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Effect of phase noise on quantum correlations in Bose-Josephson junctions
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In a two-mode Bose-Josephson junction the dynamics induced by a sudden quench of the tunnel amplitude
leads to the periodic formation of entangled states. For instance, squeezed states are formed at short times and
macroscopic superpositions of phase states at later times. In atom interferometry, the two modes of the junction
play the role of the two arms of a Mach-Zehnder interferometer; use of multiparticle entangled states allows the
enhancement of phase sensitivity with respect to that obtained from uncorrelated atoms. Decoherence due to the
presence of noise degrades quantum correlations between atoms, thus reducing phase sensitivity. We consider
decoherence due to stochastic fluctuations of the energies of the two modes of the junction. We analyze its effect
on squeezed states and macroscopic superpositions and calculate the squeezing parameter and the quantum Fisher
information during the quenched dynamics. The latter quantity measures the amount of quantum correlations
useful in interferometry. For moderate noise intensities, we show that it increases on time scales beyond the
squeezing regime. This suggests multicomponent superpositions of phase states as interesting candidates for
high-precision atom interferometry.
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I. INTRODUCTION

Confined ultracold atomic gases are promising candidates
for implementing quantum simulators and for applications
in quantum technology due to the high controllability of
experimental parameters such as the atomic interactions [1]
and the geometry of the trap [2,3]. Among the applications we
cite high-sensitivity atom interferometry, which can be used
for enhancing the precision of atomic clocks and magnetic
field sensors [4–7]. Of particular interest are Bose-Josephson
junctions (BJJs) formed by two modes of a Bose-Einstein
condensate. The modes may correspond either to two internal
states of the condensed atoms in a single potential well
or to two spatially separated wave functions in a double
well. During the dynamics following a sudden quench of the
tunnel amplitude connecting the two modes, squeezed states
are formed at early times. It has been shown theoretically
[8–10] and experimentally [6,7] that these states can be
used to estimate phase shifts with a sensitivity below the
shot-noise limit, which is the limit one obtains using classical
states. The highest possible phase sensitivity, limited only by
quantum uncertainty, can be achieved by using macroscopic
superpositions of, for example, atomic phase states [11,12].
However, such superpositions are formed at later times during
the quenched dynamics of the BJJ [13–15]. They are expected
to be very fragile with respect to decoherence effects caused
by particle losses [16], collisions with thermal atoms [17,18],
interaction with the electromagnetic field [19], and random
fluctuations of the trapping potential [20].

In this work we consider the effects of phase noise on the
states formed during the quenched dynamics of the BJJ. Phase
noise is induced by stochastic fluctuations of the energies
of the two modes of the BJJ. Together with atom losses,
such noise is one of the main sources of decoherence in the
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experiments of Refs. [6,7,21]. We determine which of the
quantum states produced by the BJJ dynamics are the most
useful for interferometric applications; that is, which states
yield the best phase sensitivity when used as input states of
the interferometer. We show that, despite the action of phase
noise, a better phase sensitivity can be reached by using the
states produced by the dynamics at later times than the time
for optimal squeezing. In order to quantify the amount of
quantum correlations useful for interferometry, we calculate
the quantum Fisher information. In the theory of estimation
of an unknown parameter, this quantity is related to the bound
on the precision with which the unknown parameter—the
phase shift in interferometry—can be determined [11,22].
For moderate noise intensities, we find that the quantum
Fisher information at the times of formation of the first (in
chronological order) superpositions of phase states exceeds
that found at earlier times at which squeezed states appear. This
result is related to the fact that macroscopic superpositions of
phase states in BJJs are robust with respect to phase noise,
their decoherence rate being independent of the total number
of atoms in the condensate [23]. Hence, these long-lived states
are useful in interferometry to improve phase sensitivity.

II. QUALITATIVE CONSIDERATIONS AND
MAIN RESULTS

We begin by summarizing the basic concepts and the main
results of the paper.

The two parameters relevant in interferometry are the co-
herent spin squeezing ξ 2 [8,10] and the quantum Fisher infor-
mation FQ [22]. They are important because they can be linked
to multiparticle entanglement. If the spin squeezing parameter
is smaller than unity or if the Fisher information is larger than
the particle number N , then the state of the system is entangled.
Although the above inequalities are only sufficient conditions
for entanglement (i.e., they do not recognize all the entangled
multiparticle states), it is interesting to note that the condition
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FQ > N is a necessary and sufficient condition for subshot-
noise sensitivity in interferometry. In essence, the quantum
Fisher information recognizes all the entangled states which
are useful for high-sensitivity interferometry. Both ξ 2 and FQ

can be computed from knowledge of the state density matrix.
Their definitions and their main properties are given in Sec. III.

In this work we concentrate on a two-mode model for a
Bose-Josephson junction, which is detailed in Sec. IV. If the
tunnel parameter of the junction is suddenly quenched to zero
then, in the absence of noise, the subsequent dynamical evolu-
tion leads to the formation of spin-squeezed states and macro-
scopic superpositions of phase states. We use an analytical so-
lution for the dynamical evolution of the system in the presence
of phase noise [23] to study how the coherence degrades. Sur-
prisingly, phase-noise affects more strongly each component
of the superposition than their mutual coherences; the origin of
this effect is due to the specific form of the noise considered.

A measure of the coherence between the components of
the superposition is given by the probability distribution of
the angular-momentum eigenvalues [24]. Using this tool, in
Sec. V we study the effect of phase noise on the coherences
between the components of a macroscopic superposition of
phase states; see Fig. 1. At intermediate noise strengths (middle

FIG. 1. (Color online) Probability distribution of the Ĵx angular
momentum eigenvalues (see Sec. V) for a three-component macro-
scopic superposition of phase states (solid lines) as the noise strength
defined in Eq. (26) is increased from a3 = 0 (a) to a3 = 0.9 (b) and
a3 = 2.9 (c) with N = 20 atoms. The blue dashed curves indicate the
large-noise intensity and large-N limit given by Eq. (39).

FIG. 2. (Color online) Quantum Fisher information FQ as a
function of time (see Sec. VI) in units of the revival time T (see
Sec. IV). From top to bottom the noise strengths increase from zero
(within a range that is experimentally relevant).

panel of Fig. 1) we find that the probability distribution has
already reached its large-noise semicircular form while the
coherences—indicated by the oscillations in the distribution—
have not yet vanished.

The fact that phase noise at intermediate strength does not
destroy completely the coherences suggests the possibility
of using multicomponent superpositions of phase states for
high-precision atom interferometry. We have quantified this
proposal by calculating the coherent spin squeezing and the
quantum Fisher information during the quenched dynamics of
the BJJ.

The results in the absence of noise are given for reference
in the top curve of Fig. 2 and are detailed in Sec. VI A. The
quantum Fisher information increases with time, saturating
to a plateau when the first multicomponent superpositions
start to form. In this region we find that FQ scales like
N2, which implies Heisenberg-limited precision in atom
interferometry. The sharp peak in FQ corresponds to a very
special superposition of phase states: the two-component
one.

If noise is present, its effect increases with time as illustrated
in the bottom curves of Fig. 2 and calculated in Sec. VI B. For
realistic noise strengths, as in current experiments, this makes
the two-component superposition too degraded to be useful
for interferometry. However, multicomponent superpositions,
which are formed at earlier times, keep a reasonably high
value of FQ, indicating the possibility of performing high-
precision atom interferometry also in the presence of phase
noise. This value of the Fisher information is higher than that
for squeezed states, which appear earlier during the dynamical
evolution.

In the following, we detail the above-described results.

III. PHASE ESTIMATION IN ATOM INTERFEROMETRY

A. Phase estimation and quantum Fisher information

The goal in interferometry is to estimate an unknown
phase shift ϕ with the highest possible precision. In atom
interferometry, an input state is first transformed into a
superposition of two modes, analogous to the two arms of
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an optical interferometer. These modes acquire distinct phases
ϕ1 and ϕ2 during the subsequent quantum evolution. They
are finally recombined to read out interference fringes, from
which the phase difference ϕ = ϕ1 − ϕ2 is inferred. The
interferometric sequence can be described by means of rotation
matrices acting on the two-mode vector state; that is, by SU(2)
rotation matrices in the Schwinger representation [25,26].
The generators of the rotations are the angular-momentum
operators Ĵx , Ĵy , and Ĵz, related to the annihilation operator
âj of an atom in mode j = 1,2 by Ĵx = (â†

1â2 + â
†
2â1)/2,

Ĵy = −i(â†
1â2 − â

†
2â1)/2, and Ĵz ≡ n̂ = (â†

1â1 − â
†
2â2)/2; the

latter being the number-imbalance operator. Let us consider the
case where the two modes correspond to two internal states
of atoms in an optically trapped Bose-Einstein condensate.
The total number N of atoms in the condensate is assumed
to be fixed and all atoms are initially in the lower-energy
state (mode j = 1). The input state is then |nz = N/2〉,
where |nz = n〉 ≡ |n1,n2〉 denotes the Fock state satisfying
Ĵz|nz = n〉 = n|nz = n〉, n1 = N/2 + n and n2 = N/2 − n

being the number of atoms in the lower and upper modes,
respectively. The application of a π/2 pulse with frequency in
resonance with the two internal levels plays the role of a beam
splitter in optical interferometers. It brings the input state onto
the coherent state |θ = π/2,φ = 0〉, where the SU(2) coherent
states are defined as [27]

|θ,φ〉 =
N∑

n1=0

(
N

n1

)1/2
αn1

(1 + |α|2)N/2
|n1,N − n1〉, (1)

with α = tan(θ/2) exp(−iφ). It is easy to show that |θ,φ〉 ∝
[e−iφ sin(θ/2)a†

1 + cos(θ/2)a†
2]N |0〉 (here, |0〉 is the vacuum

state), meaning that all atoms occupy the same one-atom state.
A coherent state can be visualized as a disk of diameter√

N/2 on the Bloch sphere of radius N/2, centered at
N (sin θ cos φ, sin θ sin φ, − cos θ )/2. The coordinates of the
center are the expectation values of the angular momentum
operators Ĵx , Ĵy , and Ĵz in |θ,φ〉, whereas the diameter of
the disk gives the quantum fluctuations of Ĵ�n = �J · �n in the
directions �n tangential to the sphere. The coherent states with
θ = π/2 on the equator of the Bloch sphere are referred to
as phase states. The Fock state |nz = N/2〉 is a coherent state
with θ = π , located at the north pole of the Bloch sphere.
The action of the beam splitter is therefore a rotation of the
atomic state around the y axis by an angle of π/2 radians,
leading to the phase state |θ = π/2,φ = 0〉. Then the state
is rotated around the z axis by the free evolution, the phase
accumulation being due to a different energy shift between
the two states. This rotation is the analog of the different
phase paths in the two arms of an optical interferometer. The
consecutive rotations of the input state on the Bloch sphere are
represented in Fig. 3. Finally, by recombining the two paths,
the state is rotated again around the y axis by an angle of −π/2
radians. The interferometric sequence can thus be described
by a succession of three rotations, and the output state of the
linear interferometer is

|ψout〉 = e−i π
2 Ĵy e−iϕĴz ei π

2 Ĵy |ψin〉 = e−iϕĴx |ψin〉, (2)

FIG. 3. (Color online) Rotations on the Bloch sphere in the
interferometric scheme: The input coherent state at the north pole
(green disk) is rotated around the y axis by an angle π/2 (blue disk)
and afterward around the z axis by the unknown phase ϕ (black disk).
The precision 	ϕ on the estimation of ϕ is larger than the size

√
N/2

of the disk, representing the angular momentum fluctuations, divided
by the radius N/2 of the sphere. The last rotation around the y axis
is not represented.

where |ψin〉 is the input state, assumed here to be pure. More
generally, the output state of the interferometer is

ρ̂out(ϕ) = e−iϕĴ�n ρ̂ine
iϕĴ�n . (3)

where ρ̂in is the input density matrix and �n is the unit vector
representing the effective rotation axis associated with a given
interferometric sequence.

In a typical experiment one has access to the probability
distribution associated with the operator Ĵz measured with
respect to the output state. This quantum distribution depends
on the phase shift ϕ. The latter is then determined by means
of a statistical estimator depending on the results of the
measurements of Ĵz in the output state. The precision 	ϕ with
which the phase shift ϕ can be determined depends on the
chosen estimator, on the input state, and on the measurement
performed on the output state. Optimizing over all possible
estimators and measurements, the best precision that can
be achieved for a given input state ρ̂in is, according to the
Cramér-Rao bound [22],

	ϕ � (	ϕ)best = 1
√

m

√
FQ[ρ̂in,Ĵ�n]

, (4)

where m is the number of measurements and FQ[ρ̂in,Ĵ�n] is the
quantum Fisher information given by [22]

FQ[ρ̂in,Ĵ�n] = 2
∑

l,m,pl+pm>0

(pl − pm)2

pl + pm

|〈l|Ĵ�n|m〉|2, (5)

with {|l〉} being an orthonormal basis diagonalizing
ρ̂in = ∑

l pl|l〉〈l| (with pl � 0 and
∑

l pl = 1). The Fisher
information (5) depends on the input state and on the direction
�n of the interferometer. It has the meaning of the square of a
“statistical speed” at which the state evolves along the curve
defined by Eq. (3) in the space of density matrices when
the parameter ϕ is varied [12,22]: if one increases ϕ starting
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from ϕ = 0 with a fixed velocity ϕ̇, the faster the state (3)
becomes distinguishable from ρ̂in, the larger is its quantum
Fisher information FQ. Hence the bound (5) relates the
problem of estimating a phase shift in an interferometer to the
problem of distinguishing neighboring quantum states [22].
Indeed, the quantum Fisher information is related to the Bures
Riemannian distance in the space of density matrices [28].

For pure input states |ψin〉, the quantum Fisher information
is given by the quantum fluctuation (	J�n)2 = 〈ψin|Ĵ 2

�n |ψin〉 −
〈ψin|Ĵ�n|ψin〉2 of Ĵ�n:

FQ[|ψin〉,Ĵ�n] = 4(	J�n)2. (6)

This allows us to reinterpret the Cramér-Rao lower bound (4)
as a generalized uncertainty principle

	ϕ	J�n � 1

2
√

m
, (7)

in which the generator Ĵ�n of the transformation (3) and the
phase shift ϕ play the role of two conjugate variables—ϕ

being here not an observable but a parameter [22]. For instance,
the Fisher information of a phase state |ψin〉 = |θ = π/2,φ〉
in the directions �n = �ex , �ey , and �ez are equal to N sin2 φ,
N cos2 φ, and N , respectively. According to (7), for such a
state the best precision that can be achieved on the phase
shift is (	ϕ)best = 1/

√
Nm ≡ (	ϕ)SN, corresponding to the

shot-noise limit of independent atoms.
The saturation of the bound (4) requires both a suitable

classical postprocessing on the m outcomes of the measure-
ments (e.g., the maximum likelihood estimation in the limit of
large m [22]) and the knowledge of the optimum observable to
measure. This latter task can be difficult because the optimum
measurement may depend on the phase shift itself [29].

It can be shown [11,12] that, for any separable input state
ρ̂in, FQ[ρ̂in,Ĵ�n] � N , so that

FQ[ρ̂in,Ĵ�n] > N (8)

is a sufficient condition for ρ̂in to be entangled.
By Eq. (4), the inequality (8) is a necessary and sufficient

condition for subshot-noise sensitivity (	ϕ)best < (	ϕ)SN. In
what follows, the input states leading to such a condition are
called useful states for interferometry (or, more briefly, “useful
states”). It is worthwhile to stress that the inequality (8) is not
a necessary condition for entanglement: indeed, there exists
entangled states which are not useful for interferometry; that
is, with a Fisher information FQ � N [12,30].

The quantum Fisher information is bounded by N2. This
is easy to show for pure states by noticing that the largest
square fluctuation of Ĵ�n in Eq. (6) is less than or equal
to N2/4 (see [11]); for mixed states this follows from the
convexity of FQ (see [12]). According to Eq. (4), the best
sensitivity that can be achieved in linear interferometers [31]
is then (	ϕ)best = (	ϕ)HL ≡ 1/N . This corresponds to the
so-called Heisenberg limit. This limit is reached using highly
entangled atoms as an input state, such as, for example,
the macroscopic superposition given by the so-called NOON
state |ψNOON〉 = (|N,0〉 + eiα|0,N〉)/√2, with α being a real
phase. The quantum Fisher information of a NOON state
is equal to N2 in the direction �n = �ez. It is instructive to
compare this result with the value of the quantum Fisher

TABLE I. Necessary and/or sufficient conditions for subshot
noise phase sensitivity in an atom interferometer and multiparticle
entanglement in terms of the quantum Fisher information and spin
squeezing parameter.

Phase Estimation Entanglement

FQ[ρ̂in] > N ⇔ (	ϕ)best < (	ϕ)SN FQ [ρ̂in] > N ⇒ ρ̂in 
= ρ̂sep

ξ 2 [ρ̂in] < 1 ⇒ (	ϕ)best < (	ϕ)SN ξ 2 [ρ̂in] < 1 ⇒ ρ̂in 
= ρ̂sep

information for a statistical mixture of the same states,
ρ̂NONO = (|N,0〉〈N,0| + |0,N〉〈0,N |)/2. The latter is found
with the help of Eq. (5) to be equal to N in all directions �n in
the (xOy) plane and to vanish in the direction �ez. Therefore,
the scaling of FQ like N2 for ρ̂NOON = |ψNOON〉〈ψNOON| is
due to the presence of the off-diagonal terms

ρ̂NOON − ρ̂NONO = (e−iα|N,0〉〈0,N | + eiα|0,N〉〈N,0|)/2.

To summarize, the study of the quantum Fisher information
and its scaling with the number of atoms allows us to quantify
the amount of quantum correlations which can be used to
enhance the precision on the phase shift in interferometry.

B. Coherent spin squeezing

Atomic squeezed states are examples of nonclassical states
useful for interferometry, which have been recently realized
experimentally [4–7]. The coherent spin squeezing parame-
ter quantifies the angular-momentum fluctuations along the
direction �n [8,10] according to

ξ 2
�n [ρ̂in,Ĵ�n] = N	2Ĵ�n

〈Ĵ �p1〉2 + 〈Ĵ �p2〉2
, (9)

where

�p1 = cos φ�ex + sin φ�ey,
(10)

�p2 = − cos θ sin φ�ex + cos θ cos φ�ey + sin θ �ez,

are unit vectors perpendicular to

�n = sin θ sin φ�ex − sin θ cos φ�ey + cos θ �ez, (11)

and 〈· · ·〉 = tr(· · · ρ̂in) is the mean expectation in state ρ̂in. A
state ρ̂in is said to be squeezed in the direction �n if the squeezing
parameter satisfies

ξ 2
�n [ρ̂in,Ĵ�n] < 1. (12)

It is known that Eq. (12) provides both a sufficient (but not
necessary) condition for subshot-noise sensitivity [8] and a
sufficient (but not necessary) condition for entanglement of
ρ̂in [10]. We remark that the squeezing criterion (12) does not
recognize all useful states in interferometry. For instance, the
NOON state does not fulfill this criterium even though it leads
to the best achievable precision. The criteria for entanglement
and subshot-noise sensitivity are summarized in Table I.

C. Optimum coherent spin squeezing and quantum Fisher
information

The quantum Fisher information FQ and the spin squeezing
parameter ξ introduced in the previous subsections depend
on the direction of the generator which defines the in-
terferometric sequence (3). For instance, as discussed in
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Sec. III A, FQ[|ψNOON〉,Ĵz] = N2, corresponding to a maxi-
mally entangled state whereas, in the perpendicular directions,
FQ[|ψNOON〉,Ĵx] = FQ[|ψNOON〉,Ĵy] = N . Hence, in order to
quantify the useful correlations of a quantum state, one needs
to optimize FQ and ξ over all the possible directions by
defining [30]

ξ 2[ρ̂in] ≡ min
�n

ξ 2
�n [ρ̂in,Ĵ�n], FQ[ρ̂in] ≡ max

�n
FQ[ρ̂in,Ĵ�n]. (13)

Let us consider the 3 × 3 real symmetric covariance matrix
γ [ρ̂in] with matrix elements

γij [ρ̂in] = 1

2

∑
l,m,pl+pm>0

(pl − pm)2

pl + pm

Re[〈l|Ĵi |m〉〈m|Ĵj |l〉],

(14)

where {|l〉} is the orthonormal eigenbasis of ρ̂in, as in
Eq. (5). According to standard linear algebra, the maximum of
FQ[ρ̂in,Ĵ�n] = 4(�n,γ [ρ̂in]�n) over all unit vectors �n is

FQ[ρ̂in] = 4γmax, (15)

with γmax being the largest eigenvalue of the matrix γ [ρ̂in]. In
the following it will be useful to also define the matrix

Gij [ρ̂] ≡ 1
2 〈Ĵi Ĵj + Ĵj Ĵi〉 − 〈Ĵi〉〈Ĵj 〉, (16)

where 〈· · ·〉 = tr(· · · ρ̂), with ρ̂ being the system density
matrix. Note that, for pure input states |ψin〉, the matrix
γij [|ψin〉〈ψin|] reduces to the matrix Gij [|ψin〉〈ψin|], which
is easier to compute than the more general expression (14).
The optimum quantum Fisher information is then given (up
to a factor four) by the largest uncertainty of the angular
momentum operators Ĵ�n [see Eq. (6)]. For the sake of brevity,
in the following we will omit both the adjective “optimum”
and the explicit dependence on the input state, designating the
optimum coherent spin squeezing and the optimum quantum
Fisher information by ξ 2 and FQ, respectively, unless where
source of confusion.

IV. QUENCHED DYNAMICS OF A BJJ

A. Noiseless dynamics

We describe a Bose-Josephson junction (BJJ) by a two-
mode Hamiltonian [32], which in terms of the angular-
momentum operators introduced in Sec. III reads

Ĥ (0) = χĴ 2
z − λĴz − 2KĴx. (17)

This Hamiltonian models both a single-component Bose gas
trapped in a double-well potential [21]–an external BJJ—and
a binary mixture of atoms in distinct hyperfine states trapped
in a single well [6,33]—an internal BJJ. In the external BJJ the
two modes i correspond to the lowest-energy spatial modes
in each well. For the internal BJJ, the two relevant modes are
the two hyperfine states. The first term in the Hamiltonian (17)
describes the repulsive atom-atom interactions; for the external
BJJ, χ is half the sum of the interaction energies Ui in the two
modes whereas, for the internal BJJ, χ = (U1 + U2)/2 − U12

also depends on the interspecies interaction U12. In both cases,
λ = 	E + (N − 1)(U2 − U1)/2 is related to the difference
	E = E2 − E1 between the energies of the two modes.

The last term in (17) corresponds to tunneling between the
two wells or, for the internal BJJ, to the action of resonant
microwave-radiofrequency fields coupling the two hyperfine
states, which can serve to implement a 50% beam splitter as
described in Sec. III A. Both χ and K are experimentally
tunable parameters. In internal BJJs, arbitrary rotations of
the form (3) can be performed with a suitable combination
of microwave pulses. Such rotations are typically realized
fast enough to neglect the nonlinear effects induced by
the interactions [6]. The residual effect of interactions on
the interferometric sequence has been recently addressed in
Refs. [34,35].

We consider the dynamical evolution induced by a sudden
quench of the tunnel amplitude K to zero, taking as initial
state the phase state |θ = π/2,φ = 0〉. This is the ground
state of the Hamiltonian (17) in the regime KN � χ where
tuneling dominates interactions (in the internal BJJ this state
can be produced by using a microwave pulse, as explained in
Sec. III A). We assume a fixed total number of atoms N ; that
is, we do not account for atom losses. Going to the rotating
frame [36], we may suppose that λ = 0. In the absence of
noise, the atomic state

|ψ (0)(t)〉 = e−iχĴ 2
z t

∣∣∣∣θ = π

2
,φ = 0

〉
(18)

displays a periodic evolution with period T = 2π/χ if N is
even and T/2 if N is odd, corresponding to the revival time. At
intermediate times the dynamics drives the system first into a
squeezed state at short times and then, at times tq = π/(χq), to
a macroscopic superposition of q phase states given by [13–15]

|ψ (0)(tq)〉 = u0

q−1∑
k=0

ck,q

∣∣∣∣θ = π

2
,φk,q

〉
, (19)

where |u0| = q−1/2, φk,q = (2k − N )π
q

, ck,q = eiπk2/q if q is

even, and φk,q = (2k + 1 − N )π
q

, ck,q = eiπk(k+1)/q if q is
odd. This follows from Eqs. (1) and (18) and the use of the
Fourier expansions e−iπn2

1/q = u′
0

∑q−1
k=0 eiπk2/qe−2iπn1k/q for

q even and e−iπn2
1/q = u′′

0

∑q−1
k=0 eiπk(k+1)/qe−iπn1(2k+1)/q if q

is odd, with |u′
0|2 = |u′′

0|2 = 1/q by the Parseval identity. As
in the case of the NOON state discussed in Sec. III A, the
two-component superposition formed at t = t2 = T/4 leads
to the best achievable phase sensitivity if used as an input state
of the interferometer [but for a different direction of rotation in
Eq. (3)] [12]. We will show in Sec. III that the multicomponent
superpositions with 3 � q �

√
N , which are formed at earlier

times tq < t2, lead to comparable phase sensitivities up to a
factor of two. The fact that squeezed states and macroscopic
superpositions of phase states are intrinsically produced by
interatomic interactions yields a major advantage of atomic
interferometers over optical ones.

B. Dynamics of a noisy BJJ

The presence of noise during the dynamical evolution of
the BJJ affects the preparation of the aforementioned useful
entangled states [37]. We focus here on phase noise caused by
a randomly fluctuating energy difference 	E(t) between the
two modes, assuming that the interaction energies U1 and U2
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are not fluctuating. In the single-well experiment [6] (internal
BJJ), such noise is induced by fluctuations of the magnetic
field whereas, in the double-well experiment [21] (external
BJJ), it is induced by fluctuations in the direction of the laser
beam producing the double-well potential with respect to the
trapping potential. The corresponding time evolution which
follows the sudden quench K → 0 is described by the time-
dependent Hamiltonian

Ĥ (t) = χĴz
2 − λ(t)Ĵz. (20)

Even in presence of noise, the time evolution following the
quench can be exactly integrated since the noise term λ(t)Ĵz

commutes with the noiseless Hamiltonian χĴz
2

[23]. For a
given realization of the stochastic process λ(t), the state of the
atoms at time t is

|ψ(t)〉 = e−iφ(t)Ĵz |ψ (0)(t)〉, (21)

where φ(t) ≡ − ∫ t

0 dτλ(τ ) and |ψ (0)(t)〉 is the time-evolved
state (18) in the absence of noise. The system density matrix
is then obtained by

ρ̂(t) = |ψ(t)〉〈ψ(t)| =
∫

dP [λ]|ψ(t)〉〈ψ(t)|,

where the overline denotes the average over the noise realiza-
tions. The introduction of the distribution probability for the
random angle φ(t),

f (φ,t) =
∫

dP [λ(t)]δ(φ − φ(t)) (22)

allows us to write it as

ρ̂(t) =
∫ ∞

−∞
dφf (φ,t)e−iφĴz ρ̂(0)(t)eiφĴz , (23)

where ρ̂(0)(t) = |ψ (0)(t)〉〈ψ (0)(t)| is the density matrix in the
absence of noise. Under the hypothesis of a Gaussian noise
(see Appendix A) the probability distribution (22) reads

f (φ,t) = 1√
2πa(t)

exp

[
− (φ + λt)2

2a2(t)

]
, (24)

where λ = 	E + (N − 1)(U2 − U1)/2 and the variance a2(t)
is given in terms of the noise correlation function

h(τ − τ ′) = λ(τ )λ(τ ′) − λ
2 = 	E(τ )	E(τ ′) − 	E

2
(25)

by

a2(t) =
∫ t

0
dτ

∫ t

0
dτ ′h(τ − τ ′). (26)

We note that h depends only on the time difference τ − τ ′
by the stationarity of the stochastic process λ(t), which also
implies λ(t) = λ(0) ≡ λ; moreover, h decreases to zero at
sufficiently long times [38]. By projecting Eq. (23) onto the
Fock basis {|nz = n〉}, we obtain

〈nz = n|ρ̂(t)|nz = n′〉 = e−a2(t)(n−n′)2/2eiλt(n−n′)

×〈nz = n|ρ̂(0)(t)|nz = n′〉. (27)

In order to discuss the effect of the phase noise on the state of
the atoms we briefly discuss the noise variance a(t). We first
notice that, under our hypothesis, a(t) and thus the decoherence

factor [given by the first exponential on the right-hand side
of Eq. (27)] is independent of the number of atoms N in the
BJJ. This is in contrast with the usual scenario for decoherence
which predicts stronger decoherence as the number of particles
in the system is increased. As a consequence of this fact,
macroscopic superpositions of the form (19) are robust against
phase noise, as was shown in [23] and will be detailed in Sec. V
below.

Let us denote by tc the largest time such that h(τ ) � h(0) =
δλ(0)2 ≡ δλ2 and by Tc the characteristic time at which h(τ )
vanishes. If the time evolution occurs on a short scale such that
t < tc then the colored nature of the noise plays an important
role and

a2(t) � δλ2t2. (28)

If instead the time evolution occurs on a time scale much larger
than the noise correlation time Tc we obtain the same result as
for white noise:

a2(t) � 2t

∫ ∞

0
dyh(y), (29)

which corresponds to the Markov approximation.
The effect of phase noise can be partially suppressed by

using the so-called spin-echo protocol [39]. This strategy was
followed in a recent experiment [6]. The analysis discussed in
this section can be adapted to take into account the residual
effect of phase noise when spin-echo pulses are applied; see
Appendix B.

V. EFFECT OF PHASE NOISE ON MULTICOMPONENT
MACROSCOPIC SUPERPOSITIONS OF

PHASE STATES

Before analyzing the Fisher information and the spin
squeezing during the quenched dynamics, we wish to study
the nature of the state of the atoms under phase noise at the
specific times tq that, in the noiseless BJJ, correspond to the
formation of multicomponent superpositions of phase states.
We first illustrate the effect of the noise on the structure of the
density matrix, then we study a suitable probability distribution
which is particularly sensitive to decoherence.

A. Structure of the density matrix in the Fock basis

In the absence of noise the quenched dynamics of the Bose-
Josephson junction leads to the formation of coherent super-
positions with q components as given by Eq. (19). The corre-
sponding density matrix ρ̂(0)(tq) = |ψ (0)(tq)〉〈ψ (0)(tq)| has the
form ρ̂(0)(tq) = ∑

k,k′ ρ̂
(0)
kk′(tq), where the indices k and k′ label

the various components of the superposition and ρ̂
(0)
kk′(tq) =

q−1ck,qc
∗
k′,q |θ = π/2,φk,q〉〈θ = π/2,φk′,q |. For general deco-

herence processes one expects that, by increasing the intensity
of the noise, ρ̂(0)(tq) will evolve into the statistical mixture
of phase states

∑
k ρ̂

(0)
kk (tq); moreover, the larger the atom

number N the weaker should be the noise strength at which this
occurs [40,41]. It was found in [23] that, for the phase noise
considered in Sec. IV, the actual scenario for decoherence
is different from the usual one. Indeed, the typical noise
intensity at which the coherences between distinct phase states
|θ = π/2,φk,q〉 are lost turns out to be independent of the
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atom number. This is a consequence of the fact that the
decoherence factor a(t) is independent of N , as shown in
Sec. IV B. Furthermore, for superpositions with a large number
of components q, this intensity is larger than the noise intensity
at which phase relaxation occurs. In what follows we discuss
the origin of this fact.

Since the noise is expected to destroy correlations between
different components, we decompose the density matrix into its
diagonal (intracomponent) and off-diagonal (intercomponent)
parts, focusing on the latter to quantify the decoherence. We
have then ρ̂(0) = ρ̂

(0)
d + ρ̂

(0)
od , where

ρ̂
(0)
d (tq) =

q−1∑
k=0

ρ̂
(0)
kk (tq) (30)

and

ρ̂
(0)
od (tq) =

q−1∑
k,k′=0;k 
=k′

ρ̂
(0)
kk′(tq). (31)

Using Eq. (1) and the identity
∑q−1

k=0 e2ik(n′−n)π/q = q if n = n′

modulo q and 0 otherwise, the matrix elements of ρ̂
(0)
d (tq) in

the Fock basis are

〈nz = n|ρ̂(0)
d (tq)|nz = n′〉

=
{

(−1)p(N+q)

2N

(
N

N
2 +n

) 1
2
(

N
N
2 +n′

) 1
2

if n′ = n + pq

0 if n′ 
= n mod q.
(32)

where p is an integer. By using

ρ̂
(0)
od (tq) = e−iπĴ 2

z /q |θ = π/2,φ = 0〉〈θ = π/2,φ = 0|
× eiπĴ 2

z /q − ρ̂
(0)
d (tq),

we also get

〈nz = n|ρ̂(0)
od (tq)|nz = n′〉

=
⎧⎨
⎩

0 if n′ = n + pq

e
iα

nn′
2N

(
N

N
2 +n

) 1
2
(

N
N
2 +n′

) 1
2

if n′ 
= n mod q,
(33)

with αnn′ = (n′2 − n2)π/q. The use of Eq. (27) allows to obtain
the corresponding expressions in the presence of noise,

〈n|ρ̂d,od(tq)|n′〉 = e−a2
q (n−n′)2/2〈n|ρ̂(0)

d,od(tq)|n′〉, (34)

up to a phase factor irrelevant for decoherence, with aq ≡
a(tq). In the strong-noise limit aq � 1, the off-diagonal part
ρ̂od of the atom density matrix vanishes whereas the diagonal
part ρ̂d tends to a matrix which is diagonal in the Fock basis:

ρ̂d(tq) → ρ̂∞ =
N/2∑

n=−N/2

1

2N

(
N

N
2 + n

)
|nz = n〉〈nz = n|

=
∫ 2π

0

dφ

2π

∣∣∣∣θ = π

2
,φ

〉〈
θ = π

2
,φ

∣∣∣∣. (35)

The fact that the diagonal part of the atom density matrix
decays faster than the off-diagonal part for increasing noise
strengths [23] is readily explained by examining the structure
of the noiseless density matrices in Eqs. (32) and (33).
The first off-diagonal elements of ρ̂d(tq) in the Fock basis

are those for which n′ = n ± q while the first off-diagonal
elements of ρ̂od(tq) satisfy n′ = n ± 1. Hence, it results from
Eq. (34) that the off-diagonal elements of ρ̂d vanish at the noise
scale a � 1/q while the off-diagonal elements of ρ̂od vanish at
the larger noise scale a � 1. In other words, the noise is more
effective in letting ρ̂d converge to ρ̂∞ than in suppressing ρ̂od,
and this effect is more pronounced the higher the number
of components in the superposition. An illustration of such
anomalous decoherence is given in Fig. 4. The middle panels
show that, for intermediate noise strengths, ρ̂d has already
acquired its asymptotic diagonal form (35), while ρ̂od has not
yet vanished. As we will see in Sec. VI B below, for moderate
strengths of phase noise the quantum correlations contained in
ρ̂od turn out to be useful for interferometry.

B. Angular momentum distributions

The anomalous decoherence of the atomic state can be
visualized by plotting the probability distribution Pφ(r) of
the eigenvalues of the angular momentum operators Ĵφ =
Ĵx sin φ − Ĵy cos φ in an arbitrary direction of the equatorial
plane of the Bloch sphere [24]. The presence of correlations
among the components of the superposition formed at time
tq is indicated by interference fringes in these distributions,
which would be absent if the atoms would be in a statistical
mixture of phase states.

The probability distribution of Ĵφ in the state ρ̂(t) can be
calculated by a straightforward generalization of the calcu-
lation in [24], as the Fourier coefficient of the characteristic
function hφ(η,t) = tr(e−iηĴφ ρ̂(t)); namely,

Pφ(r,t) = 1

2π

∫ π

−π

dηhφ(η,t)eiηr . (36)

For the quenched dynamics of the Bose-Josephson junction in
the presence of noise, the characteristic function reads

hφ(η,t) =
N/2∑

n,n′=−N/2

gnn′(t)〈nz = n|ρ̂(0)(t)|nz = n′〉

×Dn′n(−φ,η,φ), (37)

where gnn′(t) = e−a2(t)(n−n′)2/2eiλt(n−n′) and Dn′n(−φ,η,φ) is
the matrix element of the rotation operator e−iηJφ in the Fock
basis, which is given by [see, e.g., [42], Eq. (D6)]

Dn′n(−φ,η,φ)

= 〈nz = n′|e−iηJφ |nz = n〉

=
min{N/2−n′,N/2+n}∑

k=max{0,n−n′}
(−1)k

(
N

N
2 + n

)− 1
2
(

N
N
2 + n′

)− 1
2

× N !(
N
2 − n′ − k

)
!
(

N
2 + n − k

)
!k!(k + n′ − n)!

×
(

sin
η

2

)2k+n′−n(
cos

η

2

)N+n−n′−2k

e−iφ(n′−n). (38)

The probability distribution in the absence of noise derived
in [24] is recovered by setting gnn′ (t) = 1 in Eq. (37).

The distribution P
(0)
π/2(r,t3) = |〈nx = r|ψ (0)(t3)〉|2 of the

eigenvalues of Ĵx (satisfying Ĵx |nx = r〉 = r|nx = r〉) is
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FIG. 4. (Color online) Matrix elements of the diagonal (intracomponent) part ρ̂d(t3), Eq. (30) [panels (a), (c), and (e)], and the off-diagonal
(intercomponent) part ρ̂od(t3), Eq. (31) [panels (b), (d), and (f)], of the density matrix in the Fock basis at time t3 of formation of a three-component
superposition of phase states (see Sec. IV) as the noise strength, defined in Eq. (26), is increased from a3 = 0 [(a) and (b)] to a3 = 0.9 [(c) and
(d)] and a3 = 2.9 [(e) and (f)].

shown in Fig. 1(a) for the three-component superposition
of phase states in the absence of noise. Its profile displays
two peaks corresponding to the projections on the x axis of
the phase states |θ = π/2,φ = φk,3〉, φk,3 = π , ±π/3 [the
“phase content” of the state, accounted for by ρ̂d(t3)] and
interference fringes, due to the coherences between these
phase states [contained in ρ̂od(t3)]. In the presence of noise
[Figs. 1(b) and 1(c)], the phase profile of each component of
the superposition spreads and the characteristic peaks in the
profile of the distribution are smeared out (phase relaxation).
At strong noise intensities, ρ̂d(tq) approaches the steady state
given by the density matrix (35), which is symmetric in the
(xOy) plane. As a consequence, the corresponding probability
distribution Pφ(r,∞) ≡ P (r,∞) = tr(ρ̂∞|nx = r〉〈nx = r|) is
independent of φ. In the semiclassical limit N � 1, this
distribution can be easily calculated since Ĵx takes the values

N cos φ/2 in the phase states |θ = π/2,φ〉 apart from small
relative fluctuations of the order of 1/

√
N . Hence, recalling

that ρ̂∞ is a statistical mixture of the states |θ = π/2,φ〉 with
equal probabilities [see Eq. (35)],

P (r,∞) = c

∫ 2π

0
dφδ

(
N

2
cos φ − r

)
= 1

π

1√(
N
2

)2 − r2
,

(39)

where c is a normalization factor. The semicircle law (39) is
indicated by the blue dashed curve in Fig. 1(c). For finite N ,
one finds

P (r,∞) =
(

N
N
2 + r

)
1

π

�
[

N
2 + 1

2 − r
]
�
[

N
2 + 1

2 + r
]

�[N + 1]
.
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On the other hand, the vanishing of ρ̂od(tq) tends to diminish
the contrast of the fringes in the distribution Pφ(r,tq), until
they are completely washed out in the asymptotic distribution
[see Fig. 1(c)]. The fact that phase relaxation occurs at a lower
noise strength than decoherence is evident in Fig. 1(b), where
the profile of Pφ(r,tq) is close to the asymptotic distribution
P (r,∞) while interference fringes due to ρ̂od(tq) are still
visible.

VI. QUANTUM FISHER INFORMATION AND COHERENT
SPIN SQUEEZING DURING THE QUENCHED

DYNAMICS OF A BJJ

We present in this section the estimate of the useful quantum
correlations which are formed during the quenched dynamics
of the Bose-Josephson junction introduced in Secs. IV and V.
For this purpose, we evaluate the quantum Fisher information
and the coherent spin squeezing parameter. We consider first

the noiseless evolution for which analytical expressions can
be obtained, then we present the numerical results for the
dynamical evolution in the presence of noise.

A. Dynamics in the absence of noise

In the absence of noise, the atoms are in a pure state |ψ (0)(t)〉
during all the dynamical evolution. The covariance matrix
γ (0)(t) associated to this state is thus given by Eq. (16) [i.e.,
γ (0)(t) = G(0)(t)]. For the quenched dynamics described in
Sec. IV by using Eqs. (1) and (18), one finds that

〈Ĵy〉(0)
t = 〈Ĵz〉(0)

t = 0, (40)

〈Ĵx〉(0)
t = N

2
cosN−1

(
2πt

T

)
≡ N

2
ν(0)(t), (41)

where 〈· · ·〉(0)
t = 〈ψ (0)(t)| · · · |ψ (0)(t)〉 and ν(0)(t) corresponds

to the visibility of the Ramsey fringes [8]. The angular-
momenta covariance matrix (16) finally reads

G(0)(τ ) =

⎛
⎜⎝

G(0)
x (τ ) 0 0

0 −N
8 [(N − 1) cosN−2(2τ ) − (N + 1)] N(N−1)

4 cosN−2(τ ) sin(τ )

0 N(N−1)
4 cosN−2(τ ) sin(τ ) N

4

⎞
⎟⎠ , (42)

where we have introduced the rescaled time τ = 2πt/T = χt and

G(0)
x (τ ) ≡ 〈(	Ĵx)2〉(0)

τ = N

8
[(N − 1) cosN−2(2τ ) + (N + 1) − 2N cos2(N−1)(τ )]. (43)

The two other eigenvalues of the matrix (42) are

G
(0)
± (τ ) = N

16
[−(N − 1) cosN−2(2τ ) + (N + 3) ± (N − 1)

√
[cosN−2(2τ ) − 1]2 + 16 cos2(N−2)(τ ) sin2(τ )] (44)

(see also Ref. [43]). We remark that the matrix (42) has the
property that its eigenvalues at the rescaled times τ and π −
τ (and, similarly, at 2π − τ ) coincide; hence, it suffices to
discuss its behavior at times t in the interval [0,T /4] (i.e.,
τ ∈ [0,π/2]).

According to Eq. (15), the quantum Fisher information is
given by the largest eigenvalue,

FQ(τ ) = 4 max
{
G(0)

x (τ ),G(0)
+ (τ )

}
. (45)

We demonstrate in Appendix C that the coherent spin squeez-
ing (9) is always optimum along a direction contained in the
(yOz) plane. The optimal spin squeezing parameter (13) is
thus related to the lowest eigenvalue G

(0)
− (τ ) of the submatrix

G(0)′(τ ) obtained by removing the first row and column in
matrix (42). Using Eqs. (40) and (41), one gets

ξ (0)(τ )2 = 4G
(0)
− (τ )

Nν(0)2(τ )
. (46)

The direction of optimum squeezing is given by the eigenvector

�n(0)
ξ (τ ) = �n(0)

− (τ ) = − sin θ
(0)
ξ (τ )�ey + cos θ

(0)
ξ (τ )�ez (47)

associated to the eigenvalue G
(0)
− (τ ) of the covariance matrix.

One easily finds

θ
(0)
ξ (τ ) = arctan

(
G(0)

yz (τ )

G
(0)
+ (τ ) − G

(0)
zz (τ )

)

= 1

2
arctan

(
〈{Ĵy,Ĵz}〉(0)

τ〈
Ĵ 2

y

〉(0)
τ

− 〈
Ĵ 2

z

〉(0)
τ

)
, (48)

where {·,·} denotes the anticommutator.
The direction of optimization �n(0)

F of the quantum Fisher
information is either given by the eigenvector �ex (if G(0)

x >

G
(0)
+ ) or by the eigenvector �n(0)

+ associated to the eigenvalue
G

(0)
+ (if G(0)

x < G
(0)
+ ). For an even number of atoms, the latter

condition is satisfied at times shorter than t∗; see Appendix D;
otherwise, the optimization direction is along �n(0)

+ at all times.
As the two aforementioned eigenvectors are orthogonal to �n(0)

−
(since the matrix G(0) is symmetric), it follows that coherent
spin squeezing and quantum Fisher information are optimized
in perpendicular directions. At short times, when the state
of the system is a squeezed state, this has a clear physical
interpretation: the quantum Fisher information is maximum
in the direction of maximal angular momentum fluctuations,
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which is perpendicular to the direction of lowest fluctuations
yielding the best squeezing.

The Fisher information (45) and the squeezing parameter
(46) obtained from Eqs. (43)–(46) are shown as a function
of time in Fig. 5. At short times, the coherent spin squeezing
[Fig. 5(a)] is below unity, indicating the presence of a squeezed
state. To compare spin squeezing and Fisher information,
we introduce the parameter Fξ = N/ξ 2. This parameter was
shown in [12] to coincide at short times with the Fisher
information, indicating that FQ and ξ provide essentially
the same information for squeezed states at such times. This
property is illustrated in Fig. 5(b), and is demonstrated in the
large-N limit in Appendix E. At larger times, the squeezing
parameter first reaches a minimum at tmin ∼ T/N2/3 [9] and
then grows to values larger than unity (that is, Fξ decreases and
becomes smaller than N ). This does not imply that the atomic
state is not useful for interferometry since, as described in
Sec. III, the squeezing criterion is only a sufficient condition
for useful entanglement [12]. Indeed, the quantum Fisher
information increases above the shot-noise level FQ = N until
it reaches a plateau value FQ � N (N + 1)/2 (see Appendix E)
at the time

tf s ∼ T/
√

N. (49)

This time corresponds to the time of formation of the “first” (in
chronological order) multicomponent superposition of phase
states, as one can infer from the following argument. The
largest number of phase states of size

√
N/2 (see Sec. III A)

which can be put on the equator of the Bloch sphere of radius
N/2 is qmax � 2πN/

√
N = 2π

√
N . The time of formation of

the multicomponent superposition with the highest number of
phase states is tf s = T/(2qmax), leading to Eq. (49). Note that
tf s is also the time scale for phase diffusion [that is, for the
decay of the visibility (41)].

It is seen in Fig. 5 that FQ displays a sharp maximum
at t = t2 = T/4, in correspondence to the two-component
macroscopic superposition which has the highest possible
Fisher information FQ = N2. This result is not surprising
since this two-component superposition (19) is the analog
in the phase variable of a NOON state, from which it can
be obtained by a π/2 rotation around the y axis (if N is
even) or around the x axis (if N is odd). Figure 5(c) shows
the Fisher information in the directions �ex and �ey for an
even number of atoms N . In the time regime corresponding
to the plateau, they are almost equal due to the symmetry
of the multicomponent superpositions (this means that the
eigenvalues G(0)

x and G
(0)
+ are almost degenerate). As one

approaches the two-component superposition, the optimizing
direction changes to the x axis, which is the direction of
maximal angular momentum fluctuations.

In Fig. 5(d), the angle θ
(0)
ξ giving the direction of highest

spin squeezing in the (yOz) plane is represented as a function
of time together with the corresponding angle θ

(0)
F for the Fisher

information, which gives the optimizing direction �n(0)
F of the

Fisher information according to Eq. (11).
Some analytical results obtained for short, intermediate,

and long times in the limit N � 1 of a large number of atoms
are given in Appendix E. Table II summarizes these results.

FIG. 5. (Color online) (a) Coherent spin squeezing and
(b) quantum Fisher information during the quenched dynamics of a
BJJ with N = 100 atoms as a function of time (in units of the revival
time T ) in the absence of noise. The dashed line in the second panel
represents the parameter Fξ = N/ξ 2. Horizontal and vertical grid
lines in panel (a) give the minimum of the coherent spin squeezing and
the corresponding time tmin, respectively (see text). (c) Nonoptimized
quantum Fisher information along the x axis (dashed line) and the
y axis (dotted line). For comparison, the optimum quantum Fisher
information of panel (b) is also shown (gray solid line). The vertical
grid lines correspond from right to left to the time t = tf s of formation
of the first macroscopic superposition [see Eq. (49)], to t = t∗ (see
Appendix D), and to t = T/4 − tf s . The horizontal grid line shows
the shot-noise level FQ = N . (d) Angles θ

(0)
ξ in Eq. (48) (dashed

line) and θ
(0)
F (solid line) giving the optimizing direction for the spin

squeezing and the quantum Fisher information as a function of time.

B. Dynamics in the presence of noise

Let us now consider the effect of the phase noise introduced
in Sec. IV B on the results obtained in the previous subsection.
For simplicity we take a Gaussian noise with zero mean λ =
0. Since the atoms are now in a mixed state, the optimum
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quantum Fisher information is given in terms of the matrix γ

defined in Eq. (14), whereas the optimum spin squeezing is
determined from the simpler angular-momentum covariance
matrix G defined in Eq. (16). We start with the calculation of
ξ 2(t) which can be carried out analytically. To determine G in
the presence of noise, we need to perform the averages using
the density matrix ρ̂(t) given by Eq. (23): 〈· · ·〉t = tr[· · · ρ̂(t)].
They are related to those in the absence of noise according to

〈Ĵi〉t =
∫ ∞

−∞
dφf (φ,t)〈eiφĴz Ĵie

−iφĴz〉(0)
t . (50)

The rotated angular momentum operators in the above
expectation value are equal to cos φĴx − sin φĴy , sin φĴx +
cos φĴy , and Ĵz for i = x,y, and z, respectively. An expression
similar to Eq. (50) holds for 〈{Ĵi ,Ĵj }〉t . Using the symmetry
f (φ,t) = f (−φ,t) of the distribution function (24), one finds
that 〈Ĵy〉t = 〈Ĵz〉t = 0 as in the noiseless case,

〈Ĵx〉t = e−a2(t)/2〈Ĵx〉(0)
t ≡ N

2
ν(t), (51)

and

〈
Ĵ 2

z

〉
t
= 〈

Ĵ 2
z

〉(0)
t

= N

4
,

〈
Ĵ 2

y

〉
t
= 1 − e−2a2(t)

2

〈
Ĵ 2

x

〉(0)
t

+ 1 + e−2a2(t)

2

〈
Ĵ 2

y

〉
t
, (52)

〈{Ĵy,Ĵz}〉t = e−a2(t)/2〈{Ĵy,Ĵz}〉(0)
t ,

〈{Ĵx,Ĵy}〉t = 〈{Ĵx,Ĵz}〉t = 0.

Therefore, the covariance matrix G defined in Eq. (16)
has the same structure as the matrix (42) in the noiseless case;
the arguments used in Appendix C can then be taken over to
the noisy case. We thus conclude that the squeezing parameter
ξ 2 is minimum in the (yOz) plane, and is given by Eq. (46)
evaluated for the corresponding quantities in the presence of
noise. In particular, the bare visibility ν(0), Eq. (41), should be
replaced by the visibility ν in the presence of noise given by
Eq. (51), and G

(0)
− should be replaced by the lowest eigenvalue

G− of the restriction G′ of the covariance matrix G to the
(yOz) plane,

G′(τ ) =
(

N
8

[ − e−2a2(τ )(N − 1) cosN−2 (2τ ) + (N + 1)
]

1
4e−a2(τ )/2N (N − 1) cosN−2 (τ ) sin (τ )

1
4e−a2(τ )/2N (N − 1) cosN−2 (τ ) sin (τ ) N

4

)
. (53)

Thus, by Eqs. (46), (51), and (53), one has

ξ 2(τ ) = 1

4ν(0)(τ )2

[ − e−a2(τ )(N − 1) cosN−2 (2τ ) + ea2(τ )(N + 3)

− (N − 1)ea2(τ )
√[

1 − e−2a2(τ ) cosN−2 (2τ )
]2 + 16e−a2(τ ) cos2(N−2) (τ ) sin2 (τ )

]
. (54)

The angle which identifies the optimal squeezing direction is
given by Eq. (48), in which the matrix G(0)′ should be replaced
by the matrix (53).

We proceed by illustrating our results for the squeezing
parameter in the presence of phase noise. For the calculations
we have chosen a noise range of direct experimental relevance,
as extracted from the fit of the visibility decay data in Fig. 4.15
of Ref. [36] with our prediction given by Eq. (51). For the
noise variance a2(τ ) we take the short-time behavior a2(τ ) =
(δλ/χ )2τ 2 expressed by Eq. (28) since the experimental
visibility exhibits a Gaussian decay even for small interactions
χ [36]. This indicates that, in the time regime 0 � t � tf s , the
phase noise in the experiments has strong time correlations
(colored noise). The squeezing parameter as a function of time
is shown in Fig. 6(a). As seen in the figure, the presence of
noise degrades the squeezing, as its minimum value increases
at increasing noise strength. We also notice that the time for
optimal squeezing tmin is slightly shorter than in the noiseless
case. As it is shown in Appendix E, in the limit of a large
number of atoms the minimum value of ξ 2(τ ) is

ξ 2
min � (

ξ (0)
min

)2 + N−1(δλ/χ )2; (55)

this minimum being reached to leading order at the same time
τmin = τ (0)

min = 31/6N−2/3 as in the noiseless case. Let us point
out that, by increasing the number of atoms, the noise becomes
less efficient in limiting the highest squeezing which can be
reached during the dynamical evolution. This results from
the fact that the time tmin at which this highest squeezing is
produced is shorter for larger N , whereas the effect of the noise
on the density matrix (27) is independent of N , as stressed in
Sec. IV B.

The angle θξ (t) which identifies the optimizing squeezing
direction is represented in dashed lines at various noise levels in
Fig. 6(d). As discussed in Appendix E, similar to the noiseless
case, θξ almost vanishes at intermediate times τ satisfying
N−1 � δτ � τ � π/2 − δτ .

The evaluation of the optimum quantum Fisher information
(15) requires a numerical diagonalization of the density matrix
ρ̂(t) given by Eq. (27). For the time dependence of a2(t) we
take again the short-time approximation given in Eq. (28),
even if there is no experimental evidence which justifies such
a choice at times t ∼ T . This choice corresponds to the worst
possible scenario for decoherence, as in the Markovian regime
the dependence of a2(t) is weaker [see Eq. (29)] [23]. The
behavior of FQ as a function of time in the presence of noise
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TABLE II. Optimum coherent spin squeezing parameter, optimum quantum Fisher information, and corresponding optimizing directions
during the quenched dynamics of a Bose-Josephson junction in the absence of noise in the semiclassical limit N � 1. The arrows in the second
column indicate whether the function is increasing or decreasing with time in the given time interval.

Optimum Quantum
Time Fisher information F

(0)
Q Optimizing Direction

t = 0 N degenerate in (yOz) plane
0 � t � T/N ↗ given by Eq. (E1) − cos θ

(0)
ξ (t)�ey − sin θ

(0)
ξ (t)�ez

T /N � t � tmin ↗ N 3τ 2 ��ey

tmin = 31/6T/(2πN 2/3) 31/3N 5/3 ��ey

tmin < t � tf s ∼ T/
√

N ↗ N 3τ 2 ��ey

tf s � t � t∗ −→ N 2/2 ��ey

t∗ < t � T/4 − tf s −→ N 2/2 �ex if N is even, ��ey if N is odd
T/4 − tf s � t � T/4 ↗ given by Eq. (E8) �ex if N is even, ��ey if N is odd
T/4 N 2 �ex if N is even, ��ey if N is odd

Optimum Coherent Spin Squeezing
Time Parameter F

(0)
ξ = N/ξ (0)2 Optimizing Direction

t = 0 N degenerate in (yOz) plane
0 � t � T/N ↗ Fξ = FQ − sin θ

(0)
ξ (t)�ey + cos θ

(0)
ξ (t)�ez

T /N � t � tmin ↗ given by Eq. (E4) ��ez

tmin = 31/6T/(2πN 2/3) 2 × 3−2/3N 5/3 ��ez

tmin < t � T/4 ↘ �N (ν(0))2 if tf s � t ��ez

and if T/4 − t � tf s

T /4 0 ��ez

results from the competition of two phenomena: (i) in the
absence of noise, at short times the quantum Fisher information
grows from its initial value FQ = N to the plateau value
FQ = N (N + 1)/2 in a time interval tf s ∼ T/

√
N which

shrinks as N becomes larger; (ii) the noise degrades more
and more the quantum correlations as time increases, by an
amount independent of N [see the discussion after Eq. (27)],
leading to a decrease of FQ. As a result of this competition, FQ

reaches a local maximum at a time tmax ∼ tf s , with a maximal
value which increases with N and decreases with the energy
fluctuation δλ2.

The quantum Fisher information as a function of time
at various noise levels is shown in Fig. 6. The short-time
evolution is similar to the one found for the noiseless case, the
accumulation of noise correlations being not yet effective. In
particular, one observes that FQ coincides with the squeezing
parameter Fξ = N/ξ 2 at sufficiently small times [Fig. 6(c)].
For not too large noise intensities, FQ displays a plateau at
those times which, in the noiseless BJJ, correspond to the
time of formation of macroscopic superpositions. The value
on the plateau is smaller than in the absence of noise but it is
still much above the shot-noise level FQ = N . This indicates
the presence of useful correlations which remain in spite of
the decoherence effects induced by the noise. This is due
to the robustness of the multicomponent superpositions [23]
with respect to phase noise discussed in Sec. V above. For
higher noise levels, the width of the plateau is reduced and
the peak at t2 = T/4 disappears completely, meaning that
decoherence has washed out the useful quantum correlations
in the two-component superposition [three bottom curves in
the Fig. 6(b)]. In the limit of very large noise intensities, the
Fisher information at time t2 is degenerate in the (xOy) plane

and tends to the asymptotic value

FQ[ρ̂∞] = N (N − 1)

2N + 2
, (56)

which can be readily obtained from Eqs. (15) and (35). As
illustrated in Fig. 7, apart from short times and around the
peak at t2, the optimization direction is in the (xOy) plane and
FQ is almost degenerate in all directions of this plane, as in
the noiseless case.

As a partial summary, the analysis of the time evolution
of the quantum Fisher information indicates the build-up of
useful quantum correlations at times beyond the spin squeezing
regime. In the following we quantify this effect by studying
the dependence of FQ with the noise strength and the particle
number.

Figure 8 shows FQ(t) on a logarithmic scale, evaluated
at the time t = t2 = T/4 of formation of the two-component
superposition in the noiseless BJJ, as well as the maximum
(FQ)max of FQ(t) in the time interval 0 < t < T/8. This
maximum corresponds roughly to the value at the plateau
in Fig. 6; that is, to the value of FQ(t) at the times tf s of
formation of the first multicomponent superpositions. It can be
seen that, in the range of noise considered, (FQ)max stays above
the shot-noise level and is also larger than the value FQ(tmin)
at the time tmin of highest squeezing. For energy fluctuations
δλ between 6 and 15 Hz, the two-component superposition,
formed much after the superpositions with a large number
of components, appears to be too degraded by noise to lead
to any advantage in interferometry with respect to separable
states. Hence, in this experimentally relevant regime of
noise strengths multicomponent macroscopic superpositions
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FIG. 6. (Color online) Coherent spin squeezing and quantum
Fisher information in the presence of noise as a function of time
in units of T during the quenched dynamics of a BJJ. The parameters
used are N = 100, χ = π Hz. (a) Spin squeezing ξ 2 for (from top
to bottom) δλ = 15,10,5, and 0 Hz. Horizontal and vertical grid
lines indicate the minimum of ξ 2 and the corresponding time tmin,
respectively. (b) Fisher information FQ for (from top to bottom)
δλ = 0,0.4,1,2,5,10, and 15 Hz; the horizontal and vertical grid lines
correspond to FQ = N (N + 1)/2 and t = tf s = T/

√
N , respectively.

(c) Zoom on the quantum Fisher information (solid lines) and
Fξ = N/ξ 2 (dashed lines) for δλ = 0,2,5,10, and 15 Hz (from top
to bottom). (d) Angles θF and θξ giving the optimizing direction of
FQ (solid lines) and ξ 2 (dashed lines) as a function t/T for the same
noise levels as in (b).

provide a convenient alternative to both the squeezed states
and the two-component macroscopic superposition.

We next study the scaling of the quantum Fisher information
with the particle number, taken at the time tmax, as before. As it
is illustrated in Fig. 9, at such a time FQ displays a power-law

FIG. 7. (Color online) Direction-dependent quantum Fisher in-
formation in the presence of noise as a function of time in units of T

during the quenched dynamics of a BJJ with N = 100 atoms and χ =
π Hz for (a) δλ = 2 Hz, (b) 5 Hz, (c) 10 Hz, and (d) 15 Hz, calculated
along the (Ox) direction (dashed lines), the (Oy) direction (dotted
lines), and the optimizing direction (light-gray solid line). After a
time t ∼ T/

√
N (left vertical grid lines) the three values are almost

the same, showing that the Fisher information is almost degenerate in
the (xOy) plane, except around t = T/4 if FQ has a peak at this value
[panel (a)]. The vertical and horizontal grid lines represent the times
t = tf s and t = T/4 − tf s and the value of the Fisher information in
the limit of large noise intensities given by Eq. (56).

behavior FQ ∼ Nβ with an exponent β depending on the noise
strength. This exponent is extracted from a log-linear fit of the
numerical data, varying N between 50 and 400 [44], the latter
value being realistic in the experiments [6]. We notice that in
the noise range considered β is larger than 5/3, which is the
exponent corresponding to the squeezed state at t = tmin in the
absence of noise (see Table II) [45]. This confirms the potential

O O
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X X
X

X
X

X X X
X

X

0 3 6 9 12 15
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12

δλ

ln
F

Q

FIG. 8. (Color online) Values of the Fisher information at its local
maximum at time tmax (solid line, circle markers), at time t2 (dot-
dashed line, star markers), and at the time tmin of maximal squeezing
(long-dashed line, blue cross markers) in a logarithmic scale, as a
function of the energy fluctuation δλ (in Hz). For comparison we
also plot the squeezing parameter Fξ = N/ξ 2 at the time tmin (dashed
line, green cross markers) in a logarithmic scale. Grid lines, from
top to bottom, give the Heisenberg limit N2 (solid), approximate
value (2/32/3)N 5/3 of Fξ (tmin) in the absence of noise, see Sec. VI A
(dashed), shot-noise limit (solid), and limit of FQ for large noise
intensities (solid) given by Eq. (56). The parameters used are N = 400
and χ = π Hz.
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FIG. 9. (Color online) (a) Quantum Fisher information evaluated
at the time of its local maximum tmax (blue solid line) and at the time
t2 (blue dashed line) as a function of the number of particles N for
δλ = 15 Hz, as compared to the shot-noise limit (black solid line).
(b)–(e) Same as in (a) but on a semilogarithmic scale for various
noise strengths δλ = 2,5,10, and 15 Hz (from left to right and top to
bottom). (f) Exponent β, extracted by a log-linear fit of the data in (a),
as a function of the energy fluctuations δλ (in Hz) for t = tmax (solid
line, circle markers) and for t = t2 (dot-dashed line, star markers).
We used χ = π Hz.

improvement in interferometry given by the state at time tmax

with respect to the use of squeezed states in the presence of
phase noise. For comparison, we also show the scaling of FQ

at the time t2. At that time, β decays faster with the noise
strength, reaching rapidly the shot-noise limit β = 1. This is
due to the fact that the noise exponent a2(t) increases with
time.

VII. CONCLUSIONS

In this work we have studied the effect of phase noise on
the formation of nonclassical states useful for interferometry

created during the quenched dynamics of a Bose-Josephson
junction. The knowledge of an exact solution for the dynamical
evolution of the state in the presence of phase noise has allowed
us to calculate the quantum Fisher information as a function
of time and its scaling with the particle number at various
noise strengths. Due to the anomalously slow decoherence
induced by phase noise on macroscopic superpositions of
phase states, for a realistic choice of noise strengths we have
found that multicomponent superpositions are more useful for
interferometry than squeezed states. Such superpositions are
built during the dynamical evolution of a noiseless junction
at larger times than squeezed states. The time of formation of
the superposition with ∼√

N components depends inversely
on the square root of the total number of atoms N . When
phase noise is affecting the unitary dynamics of the junction,
these multicomponent superpositions therefore provide an
interesting alternative to the use of the more popular two-
component superposition, which would appear later in a
noiseless junction.
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APPENDIX A: DERIVATION OF THE PROBABILITY
DISTRIBUTION f (φ,t) FOR A GAUSSIAN NOISE

The probability distribution f (φ,t) of the angle φ(t) =
− ∫ t

0 dτλ(τ ) is defined as an average over the noise realizations
as in Eq. (22) or, by Fourier expansion,

f (φ,t) = 1

2π

∫
dP [λ(t)]

∫ ∞

−∞
du e−iuφ(t)eiφu. (A1)

We are left to evaluate the Fourier transform of the average
e−iuφ(t) = ∫

dP [λ(t)]e−iuφ(t). This is readily done under the
hypothesis of a stationary Gaussian noise,

e−iuφ(t) = exp{−iu[φ(t) − φ(t)]}e−iuφ(t)

= exp

{
−u2

2
[φ(t) − φ(t)]2

}
e−iuφ(t)

= exp

[
−u2

2

∫ t

0
dτ

∫ t

0
dτ ′h(τ − τ ′)

]
eiuλt

= e−u2a2(t)/2eiuλt , (A2)

where h(τ − τ ′) = λ(τ )λ(τ ′) − λ(0)
2

is the noise correlation
function and we used the fact that, for Gaussian variables with
ξ = 0, one has eiuξ = e−u2ξ 2/2 [38]. Using Eq. (A2) we obtain
the expression (24) in the main text, according to

f (φ,t) = 1

2π

∫ ∞

−∞
du ei(φ+λt)ue−u2a2(t)/2. (A3)
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APPENDIX B: PARTIAL SUPPRESSION OF PHASE NOISE
BY SPIN-ECHO PULSES

In a recent experiment [6], phase noise was partially
suppressed by a spin-echo protocol [39]. Let us assume that
the state of interest (for instance, a squeezed state in [6]) is
produced after an evolution time t under the Hamiltonian
(20). In the spin-echo protocol, two short π pulses are sent
by microwave-radiofrequency fields, in resonance with the
energies of the two modes at times t/2 and t . The effect of
these pulses is to reverse the direction of Ĵz, mapped into −Ĵz,
in the evolution between t/2 and t . Since the noiseless part of
the Hamiltonian (20) is quadratic in Ĵz, it is not affected by the
pulses, while the noise part is linear in Ĵz and is reversed after
half of the evolution. This suppresses the effect of the noise if
it is strongly correlated between the two time intervals [0,t/2]
and [t/2,t], which appears to be the case in the experiment of
Ref. [6] (see also [36]).

Our model in Sec. IV B can be easily adapted to take into
account the residual effect of phase noise when the spin-echo
pulses are applied. The derivation follows the same lines as in
the main text. Equation (27) still holds provided that we use
φ(t) ≡ ∫ t

0 dτ sgn(τ − t/2)λ(τ ), with the sign function defined
as sgn(x) = ±1 for ±x > 0. This leads to

a2
echo(t)=

∫ t

0
dτ

∫ t

0
dτ ′sgn

(
τ−t

2

)
sgn

(
τ ′−t

2

)
h(τ − τ ′).

(B1)

We focus on the short-time regime t < tc. The approximation
h(τ ) � h(0) yields no contribution to a2

echo(t). An expansion to
second order is needed: h(τ ) = h(0) + τh′(0) + τ 2h′′(0)/2 +
O(τ 3). Using the parity h(−τ ) = h(τ ) of the correlation
function [which implies h′(0) = 0], we obtain [46]

a2
echo(t) = −h′′(0)

16
t4. (B2)

Comparing Eqs. (B2) and (28), one sees that the effect of the
noise at times t < tc is considerably reduced with respect to
the case of absence of spin echo.

APPENDIX C: DEMONSTRATION OF EQ. (46) FOR THE
SPIN SQUEEZING PARAMETER

In the following we show that the spin squeezing parameter
ξ 2(t) in a Bose-Josephson junction is always optimized along
a direction contained in the (yOz) plane.

Let us observe that the angular momentum covariance
matrix G(t) defined by Eq. (16) has vanishing matrix elements
Gxy(t) = Gxz(t) = 0. In fact, in the absence of noise this
matrix is given by Eq. (42), and we have seen in Sec. VI B
that it preserves the same structure in the presence of a phase
noise [see Eq. (52)]. Thanks to this special structure of G(t),
the fluctuations of the angular momentum operator along an
arbitrary direction �n given by Eq. (11) is

〈(	J�n)2〉t =
∑

i,j=x,y,z

niGij (t)nj

= sin2 θ sin2 φGxx(t) +
∑

i,j=y,z

niGij (t)nj . (C1)

The sum over i,j in the second line can be written as
(sin2 θ cos2 φ + cos2 θ )�n′T G′(t)�n′, where we introduced the
notation G′(t) for the two-by-two submatrix of G(t) in the
plane (yOz) and the normalized vector

�n′ = ny �ey + nz �ez√
sin2 θ cos2 φ + cos2 θ

(C2)

in this plane. Furthermore, we observe that, during the
dynamics of the noisy junction, one has 〈Ĵy〉t = 〈Ĵz〉t = 0
at all times. As a consequence, the expectation values of the
angular momentum operators along the directions defined by
Eq. (10) are given by

〈Ĵ �p1〉t = cos φ〈Ĵx〉t ,
〈Ĵ �p2〉t = − cos θ sin φ〈Ĵx〉t . (C3)

Combining these results and using the fact that Gxx(t) � 0,
we obtain from Eq. (9)

Nν(t)2

4
ξ 2

�n (t) = sin2 θ sin2 φGxx(t)

1 − sin2 φ sin2 θ
+ �n′T G′(t)�n′

� G−(t) = min
�n′,‖�n′‖=1

{�n′T G′(t)�n′}

= min
�n∈(yOz),‖�n‖=1

{�nT G(t)�n}, (C4)

where ν(t) = 2〈Ĵx〉t /N is the visibility and G−(t) the smallest
eigenvalue of G′(t). Since it is clear that the inequality in
Eq. (C4) is an equality for �n equal to the corresponding eigen-
vector �n−(t) of G−(t), this demonstrates that the squeezing is
minimized along a direction �n−(t) contained in the (yOz)
plane. Combining Eqs. (13) and (C4), we obtain that the
optimum coherent spin squeezing is given by Eq. (46).

APPENDIX D: DETERMINATION OF THE TIME t∗ WHEN
THE OPTIMIZATION DIRECTION OF THE FISHER
INFORMATION CHANGES IN ABSENCE OF NOISE

If the number N of atoms is even, the direction of
optimization �n(0)

F of the Fisher information in a noiseless
Bose-Josephson junction is along the x axis at the time
t2 = T/4 of formation of the superposition of the two
phase states |θ = π/2,φ = 0〉 and |θ = π/2,φ = π〉. These
phase states are indeed diametrically opposite on the equator
of the Bloch sphere along this axis. One can show that
G(0)

x (τ ) < G
(0)
+ (τ ) so that �n(0)

F (τ ) = �n(0)
+ (τ ) in the short-time

regime τ = 2πt/T � N−1/2 (see also Appendix E). The
optimizing direction thus changes abruptly from the (yOz)
plane to the x axis at some time τ ∗ ∈]0,π/2[ satisfying

G(0)
x (τ ∗) = G

(0)
+ (τ ∗). (D1)

Let us note that, for odd N and at time t2, the two components
of the superposition, |θ = π/2,φ = π/2〉 and |θ = π/2,φ =
3π/2〉, are diametrically opposite on the Bloch sphere along
the y axis and thus �n(0)

F (t2) = �ey ; in this case G(0)
x (τ ) < G

(0)
+ (τ )

at all times and Eq. (D1) has no solution. In this Appendix
we determine τ ∗ explicitly in the limit of large total atom
number N , which is supposed to be even. We may infer
from the previous discussion that τ ∗ is neither close to 0 nor
close to π/2. Consequently, we look for a solution of the
implicit equation (D1) in the interval τ ∈ [N−α,π/2 − N−α],

043628-15



FERRINI, SPEHNER, MINGUZZI, AND HEKKING PHYSICAL REVIEW A 84, 043628 (2011)

with α being a positive exponent strictly smaller than 1/2.
Introducing the variables u ≡ cos(τ ) ∈ [0, cos(N−α)] and v ≡
cos(2τ ) ∈ [− cos(2N−α), cos(2N−α)], we obtain with the help
of Eqs. (43) and (44)

4
[
G

(0)
+ (τ ) − G(0)

x (τ )
]

N

= −(N − 1)vN−2 + Nu2N−2

+ 2(N − 1)u2N−4(1 − u2) + O(Nu4N−8)

+O(Nv2N−4). (D2)

Setting G
(0)
+ (τ ) = G(0)

x (τ ) and using v = 2u2 − 1 gives

(
2 − 1

u2

)N−2

= 2 − u2 N − 2

N − 1
+ O

(
e−N1−2α)

. (D3)

For large N , the right-hand side of Eq. (D3) is strictly larger
than one and smaller than two. Hence the solution must
satisfy |2 − u−2| > 1 and 2 − u−2 � ±1. We may exclude
the positive sign as the values u = ±1 correspond to τ � 0 or
τ = π outside the studied time interval. The relevant solution
u of Eq. (D3) is thus close to 1/

√
3 and smaller than this

number. Let us note that, for odd N , such a solution does not
exist. Let us set u = 1/[

√
3(1 + δ)]. Then from Eq. (D3) we

obtain

exp{(N− 2) ln[1 + 6δ + O(δ2)]} = 5

3
+ O(δ) + O

(
1

N

)
,

(D4)

from which we find

δ = 1

6N
ln

(
5

3

)[
1 + O

(
1

N

)]
. (D5)

In terms of the dimensionless time τ ∗ we get

τ ∗ = arccos

(
1√
3

)
+ ln(5/3)

6
√

2N
+ O

(
1

N2

)
. (D6)

APPENDIX E: ANALYTICAL RESULTS FOR THE SPIN
SQUEEZING PARAMETER AND QUANTUM FISHER

INFORMATION IN THE LARGE-N LIMIT

In this Appendix we derive some analytical expressions for
the quantum Fisher information in a noiseless Bose-Josephson
junction and for the squeezing parameter first in the absence
and then in the presence of phase noise. We assume that the
atom number is large (i.e., N � 1).

Short time regime. At times shorter than the time of
formation of the first macroscopic superpositions (i.e., 0 �
t � tf s ∼ T/

√
N ), one has G

(0)
+ (t) > G(0)

x (t). A short-time

expansion in Eq. (44) followed by the large-N limit yields [47]

F
(0)
Q (τ )=4G

(0)
+ (τ )

=N

(
1 + N2τ 2

2
+ Nτ

√
1 + N2τ 2

4

)
[1 + O(Nτ 2)],

(E1)

where τ = 2πt/T � N−1/2 is the rescaled time. In this time
regime, the visibility (41) is almost equal to one. In order to
compare FQ with Fξ = N/ξ 2, we determine the ratio

F
(0)
Q (τ )

F
(0)
ξ (τ )

� N + 1

2
− N − 1

2
cosN−2(2τ )

− (N − 1)2 cos2N−4(τ ) sin2(τ ) (E2)

by employing Eq. (46) and identifying the product
G

(0)
+ (τ )G(0)

− (τ ) with the determinant of the 2 × 2 submatrix
G(0)′(t) obtained by removing the first row and the first column
in the matrix (42). At short times τ � N−2/3 - which a
posteriori turns out to be the time of optimal squeezing - the
right-hand side of Eq. (E2) can be approximated by unity,
yielding

F
(0)
ξ (τ ) ≡ N

ξ (0)(τ )2
� F

(0)
Q (τ ), (E3)

as discussed in the main text. At later times τ � N−2/3

the right-hand side of Eq. (E2) can be approximated by
1 + N4τ 6/6. We obtain [47]

ξ (0)(τ )2 � N [1 + N4τ 6/6 + O(N−1/3)]

F
(0)
Q (τ )

, (E4)

where F
(0)
Q (τ ) is given by Eq. (E1) up to a relative correction

O(N−1/3). The squeezing parameter (E4) reaches a minimum
(ξ (0)

min)2 � (3/N )2/3/2 at the time τ (0)
min = 31/6N−2/3 in the limit

N � 1, as assumed above [see also Ref. [9] where a different
definition of ξ is used, which, however, almost coincides with
ours at times t � tf s because ν(0)(t) � 1]. The value of the
Fisher information at τ = τ (0)

min is FQ(τ (0)
min) � 31/3N5/3. The

direction of optimization �n(0)
F (τ ) of FQ is in the (yOz) plane

and is given by the eigenvector �n(0)
+ (τ ) orthogonal to �n(0)

− (τ ),
that is, φ

(0)
F (τ ) = 0 and θ

(0)
F (τ ) = θ

(0)
ξ (τ ) + π/2, where the

angle φ
(0)
F and θ

(0)
F are defined as in Eq. (11).

One finds by using τ � N−1/2 and the first equality in (48)
that tan θ

(0)
ξ (τ ) � (Nτ/2 +

√
1 + N2τ 2/4)−1. The angle θ

(0)
ξ

starts from π/4 at τ = 0 and quickly decreases to 0, to which
it is almost equal at the rescaled times τ � N−1. At such
times ξ and FQ are optimal along �ez and �ey , respectively [see
Eq. (47)].
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Intermediate times. In the time regime δt � t � T/4 − δt

with δt � tf s , the covariance matrix (42) takes the simple
following form in the limit N � 1:

G(0)(τ ) �

⎛
⎜⎝

1
8N (N + 1) 0 0

0 1
8N (N + 1) 0

0 1
4N

⎞
⎟⎠ . (E5)

Hence the Fisher information has a plateau at the value

F
(0)
Q (τ ) = N (N + 1)

2
, (E6)

whereas the squeezing parameter

F
(0)
ξ (τ ) � Nν(0)(τ )2 (E7)

decreases with time as ν(0)(t) decreases.
We have shown in Appendix C that, if N is even, the

optimizing direction �n(0)
F (τ ) of the Fisher information changes

as τ increases from the (yOz) plane to the x axis at the time
τ ∗ � arccos(1/

√
3). Note, however, that any direction in the

(xOy) plane gives a Fisher information almost equal to the
optimized value N (N + 1)/2, as mentioned above and as it
is clear from the structure of the matrix (E5). For an odd
number of atoms N , the optimal direction �n(0)

F (τ ) remains in
the (yOz) plane all the way up to τ = π/2. More precisely, it
is almost along the y axis [which is the symmetry axis of the
superposition (19) formed at t = t2] at times N−1 � τ � π/2.

Times t close to t2 = T/4. At times t such that |t2 − t | �
T/N1/4, the Fisher information is given by

F
(0)
Q (τ ) � N

2

[
N + 1 + (N − 1)e−2N(π/2−τ )2]

. (E8)

It increases monotonically from the plateau value (E6) at
times t � T/4 − tf s to the value N2 at the time t = t2 of
formation of the two-component macroscopic superposition,
which has the highest Fisher information FQ = N2 allowed by
the Heisenberg bound. The optimal direction of FQ is along
the x axis if N is even and the y axis if N is odd, and that of ξ

is along the z axis in both cases. The above results in the three
time regimes are summarized in Table II.

Squeezing parameter in the presence of noise. The formula
generalizing Eq. (E4) for small nonzero noise intensities
a(τ ) � N−1 reads

ξ 2(τ ) � 1 + N4τ 6/6 + N (δλ/χ )2τ 2 + O(N−1/3)

1 + N2τ 2

2 + Nτ

√
1 + N2τ 2

4

, (E9)

where we assumed τ � N−2/3 and δλ/χ � N1/6. Comparing
with Eq. (E4) we see that, in the time range N−1 � τ � N−2/3,
to leading order in N the squeezing parameter in the presence
of noise is related to its value in the absence of noise by a
global shift, ξ (τ )2 � ξ (0)(τ )2 + N−1(δλ/χ )2. The minimum
value of ξ (τ )2 is given by Eq. (55) of the main text. The angle
θξ which identifies the optimal squeezing direction satisfies
tan(θξ ) = e−a2(t)/2 tan(θ (0)

ξ ). It thus almost vanishes at times τ

satisfying N−1 � τ and 0 � π/2 − τ � N−1.
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[15] F. Piazza, L. Pezzé, and A. Smerzi, Phys. Rev. A 78, 051601

(2008).
[16] A. Sinatra and Y. Castin, Eur. Phys. J. D 4, 247 (1998).
[17] J. Anglin, Phys. Rev. Lett. 79, 6 (1997).

[18] D. Witthaut, F. Trimborn, and S. Wimberger, Phys. Rev. A 79,
033621 (2009).

[19] Y. P Huang and M. G. Moore, Phys. Rev. A 73, 023606
(2006).

[20] Y. Khodorkovsky, G. Kurizki, and A. Vardi, Phys. Rev. Lett.
100, 220403 (2008).

[21] J. Esteve et al., Nature (London) 455, 1216 (2008).
[22] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439

(1994); V. Giovannetti, S. Lloyd, and L. Maccone, ibid. 96,
010401 (2006).

[23] G. Ferrini, D. Spehner, A. Minguzzi, and F. W. J. Hekking, Phys.
Rev. A 82, 033621 (2010).

[24] G. Ferrini, A. Minguzzi, and F. W. J. Hekking, Phys. Rev. A 80,
043628 (2009).

[25] T. Kim, O. Pfister, M. J. Holland, J. Noh, and J. L. Hall, Phys.
Rev. A 57, 4004 (1998).

[26] B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A 33, 4033
(1986).

[27] W. M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys. 62,
867 (1990).

[28] A. Uhlmann, Rep. Math. Phys. 9, 273 (1976).
[29] S. L. Braunstein, C. M. Caves, and G. J. Milburn, Ann. Phys.

(NY) 247, 135 (1996).
[30] P. Hyllus, O. Gühne, and A. Smerzi, Phys. Rev. A 82, 012337

(2010).
[31] V. Giovannetti, S. Lloyd, and L. Maccone, Nature Photonics 5,

222 (2011).

043628-17

http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/PhysRevLett.99.083001
http://dx.doi.org/10.1103/PhysRevLett.99.083001
http://dx.doi.org/10.1103/RevModPhys.79.235
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1103/PhysRevLett.104.133601
http://dx.doi.org/10.1103/PhysRevLett.104.073604
http://dx.doi.org/10.1103/PhysRevLett.104.073604
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1103/PhysRevA.50.67
http://dx.doi.org/10.1103/PhysRevA.47.5138
http://dx.doi.org/10.1038/35051038
http://dx.doi.org/10.1103/PhysRevLett.96.010401
http://dx.doi.org/10.1103/PhysRevLett.96.010401
http://dx.doi.org/10.1103/PhysRevLett.102.100401
http://dx.doi.org/10.1103/PhysRevLett.102.100401
http://dx.doi.org/10.1103/PhysRevLett.57.13
http://dx.doi.org/10.1103/PhysRevD.4.2309
http://dx.doi.org/10.1103/PhysRevA.78.023606
http://dx.doi.org/10.1103/PhysRevA.78.023606
http://dx.doi.org/10.1103/PhysRevA.78.051601
http://dx.doi.org/10.1103/PhysRevA.78.051601
http://dx.doi.org/10.1007/s100530050206
http://dx.doi.org/10.1103/PhysRevLett.79.6
http://dx.doi.org/10.1103/PhysRevA.79.033621
http://dx.doi.org/10.1103/PhysRevA.79.033621
http://dx.doi.org/10.1103/PhysRevA.73.023606
http://dx.doi.org/10.1103/PhysRevA.73.023606
http://dx.doi.org/10.1103/PhysRevLett.100.220403
http://dx.doi.org/10.1103/PhysRevLett.100.220403
http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.96.010401
http://dx.doi.org/10.1103/PhysRevLett.96.010401
http://dx.doi.org/10.1103/PhysRevA.82.033621
http://dx.doi.org/10.1103/PhysRevA.82.033621
http://dx.doi.org/10.1103/PhysRevA.80.043628
http://dx.doi.org/10.1103/PhysRevA.80.043628
http://dx.doi.org/10.1103/PhysRevA.57.4004
http://dx.doi.org/10.1103/PhysRevA.57.4004
http://dx.doi.org/10.1103/PhysRevA.33.4033
http://dx.doi.org/10.1103/PhysRevA.33.4033
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1016/0034-4877(76)90060-4
http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1103/PhysRevA.82.012337
http://dx.doi.org/10.1103/PhysRevA.82.012337
http://dx.doi.org/10.1038/nphoton.2011.35
http://dx.doi.org/10.1038/nphoton.2011.35


FERRINI, SPEHNER, MINGUZZI, AND HEKKING PHYSICAL REVIEW A 84, 043628 (2011)

[32] G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Phys.
Rev. A 55, 4318 (1997).

[33] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and
E. A. Cornell, Phys. Rev. Lett. 81, 1539 (1998).

[34] J. Grond et al., Phys. Rev. A 84, 023619 (2010).
[35] I. Tikhonenkov, M. G. Moore, and A. Vardi, Phys. Rev. A 82,

043624 (2010).
[36] C. Gross, Ph.D. thesis (unpublished), Heidelberg (2010) [http://

www.kip.uni-heidelberg.de/matterwaveoptics/publications/
theses/].

[37] We focus on the effect of phase noise on the preparation of the
useful input state. For studies of the effect of noise during the
rotations or the measurements, see Refs. [31] and [48].

[38] N. G. van Kampen, Stochastic Processes in Physics and
Chemistry, 3rd ed. (Elsevier, Hungary, 2007).

[39] L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).
[40] D. Giulini et al., Decoherence and the Appearance of a Clas-

sical World in Quantum Theory (Springer, Berlin, Heidelberg,
1996).

[41] M. Orszag, Quantum Optics, 2nd ed. (Springer, Berlin,
Heidelberg, 2008).

[42] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys.
Rev. A 6, 2211 (1972).

[43] A. R. U. Devi, X. Wang, and B. C. Sanders, Quant. Info. Proc.
2, 207 (2003).

[44] We cannot exclude here that slightly different values of β would
appear for larger N .

[45] For the chosen interval of noise strengths, the analysis of
the scaling FQ = cNβ is meaningful because the multiplying
constant c, which also depends on the noise, is large enough
to ensure that FQ(tmax) � N , as shown in the first panel of
Fig. 9.

[46] a2
echo(t) is positive since h′′(0) < 0. This follows from the fact

that the correlation function h is of positive type and hence has
a positive Fourier transform.

[47] We use 1 − cosN−2(2τ ) � 2Nτ 2 − 2N 2τ 4 + 4N 3τ 6/3 and
(N − 1) cos2N−4(τ ) sin2(τ ) � Nτ 2 − N 2τ 4 + N 3τ 6/2.

[48] U. Dorner, e-print arXiv:1102.1361 (to be published).

043628-18

http://dx.doi.org/10.1103/PhysRevA.55.4318
http://dx.doi.org/10.1103/PhysRevA.55.4318
http://dx.doi.org/10.1103/PhysRevLett.81.1539
http://dx.doi.org/10.1103/PhysRevA.84.023619
http://dx.doi.org/10.1103/PhysRevA.82.043624
http://dx.doi.org/10.1103/PhysRevA.82.043624
http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/
http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/
http://www.kip.uni-heidelberg.de/matterwaveoptics/publications/theses/
http://dx.doi.org/10.1103/PhysRevA.58.2733
http://dx.doi.org/10.1103/PhysRevA.6.2211
http://dx.doi.org/10.1103/PhysRevA.6.2211
http://dx.doi.org/10.1023/B:QINP.0000004125.12489.f4
http://dx.doi.org/10.1023/B:QINP.0000004125.12489.f4
http://arXiv.org/abs/arXiv:1102.1361

