Mott law for a random walk in a random medium

Dominique Spehner

Institut Fourier, Grenoble, France

Outline of the talk

- The model
- Main results
- Sketch of the proof

Joint work with: A. Faggionato, La Sapienza, Roma
H. Schulz-Baldes, Universität Erlangen

Outline of the talk

- The model

Random environment (1)

- Let x_{i} be random distinct points in \mathbb{R}^{d} with a stationary and mixing distribution $\hat{\mathcal{P}}$.

$$
\begin{aligned}
& N_{B}=\sharp \text { points in } B \subset \mathbb{R}^{d} \quad(B \text { bounded Borel set }) \\
& \mathbb{E}_{\hat{\mathcal{P}}}\left(N_{B}\right)=\rho|B|, \rho=\text { mean density, } \rho<\infty .
\end{aligned}
$$

- EX : (stationary) Poisson process
(i) $\hat{\mathcal{P}}\left(N_{B}=n\right)=(\rho|B|)^{n} e^{-\rho|B|} / n$!
(ii) the N_{B} are independent for disjoint B 's.

Random environment (2)

- To each point x_{i} is associated a random energy

$$
E_{i} \in[-1,1] .
$$

The E_{i} are independent and have all the distribution ν.

- Pick up (at random) a point among $\left\{x_{i}\right\}$ and choose it as the origin \rightarrow new distribution $=$ Palm distribution $\hat{\mathcal{P}}_{0}$
EX : $\hat{\mathcal{P}}=$ stat. Poisson process $\rightarrow \hat{\mathcal{P}}_{0}$ is obtained
by adding 1 (deterministic) point at $x=0$.

Random walk (1)

Configuration of the environment $\xi=\left\{x_{i}, E_{i}\right\}$.
A particle located at X_{t} at time t, starting from $X_{0}=0$, walks randomly on $\left\{x_{i}\right\}$:

Jumps are possible between any pair of points $\left(x_{i}, x_{j}\right)$, with the rate

$$
c_{x_{i} \rightarrow x_{j}}=e^{-\left|x_{i}-x_{j}\right|} e^{-\beta\left(\left|E_{i}-E_{j}\right|+\left|E_{i}\right|+\left|E_{j}\right|\right)}
$$

$\beta=$ inverse temperature.

Random walk (2)

For a given configuration $\xi=\left\{x_{i}, E_{i}\right\}$ of the environment, let \mathbf{P}^{ξ} be the distribution of the Markov process $\left(X_{t}\right)_{t \geq 0}$.
$\forall x_{i} \neq x_{j}, \forall t, t_{0} \geq 0$,

$$
\mathbf{P}^{\xi}\left(X_{t_{0}+t}=x_{j} \mid X_{t_{0}}=x_{i}\right)=t c_{x_{i} \rightarrow x_{j}}^{\xi}+\mathcal{O}\left(t^{2}\right) .
$$

No explosion if $\mathbb{E}_{\hat{\mathcal{P}}_{0}}\left(N_{B}^{2}\right)<\infty$.

Physical motivations

Hopping DC electric conduction in disordered solids in the Anderson localization regime

1. add a constant electric field $\mathcal{E}: H_{\omega} \rightarrow H_{\omega}+q \mathcal{E} X$, $H_{\omega}=-\Delta+V_{\omega}$ one-electron RSO, $X=$ position op.
2. couple electrons with a phonon bath at inv. temper. β.

If electron-phonon coupling can be treated within the weak coupling (van Hove) limit, the electron dynamics is given by a classical Markov process, namely, an exclusion process on the set $\left\{x_{i}\right\}$ of localization centers of the eigenfunctions of H_{ω}, with jump rates given by Fermi's golden rule.

After a mean field approximation, this Markov process reduces to the above RW on $\left\{x_{i}\right\}$ with effective rates $c_{x_{i} \rightarrow x_{j}}$.
Einstein relation $\sigma_{\beta} \propto D_{\beta}$.

Outline of the talk

- The model
- Main results

Convergence to a Brownian motion

Of interest: diffusion constant

$$
D_{\beta}=\lim _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}_{\mathcal{P}_{0}}\left(\mathbb{E}_{\mathbf{P}^{\xi}(}\left(X_{t}^{2}\right)\right)
$$

Thm 1 :
[Faggionato, Schulz-Baldes \& D.S. '04]
(i) $D_{\beta}<\infty$ (the limit exists).
(ii) The process $Y_{t}=\varepsilon X_{t \varepsilon^{-2}}$ converges weakly in probability as $\varepsilon \rightarrow 0$ to a Brownian motion W_{D} with covariance $D=D_{\beta}$.

Bounds on the diffusion constant

$$
D_{\beta}=\lim _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}_{\mathcal{P}_{0}}\left(\mathbb{E}_{\mathbf{P} \xi}\left(X_{t}^{2}\right)\right)
$$

The distribution of the E_{i} is such that $\exists g_{ \pm}>0, \exists \alpha \geq 0$,

$$
g_{-} E^{1+\alpha} \leq \nu\left(\left|E_{i}\right| \leq E\right) \leq g_{+} E^{1+\alpha} .
$$

Thm 2 : [Lower bound: Faggionato, Schulz-Baldes \& D.S. '04]
[Upper bound: Faggionato \& Mathieu '06]
In dimension $d \geq 2$, for all $\beta \geq \beta_{0}>0$,

$$
k_{-} \beta^{\gamma} \exp \left\{-c_{-} \beta^{\frac{\alpha+1}{\alpha+1+d}}\right\} \leq D_{\beta} \leq k_{+} \beta^{\kappa} \exp \left\{-c_{+} \beta^{\frac{\alpha+1}{\alpha+1+d}}\right\}
$$

with $c_{ \pm}=r_{ \pm} g_{ \pm}^{-\frac{1}{1+\alpha+d}}, r_{ \pm}=$const. indep. of β and \mathcal{P}_{0}
$k_{ \pm}=$constant independent of β

$$
\gamma=\frac{(\alpha+1)(2-d)}{\alpha+1+d}<0<\kappa=\frac{2(1+\alpha)}{1+\alpha+d} .
$$

Poisson process

\hookrightarrow shows up naturally in the low temperature limit $\beta \uparrow \infty$.

$$
c_{x_{i} \rightarrow x_{j}}=e^{-\left|x_{i}-x_{j}\right|} e^{-\beta\left(\left|E_{i}-E_{j}\right|+\left|E_{i}\right|+\left|E_{j}\right|\right)}
$$

Only jumps $x_{i} \rightarrow x_{j}$ with $\left|E_{i}\right|,\left|E_{j}\right| \leq E$ are relevant, with $E \rightarrow 0$ as $\beta \uparrow \infty$
\rightarrow random selection of points x_{j}^{p} among $\left\{x_{i}\right\}$, with probability $\nu\left(\left|E_{i}\right| \leq E\right) \rightarrow 0$ (thinning).

$\Rightarrow\left\{x_{j}^{E}\right\}$ converges to a Poisson process (after an appropriate rescaling).

Outline of the talk

- The model
- Main results
- Sketch of the proof

Step 1 : "environment viewed from the particle"

Action of the \mathbb{R}^{d}-translations on $\xi=\sum_{i} \delta_{\left(x_{i}, E_{i}\right)}$:

$$
S_{x} \xi=\sum_{i} \delta_{\left(x_{i}-x, E_{i}\right)} \quad, \quad x \in \mathbb{R}^{d} .
$$

The following properties:

1. symmetry of the jump rates $c_{x_{i} \rightarrow x_{j}}^{\xi}=c_{x_{j} \rightarrow x_{i}}^{\xi}$
2. covariance $c_{x_{i} \rightarrow x_{j}}^{S_{x} \xi}=c_{x_{i}+x \rightarrow x_{j}+x}^{\xi}$
3. ergodicity of $\hat{\mathcal{P}}$
imply that the Markov process

$$
\xi_{t}=S_{X_{t}} \xi
$$

is reversible and ergodic for the
Palm distribution \mathcal{P}_{0}.

Step 2 : variational formula for D_{β}

An application of the results:
[De Masi, Ferrari, Goldstein \& Wick '89]
[Kipnis \& Varadhan '86]
yields the convergence to a Brownian motion $W_{D_{\beta}}$ with

$$
D_{\beta}=\inf _{f \in L^{\infty}} \int \mathcal{P}_{0}(\xi) \int \hat{\xi}(d x) c_{0 \rightarrow x}^{\xi}\left(x^{(1)}+f\left(S_{x} \xi\right)-f(\xi)\right)^{2}
$$

where $\hat{\xi}=\sum_{i} \delta_{x_{i}}$.

Consequences:

(1) $D_{\beta} \geq \widetilde{D}_{\beta}=$ diffusion constant a RW on $\left\{x_{i}\right\}$ with jump
rates $\widetilde{c}_{x_{i} \rightarrow x_{j}} \leq c_{x_{i} \rightarrow x_{j}}$.
(2) $D_{\beta} \leq \int \mathcal{P}_{0}(\xi) \ldots$ for a (well-chosen) test function f.

Step 3 : thinning and rescaling

Let $0<E<1$ and $R>0$

- Thinning :
$\left\{x_{j}^{E}\right\}=\left\{x_{i}:\left|E_{i}\right| \leq E\right\}$

- Rescaling $x_{j}^{E} \rightarrow \widehat{x}_{j}^{E}=(r / R) x_{j}^{E}$ such that

$$
\underbrace{\mathbb{E}_{\mathcal{P}_{0}}\left(\sharp \text { points } \widehat{x}_{j}^{E} \in \text { cube of side } 1\right)}_{=\rho(R / r)^{d} \nu\left(\left|E_{i}\right| \leq E\right)}=\mathcal{O}(1)
$$

for some fixed $r>0$ independent of E.
Assumption : $\nu\left(\left|E_{i}\right| \leq E\right) E^{-(1+\alpha)} \in\left[g_{-}, g_{+}\right]$

$$
\hookrightarrow R=r E^{-\frac{(1+\alpha)}{d}} .
$$

Step 4 : new random walk

Let \widetilde{D}_{E} be the diffusion constant of the RW with jump rates

$$
\widetilde{c}_{x_{i} \rightarrow x_{j}}= \begin{cases}1 & \text { if }\left|E_{i}\right|,\left|E_{j}\right| \leq E \text { and }\left|x_{i}-x_{j}\right| \leq R \\ 0 & \text { otherwise } .\end{cases}
$$

\hookrightarrow RW on $\left\{x_{j}^{E}\right\} \subset\left\{x_{i}\right\}$.

$$
\begin{aligned}
c_{x_{i} \rightarrow x_{j}} & =e^{-\left|x_{i}-x_{j}\right|} e^{-\beta\left(\left|E_{i}-E_{j}\right|+\left|E_{i}\right|+\left|E_{j}\right|\right)} \\
& \geq e^{-R-4 \beta E} \widetilde{c}_{x_{i} \rightarrow x_{j}}
\end{aligned}
$$

D_{β} is monotonous
$\Rightarrow \quad D_{\beta} \geq e^{-R-4 \beta E} \widetilde{D}_{E}$.

Step 5 : lower bound on D_{β}

$\widehat{D}_{r}=$ diffusion constant of the RW on $\left\{\widehat{x}_{j}^{E}\right\}$ with jump rates

$$
\widetilde{c}_{\widehat{x}_{j} \rightarrow \widehat{x}_{k}}= \begin{cases}1 & \text { if }\left|\widehat{x}_{j}^{E}-\widehat{x}_{k}^{E}\right| \leq r \\ 0 & \text { otherwise. }\end{cases}
$$

$$
D_{\beta} \geq e^{-R-4 \beta E} \widetilde{D}_{E} \geq e^{-R-4 \beta E}\left(\frac{R}{r}\right)^{2} \nu\left(\left|E_{0}\right| \leq E\right) \widehat{D}_{r} .
$$

Optimization w.r.t. $E \quad$ (Mott's argument).
Constraint : $R=r E^{-\frac{(1+\alpha)}{d}}$
$\hookrightarrow E=$ const. $\beta^{-\frac{d}{1+\alpha+d}}, \quad R=$ const. $\beta^{\frac{1+\alpha}{1+\alpha+\alpha}}$
$D_{\beta} \geq \widehat{D}_{r} \beta^{-\frac{(\alpha+1)(d-2)}{\alpha+1+d}} \exp \left\{-c_{-} \beta^{\frac{\alpha+1}{\alpha+1+d}}\right\}$ QED? ...if $\widehat{D}_{r}>0$!

Step 6 : choice of the test function f

Graph

\hookrightarrow vertices $\left\{x_{j}^{E}\right\} \subset\left\{x_{i}\right\}$
\hookrightarrow edges : $x_{j}^{E} \sim x_{k}^{E}$ iff

$$
\left|x_{j}^{E}-x_{k}^{E}\right| \leq R
$$

$W_{E}^{\xi}=$ connected component of the graph containing $x=0$,

$$
f(\xi)=\min _{y \in W_{E}^{\xi}}\left\{y^{(1)}\right\} \underbrace{\chi\left(\left|W_{E}^{\xi}\right| \leq N\right)}_{\text {cut-off function }} \in L^{\infty}
$$

Properties: • $x_{i} \in W_{E}^{\xi}$ et $\left|W_{E}^{\xi}\right| \leq N \Rightarrow f(\xi)-f\left(S_{x_{i}} \xi\right)=x_{i}^{(1)}$ (comes from the covariance $W_{E}^{S_{x_{i}} \xi}=W_{E}^{\xi}-x_{i}$).

- $x_{i} \notin W^{\xi} \Rightarrow c_{0 \rightarrow x}=e^{-\left|x_{i}\right|} e^{-\beta\left(\left|E_{0}-E_{i}\right|+\left|E_{i}\right|+\left|E_{0}\right|\right)}$

$$
\leq e^{-\min \{R, \beta E\}}
$$

Step 7 : upper bound on $D_{\beta}(1)$

- $|f(\xi)| \leq\left|\min _{y \in W_{E}^{\xi}}\left\{y^{(1)}\right\}\right| \leq R\left|W_{E}^{\xi}\right| \quad, \quad\left|W_{E}^{\xi}\right| \equiv \operatorname{card}\left(W_{E}^{\xi}\right)$

Let $k \in\left[0,1\left[\right.\right.$. Recall that $c_{0 \rightarrow x}^{\xi} \leq e^{-\min \{R, \beta E\}}$ if $x \notin W_{E}^{\xi}$.

$$
\begin{aligned}
D_{\beta}= & \inf _{f \in L^{\infty}} \int \mathcal{P}_{0}(\xi) \int \hat{\xi}(d x) c_{0 \rightarrow x}^{\xi} \underbrace{\left(x^{(1)}+f\left(S_{x} \xi\right)-f(\xi)\right)^{2}}_{=0 \text { if } x \in W_{E}^{\xi} \text { and }\left|W_{E}^{\xi}\right| \leq N} \\
\leq & e^{-k \min \{R, \beta E\}} \times \\
& \int \mathcal{P}_{0}(\xi) \int \hat{\xi}(d x)\left(c_{0 \rightarrow x}^{\xi}\right)^{1-k}\left(2|x|^{2}+8 R^{2}\left|W_{E}^{\xi}\right|^{2}\right) \\
& \quad+\text { terms going to } 0 \text { as } N \rightarrow \infty .
\end{aligned}
$$

By Hölder ineq. and the exponential decay of $c_{0 \rightarrow x}^{\xi}$, if $p>1$

$$
D_{\beta} \leq e^{-k \min \{R, \beta E\}}\left(C_{1}+C_{2} R^{2} \mathbb{E}_{\mathcal{P}_{0}}\left(\left|W_{E}^{\xi}\right|^{2 p}\right)\right)
$$

Step 7 : upper bound on $D_{\beta}(2)$

Graph after rescaling

\hookrightarrow vertices $\left\{\widehat{x}_{j}^{E}\right\}$
\hookrightarrow edges : $\widehat{x}_{j}^{E} \sim \widehat{x}_{k}^{E}$ iff

$$
\left|\widehat{x}_{j}^{E}-\widehat{x}_{k}^{E}\right| \leq r
$$

$\widehat{W}^{\xi}=$ connected component of the graph containing $x=0$,
$\left|\widehat{W}^{\xi}\right| \equiv \operatorname{card}\left(W^{\xi}\right)=\left|W_{E}^{\xi}\right|$.
$\Rightarrow \mathbb{E}_{\mathcal{P}_{0}}\left(\left|W_{E}^{\xi}\right|^{2 p}\right) \leq \mathbb{E}\left(|\hat{W}|^{2 p}\right)$ independent of E.
With the optimal choice for E and R (same as for upper b.),

$$
\begin{aligned}
& D_{\beta} \leq e^{-k \min \{R, \beta E\}}\left(C_{1}+C_{2} R^{2} \mathbb{E}_{\mathcal{P}_{0}}\left(\left|W_{E}^{\xi}\right|^{2 p}\right)\right) \\
& \leq C\left(1+\beta^{\kappa}\right) \exp \left\{-c_{+} \beta^{\frac{\alpha+1}{\alpha+1+d}}\right\} \\
& \text { QED ..if } \mathbb{E}\left(|\hat{W}|^{2 p}\right)<\infty!
\end{aligned}
$$

Step 8 : percolation theory (1)

Points \hat{x}_{j}^{E} separated by a distance smaller than
r are connected by edges.

$r>r_{c}: \exists$! infinite cluster of connected points (a.s.)
$r<r_{c}$ (or dim. $d=1$) : no infinite cluster (a.s.)
\hookrightarrow in order that the RW on $\left\{\widehat{x}_{j}^{E}\right\}$ with jump rates
$\widetilde{c}_{\hat{x} \rightarrow \hat{y}}=\chi(|\hat{x}-\hat{y}| \leq r)$ have a diffusion constant $\widehat{D}_{r}>0$,
it is necessary that $r>r_{c}$ and $d \geq 2$.
\hookrightarrow in order that $\mathbb{E}\left(\operatorname{card}(\hat{W})^{2 p}\right)<\infty$, it is sufficient that $r<r_{c} \quad \Rightarrow$ QED lower bound.

Percolation theory (2)

Restriction to a finite cube C_{N} :
$\widehat{D}_{r, N}=$ diffusion const. of the RW on $\left\{\widehat{x}_{j}^{E}\right\} \cap C_{N}$ with jumping rates $\widetilde{c}_{\hat{x} \rightarrow \hat{y}}$ and periodic boundary conditions

$$
\widehat{D}_{r} \geq \limsup _{N \rightarrow \infty} \hat{D}_{r, N}
$$

$M_{N}=\sharp$ points $\widehat{x}_{j}^{E} \in C_{N}$

$$
\begin{array}{r}
M_{N} \sim \hat{\rho} N^{d} \quad \text { as } \quad N \rightarrow \infty \quad \text { (ergodicity) } \\
\hat{\rho}=\rho(R / r)^{d} \nu\left(\left|E_{i}\right| \leq E\right)=\text { mean density of }\left\{\widehat{x}_{j}^{E}\right\} .
\end{array}
$$

Percolation theory (3)

$G_{N}=\sharp$ disjoints paths γ connecting the left and right sides of C_{N}
$L_{\gamma}=$ smallest \sharp points one must visit on γ to cross C_{N}.

Poisson process $\left\{\widehat{x}_{j}^{E}\right\}, r>r_{c} \Rightarrow \exists b>0$,

$$
\hat{\mathcal{P}}_{0}\left(G_{N} \geq b N^{d-1}\right) \rightarrow 1 \text { exponentially as } N \rightarrow \infty
$$

$\widehat{D}_{r} \geq \limsup _{N \rightarrow \infty} \hat{D}_{r, N} \geq \limsup _{N \rightarrow \infty} \mathbb{E}_{\mathcal{P}_{0}}(\frac{1}{G_{N}} \underbrace{\sum_{\gamma} \frac{\text { const. } N}{L_{\gamma}}}_{\geq \text {const. } N G_{N}^{2} M_{N}^{-1}})$
$\geq b^{\prime} \limsup _{N \rightarrow \infty} \mathbb{E}_{\mathcal{P}_{0}}\left(\chi\left(G_{N} \geq b N^{d-1}\right) \frac{N^{d}}{M_{N}}\right)>0 \quad$ QED u.b.

Main result again

$$
D_{\beta}=\lim _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}_{\mathcal{P}_{0}}\left(\mathbb{E}_{\mathbf{P} \xi}\left(X_{t}^{2}\right)\right)
$$

The distribution of the E_{i} is such that $\exists g_{ \pm}>0, \exists \alpha \geq 0$,

$$
g_{-} E^{1+\alpha} \leq \nu\left(\left|E_{i}\right| \leq E\right) \leq g_{+} E^{1+\alpha} .
$$

Thm 2 : [Lower bound: Faggionato, Schulz-Baldes \& D.S. '04] [Upper bound: Faggionato \& Mathieu '06]
In dimension $d \geq 2$, for all $\beta \geq \beta_{0}>0$,

$$
k_{-} \beta^{\gamma} \exp \left\{-c_{-} \beta^{\frac{\alpha+1}{\alpha+1+\alpha}}\right\} \leq D_{\beta} \leq k_{+} \beta^{\kappa} \exp \left\{-c_{+} \beta^{\frac{\alpha+1}{\alpha+1+\alpha}}\right\}
$$

with $c_{ \pm}=r_{ \pm} g_{ \pm}^{-\frac{1}{1+\alpha+\alpha}}, r_{ \pm}=$const. indep. of β and \mathcal{P}_{0}

$$
k_{ \pm}=\text {constant independent of } \beta
$$

$$
\gamma=\frac{(\alpha+1)(2-d)}{\alpha+1+d}<0<\kappa=\frac{2(1+\alpha)}{1+\alpha+d} .
$$

