

Geometry on the set of quantum states and quantum correlations

Dominique Spehner

Institut Fourier et Laboratoire de Physique et Modélisation des Milieux Condensés, Grenoble

Short course, GSI'2015, École Polytechnique, Paris, 28/10/2015

Quantum Correlations & Quantum Information

- that can perform information-processing tasks more efficiently than one can do with classical systems:
 - computational tasks (e.g. factorizing into prime numbers)
 - quantum communication (e.g. quantum cryptography, ...)
 - A quantum computer works with qubits, i.e. two-level quantum systems in
 - Entanglement is a resource for quantum computation and communication

[Bennett et al. '96, Josza & Linden '03]

linear combinations of $|0\rangle$ and $|1\rangle$. 1 Classical Bit Qubit

0

However, other kinds of "quantum correlations" differing from entanglement could also explain the quantum efficiencies.

Outlines

- Entangled and non-classical states
- Contractive distances on the set of quantum states
- Geometrical measures of quantum correlations

Basic mathematical objects in quantum mechanics

- (1) A Hilbert space \mathcal{H} (in this talk: $n = \dim \mathcal{H} < \infty$).
- (2) States ρ are non-negative operators on \mathcal{H} with trace one.
- (3) Observables A are self-adjoint operators on \mathcal{H} (in this talk: $A \in \operatorname{Mat}(\mathbb{C}, n)$ finite Hermitian matrices)
- (4) An evolution is given by a linear map $\Phi: \operatorname{Mat}(\mathbb{C},n) \to \operatorname{Mat}(\mathbb{C},n)$ which is
 - (TP) trace preserving (so that $tr(\Phi(\rho)) = tr(\rho) = 1$)
 - (CP) Completely Positive, i.e. for any integer $d \ge 1$ and any $d \times d$ matrix $(A_{ij})_{i,j=1}^d \ge 0$ with elements $A_{ij} \in \operatorname{Mat}(\mathbb{C}, n)$, one has $(\Phi(A_{ij}))_{i,j=1}^d \ge 0$.

Special case: unitary evolution $\Phi(\rho) = U \rho U^*$ with U unitary.

Pure and mixed quantum states

• A pure state is a rank-one projector $\rho_{\psi} = |\psi\rangle\langle\psi|$ with $|\psi\rangle \in \mathcal{H}$, $|\psi| = 1$ (actually, $|\psi\rangle$ belongs to the projective space $P\mathcal{H}$).

The set $\mathcal{E}(\mathcal{H})$ of all quantum states is a convex cone. Its extremal elements are the pure states.

 A mixed state is a non-pure state. It has infinitely many pure state decompositions

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}|,$$

with $p_i \geqslant 0$, $\sum_i p_i = 1$ and $|\psi_i\rangle \in P\mathcal{H}$.

Statistical interpretation: the pure states $|\psi_i\rangle$ have been prepared with probability p_i .

Quantum-classical analogy

Hilbert space
$${\cal H}$$

Hilbert space $\mathcal{H} \longleftrightarrow \text{ finite sample space } \Omega$

state
$$\rho$$

 \leftrightarrow probability p on $(\Omega, \mathcal{P}(\Omega))$

 \leftrightarrow random variable on $(\Omega, \mathcal{P}(\Omega))$

→ probability simplex

$$\mathcal{E}(\mathcal{H})$$

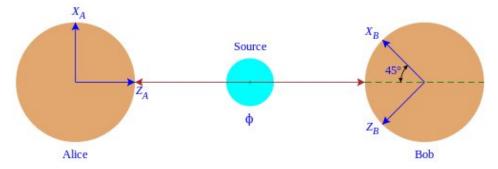
$$\mathcal{E}_{\text{class}} = \left\{ p \in \mathbb{R}^n_+; \sum_k p_k = 1 \right\}$$

CPTP map Φ \leftrightarrow stochastic matrices $(\Phi_{kl})_{k,l=1,...,n}$ $(\Phi_{kl} \geqslant 0, \sum_k \Phi_{kl} = 1 \ \forall \ l)$

Separable states

A bipartite system AB is composed of two subsystems A and B with Hilbert spaces \mathcal{H}_A and \mathcal{H}_B . It has Hilbert space $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$.

For instance, A and B can be the polarizations of two photons localized far from each other $\Rightarrow \mathcal{H}_{AB} \simeq \mathbb{C}^2 \otimes \mathbb{C}^2$ (2 qubits):



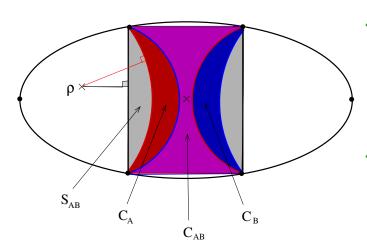
- \star A pure state $|\Psi\rangle$ of AB is separable if it is a product state $|\Psi\rangle = |\psi\rangle \otimes |\phi\rangle$ with $|\psi\rangle \in P\mathcal{H}_{\mathsf{A}}$ and $|\phi\rangle \in P\mathcal{H}_{\mathsf{B}}$.
- \bigstar A mixed state ρ is separable if it admits a pure state decomposition $\rho = \sum_i p_i |\Psi_i\rangle\langle\Psi_i|$ with $|\Psi_i\rangle = |\psi_i\rangle\otimes|\phi_i\rangle$ separable for all i.

Entangled states

- ★ Nonseparable states are called entangled. Entanglement is
 - \hookrightarrow the most specific feature of Quantum Mechanics.
 - \hookrightarrow used as a resource in Quantum Information (e.g. quantum cryptography, teleportation, high precision interferometry...).
- **Examples of entangled & separable states:** let $\mathcal{H}_{A} \simeq \mathcal{H}_{B} \simeq \mathbb{C}^{2}$ (qubits) with canonical basis $\{|0\rangle, |1\rangle\}$. The pure states $|\Psi_{\mathrm{Bell}}^{\pm}\rangle = \frac{1}{\sqrt{2}} \Big(|0\otimes 0\rangle \pm |1\otimes 1\rangle\Big)$ are maximally entangled.

Classical states

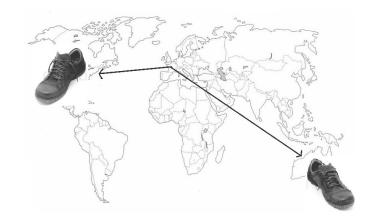
- \star A state ρ of AB is **classical** if it has a **spectral decomposition** $\rho = \sum_k p_k |\Psi_k\rangle\langle\Psi_k|$ with product \bot states $|\Psi_k\rangle = |\alpha_k\rangle\otimes|\beta_k\rangle$. Classicality is equivalent to separability for pure states only.
- \star A state ρ is A-classical if $\rho = \sum_{i} q_{i} |\alpha_{i}\rangle\langle\alpha_{i}| \otimes \rho_{B|i}$ with $\{|\alpha_{i}\rangle\}$ orthonormal basis of \mathcal{H}_{A} and $\rho_{B|i}$ arbitrary states of B.
- ★ The set \mathcal{C}_{AB} (resp. \mathcal{C}_{A}) of all (A-)classical states is **not convex**. Its convex hull is the **set of separable states** \mathcal{S}_{AB} .

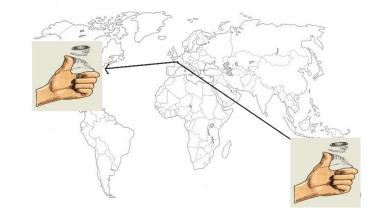


- Some tasks impossible to do classically can be realized using separable non-classical mixed states.
- Such states are easier to produce and presumably more robust to a coupling with an environment.

Quantum vs classical correlations

Central question in Quantum Information theory: identify (and try to protect) the Quantum Correlations responsible for the exponential speedup of quantum algorithms.





 $classical\ correlations$

quantum correlations

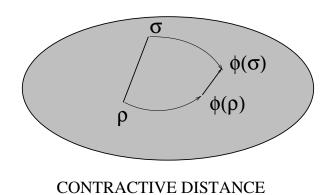
For mixed states, two (at least) kinds of QCs ✓ entanglement [Schrödinger '36]

nonclassicality (quantum discord)
[Ollivier, Zurek '01, Henderson, Vedral '01]

Outlines

- ✓ Entangled and non-classical states
- Contractive distances on the set of quantum states

Contractive distances



- The set \mathcal{E}_{AB} of all quantum states of a bipartite system AB (i.e., operators $\rho \geqslant 0$ on \mathcal{H}_{AB} with $\operatorname{tr} \rho = 1$) can be equipped with many distances d.
- From a QI point of view, interesting distances must be contractive under CPTP maps, i.e. for any such map Φ on \mathcal{E}_{AB} , $\forall \ \rho, \sigma \in \mathcal{E}_{AB}$, $d(\Phi(\rho), \Phi(\sigma)) \leq d(\rho, \sigma)$

Physically: irreversible evolutions can only decrease the distance between two states.

- A contractive distance is in particular unitarily invariant, i.e. $d(U\rho U^*, U\sigma U^*) = d(\rho, \sigma)$ for any unitary U on \mathcal{H}_{AB}
- The L^p -distances $d_p(\rho, \sigma) = \|\rho \sigma\|_p = (\operatorname{tr} |\rho \sigma|^p)^{1/p}$ are not contractive excepted for p = 1 (trace distance) /Ruskai '94/.

Petz's characterization of contractive distances

- Classical setting: there exists a unique (up to a multiplicative factor) contractive Riemannian distance $d_{\rm clas}$ on the probability simplex $\mathcal{E}_{\rm clas}$, with Fisher metric $ds^2 = \sum_k dp_k^2/p_k$ [Cencov '82]
- Quantum generalization: any Riemannian contractive distance on the set of states $\mathcal{E}(\mathcal{H})$ with $n = \dim \mathcal{H} < \infty$ has metric

$$ds^{2} = g_{\rho}(d\rho, d\rho) = \sum_{k,l=1}^{n} c(p_{k}, p_{l}) |\langle k|d\rho|l\rangle|^{2}$$

where p_k and $|k\rangle$ are the eigenvalues and eigenvectors of ρ ,

$$c(p,q) = \frac{pf(q/p) + qf(p/q)}{2pqf(p/q)f(q/p)}$$

and $f: \mathbb{R}_+ \to \mathbb{R}_+$ is an arbitary operator-monotone function such that f(x) = xf(1/x) [Morozova & Chentsov '90, Petz '96]

Distance associated to the von Neumann entropy

□ Quantum analog of the Shannon entropy: von Neumann entropy

$$S(\rho) = -\operatorname{tr}(\rho \ln \rho)$$

 \triangleright Since S is concave, the **physically most natural metric** is

$$ds^2 = g_S(d\rho, d\rho) = -\frac{d^2 S(\rho + t d\rho)}{dt^2}\Big|_{t=0} = \frac{d^2 F(X + s dX)}{ds^2}\Big|_{s=0}$$

[Bogoliubov; Kubo & Mori; Balian, Alhassid & Reinhardt, '86, Balian '14]. with $F(X) = \ln \operatorname{tr}(e^X)$ and $\rho = e^{X-F(X)} = e^X/\operatorname{tr}(e^X)$.

- $ightharpoonup \mathrm{d} s^2$ has the Petz form with $f(x) = \frac{x-1}{\ln x}$
 - → the corresponding distance is contractive.
- Loss of information when mixing the neighboring equiprobable states $\rho_{\pm} = \rho \pm \frac{1}{2} d\rho$: $ds^2/8 = S(\rho) \frac{1}{2}S(\rho_+) \frac{1}{2}S(\rho_-)$

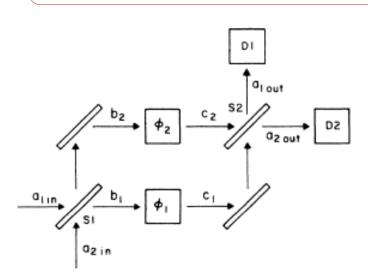
Bures distance and Uhlmann fidelity

ightharpoonup Fidelity (generalizes $F = |\langle \psi | \phi \rangle|^2$ for mixed states) [Uhlmann '76]

$$F(\rho, \sigma) = \left\{ \text{tr}[\sqrt{\sigma}\rho\sqrt{\sigma}]^{1/2} \right\}^2 = F(\sigma, \rho)$$

- ightharpoonup Bures distance: $d_{\mathrm{Bu}}(\rho,\sigma) = \left(2-2\sqrt{F(\rho,\sigma)}\right)^{\frac{1}{2}}$ [Bures '69]
 - \hookrightarrow has metric of the Petz form with $f(x) = \frac{x+1}{2}$
 - → smallest contractive Riemannian distance | Petz '96|
 - \hookrightarrow coincides with the Fubiny-Study metric on $P\mathcal{H}$ for pure states
 - $\hookrightarrow d_{\mathrm{Bu}}(\rho,\sigma)^2$ is jointly convex in (ρ,σ)
- $ightharpoonup d_{\mathrm{Bu}}(
 ho,\sigma) = \sup d_{\mathrm{clas}}(p,q)$ with **sup over all measurements** giving outcome k with proba p_k (for state ρ) and q_k (for state σ) [Fuchs '96]

Bures distance and Fisher information



In quantum metrology, the goal is to estimate an unknown parameter ϕ by measuring the output states

$$\rho_{\rm out}(\phi) = e^{-i\phi H} \rho \, e^{i\phi H}$$

and using a statistical estimator depending on the measurement results

(e.g. in quantum interferometry: estimate the phase shift $\phi_1 - \phi_2$)

$$\Rightarrow \text{ precision } \Delta \phi = \left\langle \left(\left| \frac{\partial \langle \phi_{\text{est}} \rangle_{\phi}}{\partial \phi} \right|^{-1} \phi_{\text{est}} - \phi \right)^2 \right\rangle_{\phi}^{1/2}$$

The smallest precision is given by the quantum Crámer-Rao bound

$$(\Delta \phi)_{\text{best}} = \frac{1}{\sqrt{N}\sqrt{\mathcal{F}(\rho, H)}}, \, \mathcal{F}(\rho, H) = 4d_{\text{Bu}}(\rho, \rho + d\rho)^2, \, d\rho = -i[H, \rho]$$

N = number of measurements

 $\mathcal{F}(\rho,H) =$ quantum Fisher information [Braunstein & Caves '94]

Summary

CONTRACTIVE RIEMANNIAN METRICS:

Classical

Quantum

Interpretation

Bures ds_{Bu}^2 Q. metrology

unique:

/ (Fisher information)

$${\rm d}s_{\rm clas}^2=\sum_k \frac{{\rm d}p_k^2}{p_k} \quad \to \quad {\rm d}s_S^2=-{\rm d}^2S \qquad \text{Loss of information}$$
 (Fisher)
$$\qquad \qquad : \qquad \qquad \text{when merging 2 states}$$

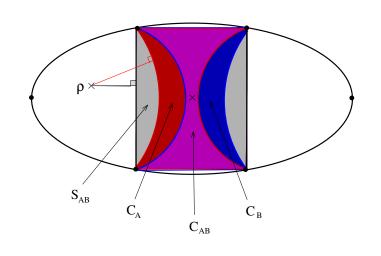
Hellinger ds_{Hel}^2 Q. state discrimination

with many copies

Outlines

- ✓ Entangled and non-classical states
- ✓ Contractive distances on the set of quantum states
- Geometrical measures of quantum correlations

Geometric approach of quantum correlations



Geometric entanglement:

$$E(\rho) = \min_{\sigma_{\text{sep}} \in \mathcal{S}_{AB}} d(\rho, \sigma_{\text{sep}})^2$$

Geometric quantum discord :

$$D_{\mathsf{A}}(\rho) = \min_{\sigma_{A-\mathsf{cl}} \in \mathcal{C}_{\mathsf{A}}} d(\rho, \sigma_{A-\mathsf{cl}})^2$$

Properties:

- $\checkmark E(\rho_{\Psi}) = D_{\mathsf{A}}(\rho_{\Psi})$ for pure states $\rho_{\Psi} \leftarrow$ for Bures distance
- $\checkmark E \text{ is convex} \qquad \leftarrow \text{if } d^2 \text{ is jointly convex}$
- ✓ Entanglement monotonicity: $E(\Phi_A \otimes \Phi_B(\rho)) \leq E(\rho)$ for any TPCP maps Φ_A and Φ_B acting on A and B (also true for D_A but only when $\Phi_A(\rho_A) = U_A \, \rho_A \, U_A^*$). \leftarrow if d is contractive

Bures geometric measure of entanglement

$$E_{\mathrm{Bu}}(\rho) = d_{\mathrm{Bu}}(\rho, \mathcal{S}_{\mathsf{AB}})^2 = 2 - 2\sqrt{F(\rho, \mathcal{S}_{\mathsf{AB}})}$$

with $F(\rho, \mathcal{S}_{AB}) = \max_{\sigma_{\text{sep}} \in \mathcal{S}_{AB}} F(\rho, \sigma_{\text{sep}})$

= maximal fidelity between ρ and a separable state.

- \longrightarrow Main physical question: determine $F(\rho, \mathcal{S}_{AB})$ explicitely.
- ◆ pb: it is not easy to find the geodesics for the Bures distance!
- ightharpoonup The closest separable state to a pure state ρ_{Ψ} is a pure product state, so that $F(\rho_{\Psi}, \mathcal{S}_{AB}) = \max_{|\varphi\rangle, |\chi\rangle} |\langle \varphi \otimes \chi | \Psi \rangle|^2 \longrightarrow easy!$
- ightharpoonup For mixed states ho, $F(
 ho, S_{AB})$ coincides with the convex roof [Streltsov, Kampermann and Bruß'10]

$$F(\rho, \mathcal{S}_{\mathsf{AB}}) = \max_{\{|\Psi_i\rangle, \eta_i\}} \sum_i p_i F(\rho_{\Psi_i}, \mathcal{S}_{\mathsf{AB}}) \longrightarrow not \ easy.$$

max. over all pure state decompositions $\rho = \sum_i p_i |\Psi_i\rangle\langle\Psi_i|$ of ρ .

The two-qubit case

Assume that both subsystems A and B are qubits, $\mathcal{H}_{\mathsf{A}} \simeq \mathcal{H}_{\mathsf{B}} \simeq \mathbb{C}^2$.

Concurrence:

[Wootters '98]

$$C(\rho) = \max\{0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4\}$$

with $\lambda_1^2 \geqslant \lambda_2^2 \geqslant \lambda_3^2 \geqslant \lambda_4^2$ the eigenvalues of $\rho \sigma_y \otimes \sigma_y \overline{\rho} \sigma_y \otimes \sigma_y$

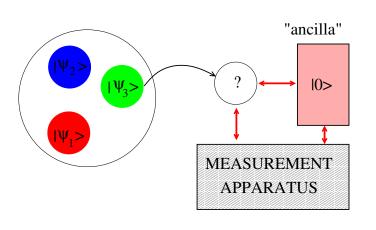
$$\sigma_y = \left(egin{array}{cc} 0 & -i \\ i & 0 \end{array}
ight) = {\sf Pauli matrix}$$

 $\overline{
ho}=$ complex conjugate of ho in the canonical (product) basis.

■ Then [Wei and Goldbart '03, Streltsov, Kampermann and Bruß'10]

$$F(\rho, \mathcal{S}_{AB}) = \frac{1}{2} \left(1 + \sqrt{1 - C(\rho)^2} \right)$$

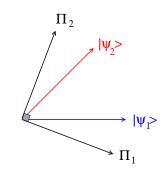
Quantum State Discrimination



- A receiver gets a state ρ_i randomly chosen with probability η_i among a known set of states $\{\rho_1, \cdots, \rho_m\}$.
- To determine the state he has in hands, he performs a measurement on it.
- → **Applications**: quantum communication, cryptography,...
 - \diamond If the ρ_i are \perp , one can discriminate them unambiguously
 - Otherwise one succeeds with probability

$$P_S = \sum_i \eta_i \operatorname{tr}(M_i \rho_i)$$

 $M_i = \text{non-negative operators describing the}$ measurement, $\sum_i M_i = 1$.



Open pb (for n > 2): find the optimal measurement $\{M_i^{\text{opt}}\}$ and highest success probability P_S^{opt} .

Bures geometric quantum discord

The square Bures distance $D_A(\rho) = d_{Bu}(\rho, C_A)^2$ to the set C_A of A-classical states is a geometric analog of the **quantum discord** characterizing the "quantumness" of states (actually, the A-classical states are the states with zero discord)

 $P_S^{\mathrm{opt}}(|\alpha_i\rangle) =$ optimal success proba. in discriminating the states

$$\rho_i = \eta_i^{-1} \sqrt{\rho} |\alpha_i\rangle \langle \alpha_i | \otimes 1 \sqrt{\rho}$$

with proba $\eta_i = \langle \alpha_i | \operatorname{tr}_B(\rho) | \alpha_i \rangle$, where $\{ |\alpha_i \rangle \} = \operatorname{orthonormal} \operatorname{basis} \operatorname{of} \mathcal{H}_A$.

■ The geometric quantum discord is given by solving a state discrimination problem [Spehner and Orszag '13]

$$D_{\mathsf{A}}(\rho) = 2 - 2 \max_{\{|\alpha_i\rangle\}} \sqrt{P_S^{\mathrm{opt}}(|\alpha_i\rangle)}$$

Closest A-classical states to a state ρ

■ The closest A-classical states to ρ are

$$\sigma_{\rho} = \frac{1}{F(\rho, \mathcal{C}_{\mathsf{A}})} \sum_{i} |\alpha_{i}^{\mathsf{opt}}\rangle\!\langle\alpha_{i}^{\mathsf{opt}}| \otimes \langle\alpha_{i}^{\mathsf{opt}}|\sqrt{\rho}\,\Pi_{i}^{\mathsf{opt}}\sqrt{\rho}\,|\alpha_{i}^{\mathsf{opt}}\rangle$$

[Spehner and Orszag '13]

where $\{\Pi_i^{\text{opt}}\}$ is the optimal von Neumann measurement and $\{|\alpha_i^{\text{opt}}\rangle\}$ the orthonormal basis of \mathcal{H}_{A} maximizing P_S^{opt} , i.e.

$$F(\rho, \mathcal{C}_{\mathsf{A}}) = \sum_{i=1}^{n_{\mathsf{A}}} \eta_i^{\mathsf{opt}} \operatorname{tr}(M_i^{\mathsf{opt}} \rho_i^{\mathsf{opt}}).$$

ullet ho can have either a unique or an infinity of closest A-classical states.

The qubit case

■ If A is a qubit, $\mathcal{H}_A \simeq \mathbb{C}^2$, and $\dim \mathcal{H}_B = n_B$, then

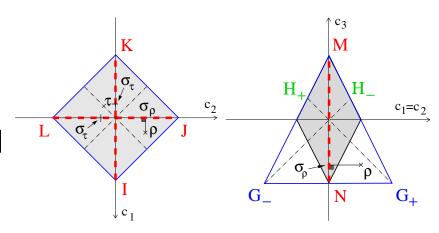
$$F(\rho, \mathcal{C}_{\mathsf{A}}) = \frac{1}{2} \max_{\|\mathbf{u}\|=1} \left\{ 1 - \operatorname{tr} \Lambda(\mathbf{u}) + 2 \sum_{l=1}^{n_{\mathsf{B}}} \lambda_l(\mathbf{u}) \right\}$$

[Spehner and Orszag '14]

 $\lambda_1(\mathbf{u}) \geqslant \cdots \geqslant \lambda_{2n_B}(\mathbf{u})$ eigenvalues of the $2n_B \times 2n_B$ matrix

$$\begin{split} \Lambda(\mathbf{u}) &= \sqrt{\rho}\,\sigma_{\mathbf{u}} \otimes 1\,\sqrt{\rho} \\ &\quad \text{with } \mathbf{u} \in \mathbb{R}^3 \text{, } \|\mathbf{u}\| = 1 \text{, and} \end{split}$$

$$\sigma_{\mathbf{u}} = u_1 \sigma_1 + u_2 \sigma_2 + u_3 \sigma_3$$
 with σ_i Pauli matrices.



Conclusions & perspectives

• Conclusions:

 Contractive Riemannian distances on the set of quantum states provide useful tools for measuring quantum correlations in bipartite systems.

→ Major challenges are

- → compute the geometric measures for simple systems
- → compare the measures obtained from different distances and look for universal properties

• References:

- Review article: *D. Spehner*, J. Math. Phys. **55**, 075211 ('14)
- D. Spehner, M. Orszag, New J. Phys. **15**, 103001 ('13)
- D. Spehner, M. Orszag, J. Phys. A 47, 035302 ('14)
- R. Roga, D. Spehner, F. Illuminati, arXiv:1510.06995