to which classical
noise to reduce to preserve the coherence in superpositions
of the phase states: this is the noise in directions parallel
to this plane. For example, stochastic fluctuations on the
tunnel amplitude K give rise to rapid decoherence of the

macroscopic superposition (|α = 1〉 + eiγ |α = −1〉)/√2 at
a rate increasing with the atom number, without inducing
relaxation.
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