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[ Quantum Correlations & Quantum Information J

> Quantum Information Theory (QIT) studies quantum systems
that can perform information-processing tasks more efficiently
than one can do with classical systems:

- computational tasks (e.g. factorizing into prime numbers)

- quantum communication (e.g. quantum cryptography, ...)

e A quantum computer works with qubits, . 0

l.e. two-level quantum systems in -1

=) [0y + )

linear combinations of |0y and [1). =] v

® ! i 1)

¢ Entanglement is a resource for quan-
tum computation and communication
[Bennett et al. 96, Josza & Linden 03]

Classical Bit Qubit

However, other kinds of “quantum correlations” differing
from entanglement could also explain the quantum efficiencies.



| Outlines

e Entangled and non-classical states
e Contractive distances on the set of quantum states

e Geometrical measures of quantum correlations



Basic mathematical objects in quantum
mechanics

(1) A Hilbert space H (in this talk: n = dimH < 0).
(2) States p are non-negative operators on H with trace one.

(3) Observables A are self-adjoint operators on H
(in this talk: A € Mat(C, n) finite Hermitian matrices)

(4) An evolution is given by a linear map ® : Mat(C,n) — Mat(C, n)
which is
(TP) trace preserving (so that tr(®(p)) = tr(p) = 1)

(CP) Completely Positive, i.e.for any integer d > 1 and any
d x d matrix (Az-j)g{j:l > 0 with elements A;; € Mat(C,n),
one has (@(Aij))f,jzl > 0.

Special case: unitary evolution ®(p) = U pU* with U unitary.



( Pure and mixed quantum states W

e A pure state is a rank-one projector p,, = | ){¢| with |¢) € H,
|| =1 (actually, |¢)) belongs to the projective space PH).

The set £(H) of all quantum states is a convex cone. Its extremal
elements are the pure states.

e A mixed state is a non-pure state. It has infinitely many pure
state decompositions

P = ZP@WiX%‘

with p; >0, > . p; =1 and |¢;) € PH.

Statistical interpretation: the pure states |1;) have been
prepared with probability p;.



( Quantum-classical analogy

Hilbert space H
state p
observable

set of quantum states
E(H)

CPTP map &

finite sample space ()
probability p on (2, P(Q2))
random variable on (2, P(Q2))

probability simplex
gclass — {p = R kak — 1}

stochastic matrices (Px;)x.1=1....n

((I)kl O Zk (I)kl =1V l)



Separable states

A bipartite system AB is composed of two subsystems A and B with
Hilbert spaces Ha and Hg. It has Hilbert space Hag = Ha ® Hp.

For instance, A and B can be the polarizations of two photons
localized far from each other = Hag =~ C? ® C2 (2 qubits):

X4

Source
450
o e
Zy
(i

Alice Bob

* A pure state |¥) of AB is separable if it is a product state
W) = |9y ® |p) with |1p) € PHa and |¢) € PHp.

*x A mixed state p is separable if it admits a pure state

decomposition p = > pi| U, XU;| with |[¥,) = | ® |¢s)
separable for all .



Entangled states

* Nonseparable states are called entangled. Entanglement is
— the most specific feature of Quantum Mechanics.

— used as a resource in Quantum Information (e.g. quantum
cryptography, teleportation, high precision interferometry... ).

* Examples of entangled & separable states: let Hp ~ Hpg ~
C? (qubits) with canonical basis {|0),|1)}. The pure states
UL ) = \%OO ®0)+[1® 1>) are maximally entangled.

— lead to the maximal violation of the Bell inequalities
observed experimentally [Aspect et al '82] = nonlocality of QM

1 1
In contrast, the mixed state p = §|‘I’1§e11><‘111§e11| +§|‘I’1_3e11><‘1’1_3e11|

: 1 1
s separable!  (indeed, p = 5\O<>§O><O<>§O| + 5|1 ®R 11 ®1]).



| Classical states |

* A state p of AB is classical if it has a spectral decomposition
p =D Pk|Vr)XWi| with product L states |Uy) = |ag) ® |Bk).

Classicality is equivalent to separability for pure states only.

* A state p is A-classical if p = > . q;|a;){a;| @ pg); with
{|c;)} orthonormal basis of Ha and pg|; arbitrary states of B.

* The set Cag (resp. Cp) of all (A-)classical states is not convex.
Its convex hull is the set of separable states Sag.

¢ Some tasks impossible to do clas-
sically can be realized using sepa-
rable non-classical mixed states.

¢ Such states are easier to produce and
presumably more robust to a coupling

with an environment.



[ Quantum vs classical correlations J

¢ Central question in Quantum Information theory: identify
(and try to protect) the Quantum Correlations responsible
for the exponential speedup of quantum algorithms.

classical correlations quantum correlations
O For mixed StateS, / entanglement [Schrodznger 736/
two (at least) \. nonclassicality (quantum discord)

kinds of QCs [Ollivier, Zurek °01, Henderson, Vedral 01/



| Outlines
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e Contractive distances on the set of quantum states



Contractive distances

e The set £ap of all quantum states of
a bipartite system AB (i.e., operators
p =0 on Hag with trp = 1) can
be equipped with many distances d.

CONTRACTIVE DISTANCE

e From a QI point of view, interesting distances must be contractive
under CPTP maps, i.e. for any such map ® on Eag, V p, 0 € Eag,
d(®(p), (o)) < d(p,0)
Physically: irreversible evolutions can only decrease the
distance between two states.

e A contractive distance is in particular unitarily invariant, i.e.
d(UpU*,UcU") = d(p, o) for any unitary U on Hag

e The LP-distances d,(p,0) = |p — o, = (tr|p — o|P)/P are
not contractive excepted for p = 1 (trace distance) [Ruskai ’94].



.~ Petz’s characterization of contractive distances

e Classical setting: there exists a unique (up to a multiplicative
factor) contractive Riemannian distance dc.s on the probability
simplex Eclas, With Fisher metric ds* = Y., dp7/pr ~ [Cencov '82]

e Quantum generalization: any Riemannian contractive distance
on the set of states £(H) with n = dim H < c© has metric

ds® = g,(dp,dp) = Z c(pr, pi) [Kk|dp|l)]?
k=1

where pr and |k) are the eigenvalues and eigenvectors of p,
_|_
(p. q) pfla/p) + af(p/q)
2pqf(p/a)f(q/p)

and f : R, — R_ is an arbitary operator-monotone function
such that f(a?) - xf(l/at) [Morozova & Chentsov '90, Petz "96]




( Distance associated to the von Neumann entropy

> Quantum analog of the Shannon entropy: von Neumann entropy
S(p) = —tr(plnp)

> Since S is concave, the physically most natural metric is

_ d’F(X+sdX)
o ds?

2
ds? = gs(dp, dp) = -]

t=0

s=0

[Bogoliubov; Kubo & Mori; Balian, Alhassid & Reinhardt, ’86, Balian ’14).
with F(X) = Intr(eX) and p = eXFX) = X /tr(eX).

> ds? has the Petz form with f(z) = -1

Iln x

—> the corresponding distance is contractive.

> Loss of information when mixing the neighboring equiprobable
states px = p+ 5dp: ds?/8 = S(p) — 55(p+) — 35(p-)



( Bures distance and Uhlmann fidelity )

> Fidelity (generalizes F=|(1)|¢)|* for mixed states) [Uhlmann '76]

\ F(p,0) = {tr[y/opy/o]2}" = F(o, p) |

D=

> Bures distance: dpy(p,0) = (2 —2+/F(p,0)) [Bures '69]
— has metric of the Petz form with f(z) = £
— smallest contractive Riemannian distance [Petz ’96]

— coincides with the Fubiny-Study metric on PH for pure states
— dpu(p,c)? is jointly convex in (p, o)

> dpu(p,0) = supdcas(p,q) with sup over all measurements

giving outcome k with proba p;. (for state p)and ¢, (for state o)
[Fuchs "96]



Bures distance and Fisher information |

In quantum metrology, the goal is to

o

I estimate an unknown parameter ¢ by
/i. + |-+ /- —[w]| measuring the output states
| T pout(p) = e ¥ pel?t!
/ | L“/ and using a statistical estimator

lec depending on the measurement results
(e.g. in quantum mterferometry estimate the phase shift ¢1 — ¢o)

— preison 80 (552 s 0))

The smallest precision is given by the quantum Cramer-Rao bound

(A@)best = . , F(p, H) = 4dpu(p, p + dp)?, dp = —i[H, p]

VNA/F(p,H)

N = number of measurements
F(p, H) =quantum Fisher information [Braunstein & Caves 9]



[ Summary }

CONTRACTIVE RIEMANNIAN METRICS:

Classical Quantum Interpretation
Bures ds3,, Q. metrology
unique: /! 5 (Fisher information)

dp? . .
ds?.. = Z % —  ds? = —d*S Loss of information
k

(Fisher) . s when merging 2 states

Hellinger ds?,, Q. state discrimination

with many copies
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( Geometric approach of quantum correlations W

Geometric entanglement:

E(p) = 1min d(ﬂ) Osep)Q

O-SQPESAB

Geometric quantum discord :

Da(p) = min d(p,oa.q)

T A-cl€CA
Properties:
v E(py) = Da(py) for pure states py < for Bures distance

v' E is convex — if d? is jointly convex

v Entanglement monotonicity: FE(®a ® Pg(p)) < E(p) for any
TPCP maps ®5 and ®g acting on A and B (also true for D but
only when ®a(pa) = Ua paUy). «— if d is contractive



( Bures geometric measure of entanglement W

Egu(p) = dpulp, Sas)? = 2 — 24/ F(p, Sas)
with F(p, SAB) = MaXgy,eSpg F(p, Usep)

= maximal fidelity between p and a separable state.

— Main physical question: determine F(p, Sag) explicitely.

¢ pb: it 1s not easy to find the geodesics for the Bures distance!

> [he closest separable state to a pure state py Is a pure product
state, so that F'(pw, Sag) = maxjy, 1y [{p ® x| ¥)|? — easy!

> For mixed states p, F'(p, Sag) coincides with the convex roof
[Streltsov, Kampermann and Bruf’10]

F(p, Sag) = maxw,) n.1 2 Pil (pw;, Sas)

— not easy!
max. over all pure state decompositions p = > . p;| ¥, }(¥;| of p.



The two-qubit case

Assume that both subsystems A and B are qubits, Ha ~ Hg ~ C2.

= Concurrence: [Wootters 98]

C(,O) — max{(), )\1 — )\2 — )\3 — )\4}

with A7 > A3 > A3 > \{ the eigenvalues of po, ® 0,00, ® 0,

Oy = ( (z) _OZ ) — Pauli matrix

p = complex conjugate of p in the canonical (product) basis.

= [hen [Wei and Goldbart 03, Streltsov, Kampermann and Bruf$’10]

(p,SAB (14—\/1— )




Quantum State Discrimination

e ® A receiver gets a state p; randomly

chosen with probability 7, among a
known set of states {p1, -, pm}.

0>

e [o determine the state he has in hands,
he performs a measurement on it.

— Applications : quantum communication, cryptography,...

o If the p; are L, one can discriminate them unambiguously
o Otherwise one succeeds with probability m,
Pg = ) mi tr(M;p;)
M; = non-negative operators describing the e
measurement, > . M; = 1. m,

Open pb (for n > 2): find the optimal measurement
{M?P*) and highest success probability PS".



( Bures geometric quantum discord W

The square Bures distance Da(p) = dpu(p,Ca)? to the set Cp of
A-classical states is a geometric analog of the quantum discord
characterizing the “quantumness’ of states

(actually, the A-classical states are the states with zero discord)

= PoP(|a;)) = optimal success proba. in discriminating the states

Pi =1 \f|04><042|®1\/7 |

with proba 7; = {«;| trg(p)|a; ), where {|a; )} = orthonormal basis of Ha.

s The geometric quantum discord is given by solving a state
discrimination problem [Spehner and Orszag ’13]

Da(p) = 2 — 2maxy|q,) \/ P& (|aip)




Closest A-classical states to a state p

s The closest A-classical states to p are

opt opt opt opt opt
Tp = mZi o "X @ (e e I o [

[Spehner and Orszag '13]

where {II*'} is the optimal von Neumann measurement and
{|aSP*y} the orthonormal basis of Ha maximizing P, ie.

107 CA Z S opt tI‘ opt opt).

= p can have either a unique or an infinity of closest A-classical
states.



The qubit case

If Ais a qubit, Ha ~ C?, and dim Hg = ng, then

F(p,Cp) = %I{lla}i{l —tr A(u) + QZZ;)\Z(U)}

Ar(a) = - = Aapg(u) eigenvalues
of the 2npg x 2np matrix

Alu) = \/pou®1,/p

with u € R3,

u| =1, and

Oy = U101 + U029 + uszcsy with o;
Pauli matrices.



[ Conclusions & perspectives }

e Conclusions:
> Contractive Riemannian distances on the set of quantum states
provide useful tools for measuring quantum correlations in
bipartite systems.

= Major challenges are
<> compute the geometric measures for simple systems

<> compare the measures obtained from different distances
and look for universal properties
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