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Abstract. We define a new measure of quantum correlations in bipartite
quantum systems given by the Bures distance of the system state to the set of
classical states with respect to one subsystem, that is, to the states with zero
quantum discord. Our measure is a geometrical version of the quantum discord.
As the latter it quantifies the degree of non-classicality in the system. For pure
states it is identical to the geometric measure of entanglement. We show that for
mixed states it coincides with the optimal success probability of an ambiguous
quantum state discrimination task. Moreover, the closest zero-discord states to a
state ρ are obtained in terms of the corresponding optimal measurements.

4 Author to whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal

citation and DOI.

New Journal of Physics 15 (2013) 103001
1367-2630/13/103001+18$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:Dominique.Spehner@ujf-grenoble.fr
http://www.njp.org/
http://creativecommons.org/licenses/by/3.0


2

Contents

1. Introduction 2
2. Definitions of the quantum discords and Bures distance 4

2.1. The quantum discord and the set of A-classical states . . . . . . . . . . . . . . 4
2.2. Distance measures of quantum correlations with the Bures distance . . . . . . . 5

3. The Bures geometric quantum discord of pure states 7
4. The Bures geometric quantum discord of mixed states 9

4.1. Link with minimal error quantum state discrimination . . . . . . . . . . . . . . 9
4.2. Derivation of the variational formula (23) . . . . . . . . . . . . . . . . . . . . 13
4.3. Closest A-classical states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5. Conclusions 15
Acknowledgments 16
Appendix. Necessary and sufficient condition for the optimal success probability to be

equal to the inverse number of states 16
References 17

1. Introduction

One of the basic questions in quantum information theory is to understand how quantum
correlations in composite quantum systems can be used to perform tasks that cannot be
performed classically, or that lead classically to much lower efficiencies [1]. These correlations
have been long thought to come solely from the entanglement among the different subsystems.
This is the case for quantum computation and communication protocols using pure states.
For instance, in order to offer an exponential speedup over classical computers, a pure-
state quantum computation must necessarily produce multi-partite entanglement which is not
restricted to blocks of qubits of fixed size as the problem size increases [2]. For composite
systems in mixed states, however, there is now increasing evidence that other types of quantum
correlations, such as those captured by the quantum discord of Ollivier and Zurek [3] and
Henderson and Vedral [4], could provide the main resource to exploit, in order to outperform
classical algorithms [5–8] or in some quantum communication protocols [8–11]. The quantum
discord quantifies the amount of mutual information not accessible by local measurements on
one subsystem. One can generate mixed states with non-zero discord but no entanglement
by preparing locally statistical mixtures of nonorthogonal states, which cannot be perfectly
distinguished by measurements. The strongest hint so far suggesting that the discord may
in certain cases quantify the resource responsible for quantum speedups is provided by the
deterministic quantum computation with one qubit (DQC1) of Knill and Laflamme [12]. The
DQC1 model leads to an exponential speedup with respect to known classical algorithms. It
consists of a control qubit, which remains unentangled with n unpolarized target qubits at all
stages of the computation. For other bipartitions of the n + 1 qubits, e.g. putting together in one
subsystem the control qubit and half of the target qubits, one finds in general some entanglement,
but its amount is bounded in n [13]. Hence, for large system sizes, the total amount of bipartite
entanglement is a negligible fraction of the maximal entanglement possible. On the other
hand, the DQC1 algorithm typically produces a non-zero quantum discord between the control
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qubit and the target qubits [5], save in some special cases [14]. This has been demonstrated
experimentally in optical [6] and liquid-state nuclear magnetic resonance [7] implementations
of DQC1. This presence of non-zero discord can be nicely interpreted by using the monogamy
relation [15] between the discord of a bipartite system AB and the entanglement of B with its
environment E if AB E is in a pure state [16]. The precise role played by the quantum discord
in the DQC1 algorithm is still, however, subject to debate (see [8] and references therein).

A mathematically appealing way to quantify quantum correlations in multi-partite systems
is given by the minimal distance of the system state to a separable state [17]. The Bures
metric [18, 19] provides a nice distance dB on the convex cone of density matrices, which has
better properties than the Hilbert–Schmidt distance d2 from a quantum information perspective.
In particular, dB is monotonous and Riemannian [20] and its metric coincides with the
quantum Fisher information [21] playing an important role in high precision interferometry.
As a consequence, the minimal Bures distance to separable states satisfies all criteria of an
entanglement measure [17], which is not the case for the distance d2. This entanglement measure
has been widely studied in the literature [22–25]. By analogy with entanglement, a geometric
measure of quantum discord has been defined by Dakić et al [14] as the minimal distance of
the system state to the set of zero-discord states. This geometric quantum discord (GQD) has
been evaluated explicitly for two qubits [14]. However, the aforementioned authors use the
Hilbert–Schmidt distance d2, which leads to serious drawbacks [26].

The aim of this work is to study a similar GQD as in [14] but based on the Bures distance
dB, which seems to be a more natural choice. This distance measure of quantum correlations
has a clearer geometrical interpretation than other measures [17, 27] based on the relative
entropy, which is not a distance on the set of density matrices. We show that it shares many
of the properties of the quantum discord. Most importantly, as in the description of quantum
correlations using the relative entropy [27, 28], our geometrical approach provides further
information not contained in the quantum discord itself. In fact, one can look for the closest
state(s) with zero discord to a given state ρ, and hence learn something about the ‘position’ of
ρ with respect to the set of zero-discord states. The main result of this paper shows that finding
the Bures-GQD and the closest zero-discord state(s) to ρ is closely linked to a minimal error
quantum state discrimination (QSD) problem.

The task of discriminating states pertaining to a known set {ρ1, . . . , ρn} of density matrices
ρi with prior probabilities ηi plays an important role in quantum communication and quantum
cryptography. For instance, the set {ρ1, . . . , ρn} can encode a message to be sent to a receiver.
The sender chooses at random some states among the ρi ’s and gives them one by one to the
receiver, who is required to identify them and henceforth to decode the message. With this goal,
the receiver performs a measurement on each state given to him by the sender. If the ρi are non-
orthogonal, they cannot be perfectly distinguished from each other by measurements, so that the
amount of sent information is smaller than in the case of orthogonal states. The best the receiver
can do is to find the measurement that minimizes in some way his probability of equivocation.
Two distinct strategies have been widely studied in the literature (see the review paper [29]). In
the first one, the receiver seeks for a generalized measurement with (n + 1) outcomes, allowing
him to identify perfectly each state ρi but such that one of the outcomes leads to an inconclusive
result (unambiguous QSD). The probability of occurrence of the inconclusive outcome must
be minimized. In the second strategy, the receiver looks for a measurement with n outcomes
yielding the maximal success probability PS =

∑n
i=1 ηi Pi |i , where Pi |i is the probability of

the measurement outcome i given that the state is ρi . This strategy is called minimal error
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(or ambiguous) QSD. The maximal success probability Popt
S and the optimal measurement(s)

are known explicitly for n = 2 [30], but no general solution has been found so far for more than
two states (see, however, [31]) except when the ρi are related to each other by some symmetry
and have equal probabilities ηi (see [29, 32, 33] and references therein). However, several
upper bounds on Popt

S are known [34] and the discrimination task can be solved efficiently
numerically [35, 36]. Let us also stress that unambiguous and ambiguous QSD have been
implemented experimentally for pure states [37] and, more recently, for mixed states [38], by
using polarized light.

Let ρ be any state of a bipartite system with a finite-dimensional Hilbert space. We will
prove in what follows that the Bures-GQD of ρ is equal to the maximal success probability
Popt

S in the ambiguous QSD of a family of states {ρi} and prior probabilities {ηi} depending
on ρ. Moreover, the closest zero-discord states to ρ are given in terms of the corresponding
optimal von Neumann measurement(s). The number of states ρi to discriminate is equal
to the dimension of the Hilbert space of the measured subsystem. When this subsystem is a
qubit, the discrimination task involves only two states and can be solved exactly [29, 30]: Popt

S
and the optimal von Neumann projectors are given in terms of the eigenvalues and eigenvectors
of the Hermitian matrix 3= η0ρ0 − η1ρ1. In a companion paper [39], we use this approach
to derive an explicit formula for the Bures-GDQ of a family of two-qubits states (states with
maximally mixed marginals) and determine the corresponding closest zero-discord states.

This paper is organized as follows. The definitions of the quantum discords and of the
Bures distance are given in section 2, together with their main properties. In section 3, we show
that the Bures-GQD of a pure state coincides with the geometric measure of entanglement and is
simply related to the highest Schmidt coefficient. We explain this fact by noting that the closest
zero-discord states to a pure state are convex combinations of orthogonal pure product states.
The link between the minimal Bures distance to the set of zero-discord states and ambiguous
QSD is explained and proved in section 4. The last section contains some conclusive remarks
and perspectives. The appendix contains a technical proof of an intuitively obvious fact in QSD.

2. Definitions of the quantum discords and Bures distance

2.1. The quantum discord and the set of A-classical states

In this work we consider a bipartite quantum system AB with Hilbert space H=HA ⊗HB , the
spaces HA and HB of the subsystems A and B having arbitrary finite dimensions n A and nB .
The states of AB are given by density matrices ρ onH (i.e. Hermitian positive N × N matrices
ρ ∈ Mat(C, N ) with unit trace tr(ρ)= 1, with N = n AnB). The reduced states of A and B are
defined by partial tracing ρ over the other subsystem. They are denoted by ρA = trB(ρ) and
ρB = trA(ρ).

Let us first recall the definition of the quantum discord [3, 4]. The total correlations
of the bipartite system in the state ρ are described by the mutual information IA:B(ρ)=

S(ρA)+ S(ρB)− S(ρ), where S(·) stands for the von Neumann entropy. The amount JB|A(ρ)

of classical correlations is given by the maximal reduction of entropy of the subsystem B
after a von Neumann measurement on A. Such a measurement is described by an orthogonal
family {π A

i } of projectors acting on HA (i.e. by self-adjoint operators π A
i on HA satisfying

π A
i π

A
j = δi jπ

A
i ). Hence JB|A(ρ)= max{π A

i }{S(ρB)−
∑

i qi S(ρB|i)}, where the maximum is over
all von Neumann measurements {π A

i }, qi = tr(π A
i ⊗ 1 ρ) is the probability of the measurement
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outcome i , and ρB|i = q−1
i trA(π

A
i ⊗ 1 ρ) is the corresponding post-measurement conditional

state of B. The quantum discord is by definition the difference δA(ρ)= IA:B(ρ)− JB|A(ρ)

between the total and classical correlations. It measures the amount of mutual information which
is not accessible by local measurements on the subsystem A. Note that it is asymmetric under
the exchange A ↔ B. It can be shown [40] that δA(ρ)> 0 for any ρ. Moreover, δA(σA-cl)= 0 if
and only if

σA-cl =

n A∑
i=1

qi |αi〉〈αi | ⊗ σB|i , (1)

where {|αi〉}
n A
i=1 is an orthonormal basis of HA, σB|i are some (arbitrary) states of B depending

on the index i , and qi > 0 are some probabilities,
∑

i qi = 1. The fact that δA(σA-cl)= 0
follows directly from IA:B(σA-cl)= S(trA(σA-cl))−

∑
i qi S(σB|i)6 JB|A(σA-cl) and from the

non-negativity of the quantum discord. For a bipartite system in the state σA-cl, the subsystem A
is in one of the orthogonal states |αi〉 with probability qi , hence A behaves as a classical system.
For this reason, we will call A-classical states the zero-discord states of the form (1). In the
literature they are often referred to as the ‘classical quantum’ states. We denote by CA the set
of all A-classical states. By using the spectral decompositions of the σB|i , any A-classical state
σA-cl ∈ CA can be decomposed as

σA-cl =

n A∑
i=1

nB∑
j=1

qi j |αi〉〈αi | ⊗ |β j |i〉〈β j |i |, (2)

where, for any fixed i , {|β j |i〉}
nB
j=1 is an orthonormal basis of HB , and qi j > 0,

∑
i j qi j = 1 (note

that the |β j |i〉 need not be orthogonal for distinct i’s). One defines similarly the set CB of
B-classical states, which are the states with zero quantum discord when the subsystem B is
measured. A state which is both A- and B-classical possesses an eigenbasis {|αi〉 ⊗ |β j〉}

n A,nB
i=1, j=1

of product vectors. It is fully classical, in the sense that a quantum system in this state can be
‘simulated’ by a classical apparatus being in the state (i, j) with probability qi j .

Let us point out that CA, CB and the set of classical states C are not convex. Their convex
hull is the set S of separable states. A state σsep is separable if it admits a convex decomposition
σsep =

∑
m qm|φm〉〈φm| ⊗ |ψm〉〈ψm|, where {|φm〉} and {|ψm〉} are (not necessarily orthogonal)

families of unit vectors in HA and HB and qm > 0,
∑

m qm = 1. For pure states, A-classical
and B-classical, classical and separable states all coincide. Actually, according to (2) the pure
A-classical (and, similarly, the pure B-classical) states are product states.

2.2. Distance measures of quantum correlations with the Bures distance

The GQD of a state ρ of AB has been defined in [14] as the square distance of ρ to the set CA

of A-classical states

D(2)
A (ρ)= d2(ρ, CA)

2
= min

σA-cl∈CA

d2(ρ, σA-cl)
2, (3)

where d2(ρ, σ )= (tr[(ρ− σ)2])1/2 is the Hilbert–Schmidt distance. Instead of taking this
distance, we use in this paper the Bures distance

dB(ρ, σ )=

[
2(1 −

√
F(ρ, σ ))

] 1
2
, (4)
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where ρ and σ are two density matrices and F(ρ, σ ) is their fidelity [1, 18, 41]

F(ρ, σ )= ‖
√
ρ
√
σ‖

2
1 =

[
tr([

√
σρ

√
σ ]1/2)

]2
. (5)

It is known that (4) defines a Riemannian distance on the convex cone E ⊂ Mat(C, N ) of
all density matrices of AB. Its metric is equal to the Fubini–Study metric for pure states
and coincides (apart from a numerical factor) with the quantum Fisher information which
plays an important role in quantum metrology [21]. Moreover, dB satisfies the following
properties [1, 41]: for any ρ, σ , ρ1, ρ2, σ1 and σ2 ∈ E ,

(i) joint convexity: if η1, η2 > 0 and η1 + η2 = 1, then dB(η1ρ1 + η2ρ2, η1σ1 + η2σ2)6
η1dB(ρ1, σ1)+ η2d(ρ2, σ2) and

(ii) dB is monotonous under the action of completely positive trace-preserving maps T from
Mat(C, N ) into itself : for any such T , dB(T ρ, T σ)6 dB(ρ, σ ).

Property (ii) implies that dB is invariant under unitary conjugations: if U is a unitary operator
on H, then dB(UρU †,UσU †)= dB(ρ, σ ). Note that the Hilbert–Schmidt distance d2 is also
unitary invariant but fails to satisfy (ii) (a simple counter-example can be found in [42]).
The monotonous Riemannian distances on E have been classified by Petz [20]. The Bures
distance can be used to bound from below and above the trace distance d1(ρ, σ )= tr(|ρ− σ |)

as follows [1]:

dB(ρ, σ )
2 6 d1(ρ, σ )6

[
1 −

(
1 −

1
2dB(ρ, σ )

2
)2

] 1
2
. (6)

For good reviews on the Uhlmann fidelity and Bures distance, see the book of Nielsen and
Chuang [1] and the nice introduction of the paper [43] devoted to the estimation of the Bures
volume of E .

We define the GQD as

DA(ρ)= dB(ρ, CA)
2
= 2(1 −

√
FA(ρ)), FA(ρ)= max

σA-cl∈CA

F(ρ, σA-cl). (7)

The unitary invariance of dB and d2 implies that DA and D(2)
A are invariant under conjugations

by local unitaries, ρ 7→ UA ⊗ UBρU †
A ⊗ U †

B , since such transformations leave CA invariant. By
property (ii), DA is monotonous under local operations involving von Neumann measurements
on A and generalized measurements on B.

By analogy with (7), one can define two other geometrical measures of quantum
correlations: the square distance to the set of classical states C and the geometric measure of
entanglement

D(ρ)= dB(ρ, C)2 = 2(1 −

√
FC(ρ)), E(ρ)= dB(ρ,S)2 = 2(1 −

√
FS(ρ)), (8)

where FC(ρ) is the maximal fidelity between ρ and a classical state σcl ∈ C and FS(ρ) the
maximal fidelity between ρ and a separable state σsep ∈ S. The first measure D is a geometrical
analogue of the measurement-induced disturbance (MID) [44], which has up to our knowledge
not been studied so far (however, an analogue of the MID based on the relative entropy has been
introduced in [27]). The second measure E satisfies all criteria of an entanglement measure [17]
(in particular, it is monotonous under local operations and classical communication by the
property (ii)) and has been studied in [17, 22, 25]. It is closely related to other entanglement
measures [23, 24] defined via a convex roof construction thanks to the identity [22]

FS(ρ)= max
{pm},{|9m〉}

∑
m

pm FS(|9m〉), FS(|9m〉)= max
σsep∈S

F(|9m〉〈9m|, σsep), (9)
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where the maximum is over all pure state decompositions ρ =
∑

m pm|9m〉〈9m| of ρ (with
‖9m‖= 1 and pm > 0,

∑
pm = 1). The measure E is a geometrical analogue of the

entanglement of formation [45]. The latter is defined via a convex roof construction from the
von Neumann entropy of the reduced state

EEoF(ρ)= min
{pm},{|9m〉}

∑
m

pm EEoF(|9m〉),

(10)
EEoF(|9m〉)= S(trA(|9m〉〈9m|))= S(trB(|9m〉〈9m|)).

Since C ⊂ CA ⊂ S, the three distances are ordered as

E(ρ)6 DA(ρ)6 D(ρ) . (11)

This ordering of quantum correlations is a nice feature of the geometric measures. In contrast,
the entanglement of formation EEoF(ρ) can be larger or smaller than the quantum discord
δA(ρ) [46, 47].

3. The Bures geometric quantum discord of pure states

We first restrict our attention to pure states, for which one can obtain a simple formula for DA

in terms of the Schmidt coefficients µi . We recall that any pure state |9〉 ∈HA ⊗HB admits a
Schmidt decomposition

|9〉 =

n∑
i=1

√
µi |ϕi〉 ⊗ |χi〉, (12)

where n = min{n A, nB} and {|ϕi〉}
n A
i=1 (respectively {|χ j〉}

nB
j=1) is an orthonormal basis of HA

(HB). If the µi are non-degenerate, the decomposition (12) is unique, the µi and |ϕi〉

(respectively |χ j〉) being the eigenvalues and eigenvectors of the reduced state (|9〉〈9|)A

(respectively (|9〉〈9|)B). Note that µi > 0 and
∑

i µi = ‖9‖
2
= 1.

Theorem 1. If ρ9 = |9〉〈9| is a pure state, then

DA(ρ9)= D(ρ9)= E(ρ9)= 2(1 −
√
µmax), (13)

where µmax is the largest Schmidt eigenvalue µi . If this maximal eigenvalue is non-degenerate,
the closest A-classical (respectively classical, separable) state to ρ9 is the pure product state
σ = |ϕmax ⊗χmax〉〈ϕmax ⊗χmax|, where |ϕmax〉 and |χmax〉 are the eigenvectors corresponding
to µmax in the decomposition (12). If µmax is r-fold degenerate, say µmax = µ1 = · · · = µr >

µr+1, . . . , µn, then infinitely many A-classical (respectively classical, separable) states σ
minimize the distance dB(ρ9, σ ). These closest states σ are convex combinations of the
orthogonal pure product states |αl ⊗βl〉〈αl ⊗βl |, l = 1, . . . , r , with |αl〉 =

∑r
i=1 uil |ϕi〉 and

|βl〉 =
∑r

i=1 u∗

il |χi〉, where (uil)
r
i,l=1 is an arbitrary r × r unitary matrix and |ϕi〉 and |χi〉 are

some eigenvectors in the decomposition (12).

The expression (13) of the geometric measure of entanglement E(ρ9) is basically known
in the literature [23, 24]. The closest separable states to pure and mixed states have been
investigated in [22]. By inspection of (12) and (13), DA(ρ9)= 0 if and only if |9〉 is a product
state, in agreement with the fact that A-classical pure states are product states (the same holds for
the other quantum correlation measures D and E). Moreover, from the inequality µmax > 1/n
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(following from
∑n

i=1 µi = 1) one deduces that DA(ρ9)6 2(1 − 1/
√

n). The maximal value
of DA is reached when µi = 1/n for any i , that is, for the maximally entangled states (recall
that such states are the pure states with reduced states (ρ9)A and (ρ9)B having a maximal
entropy S((ρ9)A)= −

∑n
i=1 µi lnµi = ln(n)). Note that when µmax is r-fold degenerate, the r

vectors |αl〉 (respectively |βl〉) are orthonormal eigenvectors of [ρ9]A (respectively [ρ9]B) with
eigenvalue µmax. One then obtains another Schmidt decomposition of |9〉 by replacing in (12)
the r eigenvectors |ϕi〉 and |χi〉 with eigenvalue µmax by |αl〉 and |βl〉.

Remarkably, the maximally entangled states are the pure states admitting the largest
family of closest separable states (this family is a (n2 + n − 2) real-parameter submanifold
of E). For instance, in the case of two qubits (i.e. for n A = nB = n = 2), the Bell states
|8±

〉 = (|00〉 ± |11〉)/
√

2 admit as closest separable states the classical states

σ± =

∑
l=0,1

ql |αl〉〈αl | ⊗ |βl〉〈βl |, |αl〉 = u0l |0〉 + u1l |1〉, |βl〉 = u∗

0l |0〉 ± u∗

1l |1〉 (14)

with u∗

0lu0m + u∗

1lu1m = δml and ql > 0, q0 + q1 = 1. Interestingly, typical decoherence processes
such as pure phase dephasing transform ρ8± into one of its closest separable state (|00〉〈00| +
|11〉〈11|)/2 at times t � tdec, where tdec is the decoherence time. Slower relaxation processes
modifying the populations in the states |00〉 and |11〉 do not further increase the distance to
the initial state ρ8± . The situation is different for a partially entangled state |9〉 =

√
µ0|00〉 +

√
µ1|11〉 with µ1 > µ0: then the closest separable state is the pure state |11〉, but |9〉 evolves

asymptotically to a statistical mixture of |00〉 and |11〉 when the qubits are coupled e.g. to
thermal baths at positive temperatures.

Proof. For a pure state ρ9 , the fidelity reads F(ρ9, σA-cl)= 〈9|σA-cl|9〉. Replacing σA-cl in (7)
by the right-hand side of (2) we get

FA(ρ9)= max
{|αi 〉},{|β j |i 〉},{qi j }

∑
i j

qi j |〈αi ⊗β j |i |9〉|
2

 = max
‖α‖=‖β‖=1

|〈α⊗β|9〉|
2, (15)

where we have used
∑

i j qi j = 1. Thanks to the Cauchy–Schwarz inequality, for any normalized
vectors |α〉 ∈HA and |β〉 ∈HB one has

|〈α⊗β|9〉| =

∣∣∣∣∣
n∑

i=1

√
µi〈α|ϕi〉〈β|χi〉

∣∣∣∣∣
6

n∑
i=1

√
µi |〈α|ϕi〉〈β|χi〉|6

√
µmax

n∑
i=1

|〈α|ϕi〉〈β|χi〉| (16)

6
√
µmax

[
n∑

i=1

|〈α|ϕi〉|
2

]1/2 [
n∑

i=1

|〈β|χi〉|
2

]1/2

6
√
µmax. (17)

Let us first assume that µ1 = µmax > µ2, . . . , µn. Then |〈α⊗β|9〉| =
√
µmax if and only if

|α〉 = |ϕ1〉 and |β〉 = |χ1〉 up to irrelevant phase factors. Thus the maximal fidelity FA(ρ9)

between ρ9 and an A-classical state is simply given by the largest Schmidt eigenvalue µmax.
Moreover, the maximum in the second member of equation (15) is reached when a single qi j

is non-vanishing, say qi j = δi1δ j1, and |α1〉 = |ϕ1〉, |β1|1〉 = |χ1〉. This means that the closest A-
classical state to ρ9 is the pure product state |ϕ1 ⊗χ1〉〈ϕ1 ⊗χ1|. Since this is a classical state,
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one has FC(ρ9)= FA(ρ9)= µmax. One shows similarly that FS(ρ9)= µmax. Then (13) follows
from the definitions (7) and (8) of DA, D and E .

More generally, let µ1 = · · · = µr = µmax > µr+1, . . . , µn. We need to show that all
inequalities in (16) and (17) are equalities for appropriately chosen normalized vectors |α〉

and |β〉. The first inequality in (16) is an equality if and only if arg(〈α|ϕi〉〈β|χi〉)= θ is
independent of i . The second inequality in (16) is an equality if and only if |α〉 belongs to
Vmax = span{|ϕi〉}

r
i=1 or |β〉 belongs to Wmax = span{|χi〉}

r
i=1. The Cauchy–Schwarz inequality

in (17) is an equality if and only if |〈α|ϕi〉| = λ|〈β|χi〉| for all i , with λ> 0. Finally, the last
inequality in (17) is an equality if and only if both sums inside the square brackets are equal
to unity, i.e. |α〉 ∈ span{|ϕi〉}

n
i=1 and |β〉 ∈ span{|χi〉}

n
i=1 (this holds trivially if n A = nB = n).

Putting all conditions together, we obtain |α〉 ∈ Vmax, |β〉 ∈ Wmax and 〈β|χi〉 = eiθ
〈ϕi |α〉 for

i = 1, . . . , r . Therefore, from any orthonormal family {|αl〉}
r
l=1 of Vmax one can construct

r orthogonal vectors |αl ⊗βl〉 satisfying |〈αl ⊗βl |9〉| =
√
µmax for all l = 1, . . . , r , with

〈βl |χi〉 = 〈ϕi |αl〉. The probabilities {qi j} maximizing the sum inside the brackets in (15)
are given by qi j = qi if i = j 6 r and zero otherwise, where {ql}

r
l=1 is an arbitrary set of

probabilities. The corresponding A-classical states with maximal fidelities F(ρ9, σ ) are the
classical states σ =

∑r
l=1 ql |αl ⊗βl〉〈αl ⊗βl |. ut

The equality between the correlation measures DA, D and E is a consequence of the fact
that the closest states to ρ9 are classical states. Such an equality is reminiscent from the equality
between the entanglement of formation EEoF and the quantum discord δA for pure states. Let us
notice that it does not hold for the Hilbert–Schmidt distance, for which the closest A-classical
state to a pure state is in general a mixed state. Actually, one infers from the expression

d2(ρ9, σA-cl)
2
= tr[(|9〉〈9| − σA-cl)

2] = 1 − 2F(ρ9, σA-cl)+ tr(σ 2
A-cl) (18)

that the closest A-classical state results from a competition between the maximization of the
fidelity F(ρ9, σA-cl) and the minimization of the trace tr(σ 2

A-cl), which is maximum for pure
states. For instance, one can show [39] that the closest A-classical states to the Bell states |8±

〉

for d2 are mixed two-qubit states. The validity of theorem 1 is one of the major advantages of
the Bures-GQD over the Hilbert–Schmidt-GQD.

4. The Bures geometric quantum discord of mixed states

4.1. Link with minimal error quantum state discrimination

The determination of DA(ρ) is much more involved for mixed states than for pure
states. We show in this section that this problem is related to ambiguous QSD. As
it has been recalled in the introduction, in ambiguous QSD a state ρi drawn from a
known family {ρi}

n A
i=1 with prior probabilities {ηi}

n A
i=1 is sent to a receiver. The task of

the latter is to determine which state he has received with a maximal probability of
success. To do so, he performs a generalized measurement and concludes that the state
is ρ j when his measurement result is j . The generalized measurement is given by a family
of positive operators Mi > 0 satisfying

∑
i Mi = 1 (POVM). The probability to find the result j

is Pj |i = tr(M jρi) if the system is in the state ρi . The maximal success probability of the receiver
reads

P opt
S ({ρi , ηi})= max

POVM {Mi }

n A∑
i=1

ηi tr(Miρi). (19)
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Theorem 2. Let ρ be a state of the bipartite system AB with Hilbert space H=HA ⊗HB and
let α = {|αi〉}

n A
i=1 be a fixed orthonormal basis of HA. Consider the subset CA(α)⊂ CA of all

A-classical states σA-cl such that α is an eigenbasis of trB(σA-cl) (i.e. CA(α) is the set of
all states σA-cl of the form (1), for arbitrary probabilities qi and states σB|i on HB). Then the
maximal fidelity F(ρ, CA(α))= maxσA-cl∈CA(α) F(ρ, σA-cl) of ρ to this subset is equal to

F(ρ, CA(α))= P opt v.N.
S ({ρi , ηi})≡ max

{5i }

n A∑
i=1

ηi tr(5iρi), (20)

where P opt v.N.
S ({ρi , ηi}) is the maximal success probability over all von Neumann measurements

given by orthogonal projectors 5i of rank nB (that is, self-adjoint operators on H satisfying
5i5 j = δi j5i and dim(5iH)= nB), and

ηi = 〈αi |ρA|αi〉, ρi = η−1
i

√
ρ|αi〉〈αi | ⊗ 1

√
ρ (21)

(if ηi = 0 then ρi is not defined but does not contribute to the sum in (20)).

This theorem will be proven in section 4.2. Note that the ρi are quantum states of AB if
ηi > 0, because the right-hand side of the last identity in (21) is a non-negative operator and
ηi is chosen such that tr(ρi)= 1. Moreover, {ηi}

n A
i=1 is a set of probabilities (since ηi > 0 and∑

i ηi = tr(ρ)= 1) and {ρi , ηi}
n A
i=1 defines a convex decomposition of ρ, i.e. ρ =

∑
i ηiρi .

Let us assume that ρ is invertible. Then the application of a result by Eldar [48] shows
that the POVM maximizing the success probability PS({ρi , ηi}) in (19) is a von Neumann
measurement with projectors 5i of rank nB , i.e.

F(ρ, CA(α))= P opt v.N.
S ({ρi , ηi})= P opt

S ({ρi , ηi}), ρ > 0 . (22)

In fact, one may first notice that all matrices ρi have rank ri = nB (for indeed, ρi has the same
rank as ηiρ

−1/2ρi = |αi〉〈αi | ⊗ 1
√
ρ and the latter matrix has rank nB). Next, we argue that the

ρi are linearly independent, in the sense that their eigenvectors |ξi j〉 form a linearly independent
family {|ξi j〉}

j=1,...,nB
i=1,...,n A

of vectors in H. Actually, a necessary and sufficient condition for |ξi j〉 to
be an eigenvector of ρi with eigenvalue λi j > 0 is |ξi j〉 = (λi jηi)

−1√ρ|αi〉 ⊗ |ζi j〉, |ζi j〉 ∈HB

being an eigenvector of Ri = 〈αi |ρ|αi〉 with eigenvalue λi jηi > 0. For any i , the Hermitian
invertible matrix Ri admits an orthonormal eigenbasis {|ζi j〉}

nB
j=1. Thanks to the invertibility of

√
ρ, {|ξi j〉}

j=1,...,nB
i=1,...,n A

is a basis of H and thus the states ρi are linearly independent. It is shown
in [48] that for such a family of linearly independent states the second equality in (22) holds
true.

The following result on the Bures-GQD of mixed states is a direct consequence of
theorem 2.

Theorem 3. For any state ρ of the bipartite system AB, the fidelity to the closest A-classical
state is given by

FA(ρ)= max
{|αi 〉}

max
{5i }

n A∑
i=1

tr[5i
√
ρ|αi〉〈αi | ⊗ 1

√
ρ], (23)

where the maxima are over all orthonormal basis {|αi〉} of HA and all orthogonal families
{5i}

n A
i=1 of projectors of HA ⊗HB with rank nB . Hence, using the notation of theorem 2,

FA(ρ)= max
{|αi 〉}

P opt v.N.
S ({ρi , ηi}) . (24)

New Journal of Physics 15 (2013) 103001 (http://www.njp.org/)

http://www.njp.org/


11

If ρ > 0 then one can replace P opt v.N.
S in (24) by the maximal success probability (19) over all

POVMs.

It is noteworthy to observe that the basis vectors |αi〉 can be recovered from the states ρi and
probabilities ηi by forming the square-root measurement operators Mi = ηiρ

−1/2ρiρ
−1/2, with

ρ =
∑

i ηiρi (we assume here ρ > 0). Actually, such measurement operators are equal to the
rank-nB projectors Mi = |αi〉〈αi | ⊗ 1. By bounding from below P opt v.N.

S ({ρi , ηi}) by the success
probability corresponding to 5i = Mi , we obtain

FA(ρ)>max
{|αi 〉}

n A∑
i=1

trB

[
〈αi |

√
ρ|αi〉

2
]
. (25)

The square-root measurement plays an important role in the discrimination of almost orthogonal
states [49, 50] and of ensembles of states with certain symmetries [32, 33].

To illustrate our result, let us study the ambiguous QSD task for some specific states ρ.

(i) If ρ is an A-classical state, i.e. if it admits the decomposition (1), then the basis {|αi〉}

maximizing the optimal success probability in (24) coincides with the basis appearing in
this decomposition. With this choice, one obtains ηi = qi and ρi = |αi〉〈αi | ⊗ σB|i for all i
such that qi > 0. The states ρi are orthogonal and can thus be perfectly discriminated by von
Neumann measurements, so that FA(ρ)= P opt v.N.

S ({ρi , ηi})= 1. Reciprocally, if FA(ρ)=

1 then P opt v.N.
S ({ρi , ηi})= 1 for some basis {|αi〉} of HA and the corresponding ρi must

be orthogonal, that is, ρi =5iρi5i for some orthogonal family {5i} of projectors with
rank nB . Hence ρ =

∑
i ηiρi =

∑
i ηi5iρi5i ,

√
ρ =

∑
i 5i

√
ρ 5i and (21) entails ηiρi =

ηi5iρi5i =
√
ρ|αi〉〈αi | ⊗ 1

√
ρ =

√
ρ 5i |αi〉〈αi | ⊗ 15i

√
ρ, implying 5i = |αi〉〈αi | ⊗ 1

if ρ is invertible. Thus ρ is A-classical (this was of course to be expected since DA(ρ)= 0
if and only if ρ is A-classical, see section 2). Therefore, we can interpret our result (24) as
follows: the non-zero-discord states ρ are such that the states (21) are non-orthogonal and
thus cannot be perfectly discriminated for any orthonormal basis {|αi〉} of HA.

(ii) If ρ = ρ9 is a pure state, then all ρi with ηi > 0 are identical and equal to ρ9 , so that
P opt

S = P opt v.N.
S = sup

{5i }

∑
i ηi〈9|5i |9〉 = ηmax. One gets back the result FA(ρ9)= µmax

of section 3 by optimization over the basis {|αi〉}.
(iii) Let us determine the states ρ having the highest possible GQD, i.e. the smallest possible

fidelity FA(ρ).

Proposition. If n A 6 nB , the smallest fidelity FA(ρ) for all states ρ of AB is equal to 1/n A.
If rn A 6 nB < (r + 1)n A with r = 1, 2, . . ., the states ρ with FA(ρ)= 1/n A are any convex
combinations of the r maximally entangled pure states |9k〉 = n−1/2

A

∑n A
i=1 |φ

(k)
i 〉 ⊗ |ψ

(k)
i 〉, k =

1, . . . , r , with 〈φ
(k)
i |φ

(k)
j 〉 = δi j and 〈ψ

(k)
i |ψ

(l)
j 〉 = δklδi j .

We deduce from this result that the GQD DA(ρ) varies between 0 and 2 − 2/
√

n A when
n A 6 nB . By virtue of theorem 1, the proposition, and the inequality E(ρ)6 DA(ρ), the
geometric measure of entanglement E(ρ) also varies between these two values. This means
that the most distant states from the set of A-classical states CA are also the most distant from
the set of separable states S. If n A 6 nB < 2n A, these most distant states are always maximally
entangled pure states.

Proof. The success probability P opt v.N.
S must be clearly larger than the highest prior probability

ηmax = maxi{ηi}. (A receiver would obtain PS = ηmax by simply guessing that his state is ρimax ,
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with ηimax = ηmax; a better strategy is of course to perform the von Neumann measurement {5i}

such that 5imax projects on a nB-dimensional subspace containing the range of ρimax; this range
has a dimension 6 nB by a similar argument as in the discussion following theorem 2.) In view
of (24) and by using ηmax > 1/n A (since

∑
i ηi = 1) we get

FA(ρ)>
1

n A
(26)

for any mixed state ρ.
When n A 6 nB the bound (26) is optimum, the value 1/n A being reached for the maximally

entangled pure states, see section 3. Thus 1/n A is the smallest possible fidelity. Let ρ be a state
having such a fidelity FA(ρ)= 1/n A. According to (24) and since it has been argued before
that P opt v.N.

S > ηmax > 1/n A, FA(ρ)= 1/n A implies that P opt v.N.
S ({ρi , ηi})= 1/n A whatever the

orthonormal basis {|αi〉}. It is intuitively clear that this can only happen if the receiver gets a
collection of identical states ρi with equal prior probabilities ηi = 1/n A. A rigorous proof of
this fact is given in the appendix. From (21) and ρ =

∑
ηiρi we then obtain 〈αi |ρA|αi〉 = 1/n A

and ρi = ρ for any i = 1, . . . , n A and any orthonormal basis {|αi〉}. The first equality implies
ρA = 1/n A. By replacing the spectral decomposition ρ =

∑
k pk|9k〉〈9k| into (21), the second

equality yields trB(|9k〉〈9l |)= n−1
A δkl for all k, l with pk pl 6= 0. Taking advantage of this

identity for k = l, one finds that the eigenvectors |9k〉 of ρ with positive eigenvalues pk

have all their Schmidt eigenvalues equal to 1/n A, that is, their Schmidt decompositions read
|9k〉 = n−1/2

A

∑n A
i=1 |φ

(k)
i 〉 ⊗ |ψ

(k)
i 〉. Moreover, trB(|9k〉〈9l |)= 0 is equivalent to V (k)B ⊥V (l)B with

V (k)B = span{|ψ
(k)
i 〉}

n A
i=1 ⊂HB . If nB < (r + 1)n A then at most r subspaces V (k)B may be pairwise

orthogonal. Thus at most r eigenvalues pk are non-zero. ut

Let us now discuss the case n A > nB . In that case the smallest value of the maximal fidelity
FS(ρ) to a separable state is equal to 1/nB and FS(ρ)= 1/nB when ρ is a pure maximally
entangled state. This is a consequence of (9) and of the bound FS(ρ9)> 1/nB for pure states ρ9
(see section 3). As a result, the geometric measure of entanglement E(ρ) varies between 0 and
2 − 2/

√
n with n = min{n A, nB}, in both cases n A 6 nB and nB > n A. We could not establish a

similar result for the GQD DA(ρ). When n A > nB , the bound (26) is still correct but it is not
optimal, i.e. there are no states ρ with fidelities FA(ρ) equal to 1/n A. Indeed, following the
same lines as in the proof above, one shows that if FA(ρ)= 1/n A then the eigenvectors |9k〉 of
ρ with non-zero eigenvalues must have maximally mixed marginals [ρ9k ]A = 1/n A. But this is
impossible since rank([ρ9k ]A)6 nB by (12). According to the results of section 3, pure states
ρ9 have fidelities FA(ρ9)> 1/nB , so one may expect that states close enough to pure states
have fidelities close to 1/nB or larger. This can be shown rigorously by invoking the bound

FA(ρ)>
‖ρ‖

nB
+

1 − ‖ρ‖

n A

nB − δρ

nB
, (27)

where‖ρ‖ is the norm of ρ and δρ = 0 if rank(ρ)6 nB and 1 otherwise. This bound can be
established as follows. Let us write ρ = p|9〉〈9| + (1 − p)ρ ′ where |9〉 is the eigenvector of ρ
with maximal eigenvalue p =‖ρ‖ and the density matrix ρ ′ has support on [C|9〉]⊥. Choosing
an orthonormal family {5i} of projectors of rank nB satisfying51|91〉 = |91〉, we get from (24)

FA(ρ)>
∑

i

ηi tr(5iρi)= p〈α1|trB(|9〉〈9|)|α1〉 + (1 − p)
∑

i

η′

i tr(5iρ
′

i) (28)
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with η′

iρ
′

i =
√
ρ ′|αi〉〈αi | ⊗ 1

√
ρ ′ and η′

i = 〈αi |ρ
′

A|αi〉. Let us fix the orthonormal basis
{|αi〉} such that |α1〉 is the eigenvector with maximal eigenvalue µmax in the Schmidt
decomposition (12) of |9〉. This leads to the maximal possible value pµmax of the first term
in the right-hand side of (28). We now bound the sum in this right-hand side by its imth term
η′

max tr(5imρ
′

im
), where im is the index i such that η′

i is maximum, i.e. η′

im
= η′

max. If im > 1, one
can find orthogonal projectors 51 and 5im such that |9〉 ∈51H and ρ ′

im
H⊂5imH⊂ [C|9〉]⊥

(recall that the ρ ′

i have ranks 6 nB). If im = 1, we choose 51 = |9〉〈9| +5′

1 where 5′

1 is the
spectral projector of ρ ′

1 associated to the (nB − 1) highest eigenvalues q ′

1 > q ′

2 > · · ·> q ′

nB−1.
In all cases, tr(5imρ

′

im
)> 1 − q ′

nB
. If rank(ρ)6 nB then q ′

nB
= 0, otherwise we bound q ′

nB
by

1/nB (since
∑nB

j=1 q ′

j = 1). Collecting the above results and using the inequalities µmax > 1/nB

and η′

max > 1/n A (since
∑n A

i=1 η
′

i = 1), one gets (27). Note that this bound is stronger than (26)
only for states ρ satisfying ‖ρ‖> (1 + n A − nB)

−1 or rank(ρ)6 nB . In summary, we can only
conclude from the analysis above that when n A > nB the smallest possible fidelity minρ∈E FA(ρ)

lies in the interval (1/n A, 1/nB].

4.2. Derivation of the variational formula (23)

To prove theorems 2 and 3, we start by evaluating the trace norm in (5) by means of the formula
‖T ‖1 = maxU |tr(U T )|, the maximum being over all unitary operators onH. Using also (2), one
gets √

F(ρ, σA-cl)= max
U

|tr(U
√
ρ
√
σA-cl)|

= max
U

∣∣∣∑
i, j

√
qi j tr(U

√
ρ |αi〉〈αi | ⊗ |β j |i〉〈β j |i |)

∣∣∣
= max

{|8i j 〉}

∣∣∣∑
i, j

√
qi j〈8i j |

√
ρ|αi ⊗β j |i〉

∣∣∣
= max

{|8i j 〉}

∑
i, j

√
qi j |〈8i j |

√
ρ|αi ⊗β j |i〉|. (29)

In the third line we have replaced the maximum over unitaries U by a maximum over all
orthonormal basis {|8i j〉} of H (with |8i j〉 = U †

|αi ⊗β j |i〉). The last equality in (29) can be
explained as follows. The expression in the last line is clearly larger than that of the third line;
since for any i and j one can choose the phase factors of the vectors |8i j〉 in such a way that
〈8i j |

√
ρ|αi ⊗β j |i〉> 0, the two expressions are in fact equal.

One has to maximize the last member of (29) over all families of i-dependent orthonormal
basis {|β j |i〉} of HB and all set of probabilities {qi j}. The maximum over the probabilities qi j is
easy to evaluate by using the Cauchy–Schwarz inequality and

∑
i, j qi j = 1. It is reached for

qi j =
|〈8i j |

√
ρ|αi ⊗β j |i〉|

2∑
i j |〈8i j |

√
ρ|αi ⊗β j |i〉|

2
. (30)

We thus obtain

F(ρ, CA(α))= max
{|β j |i 〉}

max
{qi j }

F(ρ, σA-cl)= max
{|β j |i 〉}

max
{|8i j 〉}

∑
i, j

|〈ψ j |i |β j |i〉|
2
, (31)
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where we have set |ψ j |i〉 = 〈αi |
√
ρ|8i j〉 ∈HB . We proceed to evaluate the maximum over

{|β j |i〉} and {|8i j〉}. Let us fix i and consider the orthogonal family of projectors of H of rank
nB defined by

5i =

∑
j

|8i j〉〈8i j |. (32)

By the Cauchy–Schwarz inequality, for any fixed i one has

max
{|β j |i 〉}

∑
j

|〈ψ j |i |β j |i〉|
2 6

∑
j

‖ψ j |i‖
2
= tr

[
5i

√
ρ|αi〉〈αi | ⊗ 1

√
ρ
]
. (33)

Note that (33) is an inequality if the vectors |ψ j |i〉 are orthogonal for different j’s. We now
show that this is the case provided that the |8i j〉 are chosen appropriately. In fact, let us
take an arbitrary orthonormal basis {|8i j〉} of H and consider the Hermitian nB × nB matrix
S(i) with coefficients given by the scalar products S(i)jk = 〈ψ j |i |ψk|i〉. One can find a unitary
matrix V (i) such that S̃(i) = (V (i))†S(i)V (i) is diagonal and has non-zero diagonal elements in
the first ri raws, where ri is the rank of S(i). Let |8̃i j〉 =

∑nB
l=1 V (i)

l j |8il〉. Then {|8̃i j〉} is an
orthonormal basis ofH and

∑
j |8̃i j〉〈8̃i j | =5i . Moreover, the vectors |ψ̃ j |i〉 = 〈αi |

√
ρ|8̃i j〉 =∑nB

l=1 V (i)
l j |ψl|i〉 form an orthogonal set {|ψ̃ j |i〉}

ri
j=1 and vanish for j > ri . Therefore, for any fixed

orthogonal family {5i}
n A
i=1 of projectors of rank nB , there exists an orthonormal basis {|8i j〉}

of H such that (32) holds and the inequality in (33) is an equality. Substituting this equality
into (31), one finds

F(ρ, CA(α))= max
{5i }

∑
i, j

‖ψ̃ j |i‖
2
= max

{5i }

∑
i

tr[5i
√
ρ|αi〉〈αi | ⊗ 1

√
ρ], (34)

which yields the result (20). The formula (23) is obtained by maximization over the
basis {|αi〉}. �

4.3. Closest A-classical states

The proof of the previous subsection also gives an algorithm to find the closest A-classical
states to a given mixed state ρ. To this end, one must find the orthonormal basis {|α

opt
i 〉} of

HA maximizing P opt v.N.
S ({ρi , ηi}) in (24) and the optimal von Neumann measurement {5

opt
i }

yielding the minimal error in the discrimination of the ensemble {ρ
opt
i , η

opt
i } associated to {|α

opt
i 〉}

in equation (21).

Theorem 4. The closest A-classical states to ρ are

σρ =
1

FA(ρ)

n A∑
i=1

|α
opt
i 〉〈α

opt
i | ⊗ 〈α

opt
i |

√
ρ 5

opt
i

√
ρ|α

opt
i 〉, (35)

where {|α
opt
i 〉}

n A
i=1 and {5

opt
i }

n A
i=1 are such that FA(ρ)=

∑
i tr[5opt

i
√
ρ|α

opt
i 〉〈α

opt
i | ⊗ 1

√
ρ] (see

equation (23)).

Proof. This follows directly from the proof of the previous subsection. Actually, by using
the expression (30) of the optimal probabilities qi j and the fact that the Cauchy–Schwarz
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inequality (33) is an equality if and only if |β j |i〉 = |ψ j |i〉/‖ψ j |i‖when‖ψ j |i‖6= 0, we conclude
that the closest A-classical states to ρ are given by (1) with |αi〉 = |α

opt
i 〉 and

qiσB|i =

nB∑
j=1

qi j |β j |i〉〈β j |i | =

∑nB
j=1 |ψ̃ j |i〉〈ψ̃ j |i |∑n A

i=1

∑nB
j=1 ‖ψ̃ j |i‖

2
. (36)

The denominator is equal to FA(ρ), see (34). The numerator is the same as the second
factor in the right-hand side of (35). For indeed, by construction |ψ̃ j |i〉 = 〈α

opt
i |

√
ρ|8̃i j〉 and∑

j |8̃i j〉〈8̃i j | =5
opt
i .

ut

Let us stress that the optimal measurement {5
opt
i } and basis {|α

opt
i 〉} may not be unique, so

that ρ may have several closest A-classical states σρ . This is the case for instance when ρ is
a pure state with a degenerate maximal Schmidt eigenvalue, as we have seen in theorem 1. If
σρ =

∑
qi |α

opt
i 〉〈α

opt
i | ⊗ σB|i and σ ′

ρ =
∑

q ′

i |α
opt
i 〉〈α

opt
i | ⊗ σ ′

B|i are two closest A-classical states
to ρ with the same basis {|α

opt
i 〉} then so are all convex combinations σρ(η)= ησρ + (1 − η)σ ′

ρ

with 06 η 6 1. This fact is a direct consequence of the convexity of the Bures distance (property
(i) in section 2), given that σρ(η) ∈ CA. As a result, states ρ having more than one closest
A-classical state will generally admit a continuous family of such states.

5. Conclusions

We have established in this paper a link between ambiguous QSD and the problem of finding the
minimal Bures distance of a state ρ of a bipartite system AB to a state with vanishing quantum
discord. More precisely, the maximal fidelity between ρ and an A-classical (i.e. zero discord)
state coincides with the maximal success probability in discriminating the n A states ρopt

i with
prior probabilities ηopt

i given by equation (21), n A being the space dimension of subsystem A
(theorem 3). These states and probabilities depend upon an optimal orthonormal basis {|α

opt
i 〉}

of A. The closest A-classical states to ρ are, in turn, given in terms of this optimal basis and
of the optimal von Neumann measurements in the discrimination of {ρ

opt
i , η

opt
i } (theorem 4).

Finally, we have shown that when n A 6 nB , the ‘most quantum’ states characterized by the
highest possible distance to the set of A-classical states are the maximally entangled pure states,
or convex combinations of such states with reduced B-states having supports on orthogonal
subspaces. These states are also the most distant from the set of separable states.

As stated in the introduction, the QSD task can be solved for n A = 2 states. Thus the
aforementioned results provide a method to find the geometric discord DA and the closest A-
classical states for bipartite systems composed of a qubit A and a subsystem B with arbitrary
space dimension nB > 2. In particular, explicit formulae can be derived for two qubits in states
with maximally mixed marginals and for (nB + 1)-qubits in the DQC1 algorithm [39]. For
subsystems A with higher space dimensions n A > 2, several open issues deserve further studies.
Firstly, it would be desirable to characterize the ‘most quantum’ states when n A > nB . Secondly,
it is not excluded that the specific QSD task associated to the minimal Bures distance admits
an explicit solution. Thirdly, the relation of DA with the geometric measure of entanglement
in tripartite systems should be investigated; in particular, there may exist some inequality
analogous to the monogamy relation [15] between the quantum discord and the entanglement
of formation.
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Let us emphasize that our results may shed new light on dissipative dynamical processes
involving decoherence, i.e. evolutions toward classical states. In fact, our analysis may allow in
some cases to determine the geodesic segment linking a given state ρ0 with a non-zero discord
to its closest A-classical state σρ0 . Such a piece of geodesic is contained in the set of all states ρ
having the same closest A-classical state σρ = σρ0 as ρ0. It would be of interest to compare in
specific physical examples these Bures geodesics with the actual paths followed by the density
matrix during the dynamical evolution.
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Appendix. Necessary and sufficient condition for the optimal success probability to be
equal to the inverse number of states

Let {ρi}
n A
i=1 be a family of n A states on H with prior probabilities ηi , where n A = N/nB is

a divisor of dim(H)= N . We assume that the ρi have ranks rank(ρi)6 nB for any i . Let
P opt v.N.

S ({ρi , ηi}) be the optimal success probability in discriminating the states ρi , defined by
equation (20). We prove in this appendix that P opt v.N.

S ({ρi , ηi})= 1/n A if and only if ηi = 1/n A

for any i and all states ρi are identical.
The conditions ηi = 1/n A and ρi = ρ are clearly sufficient to have P opt v.N.

S ({ρi , ηi})=

1/n A (a measurement cannot distinguish the identical states ρi and thus cannot do better
than a random choice with equal probabilities). We need to show that they are also necessary
conditions. Let us assume P opt v.N.

S ({ρi , ηi})= 1/n A. The equality ηi = 1/n A for all i is obvious
from the bounds P opt v.N.

S ({ρi , ηi})> ηmax ≡ maxi{ηi} and ηmax > 1/n A (see section 4.1).
Therefore, according to our hypothesis, any orthogonal family {5i}

nB
i=1 of projectors of rank

nB satisfies
∑

i tr(5iρi)= n A PS({ρi , ηi})6 1. We now argue that the states ρi have ranges
contained in a common subspace V . In fact, let V be the nB-dimensional subspace ofH spanned
by the eigenvectors of ρ1 associated to the nB highest eigenvalues (including degeneracies), and
let us denote by51 the projector onto V . Then ρ1H⊂ V (since we have assumed rank(ρ1)6 nB)
and thus ρ1 =51ρ1. Thanks to the inequality above, 1>

∑
i tr(5iρi)> tr(51ρ1)= 1. It follows

that tr(52ρ2)= 0 for any projector 52 of rank nB orthogonal to 51. Hence ρ2, and similarly all
ρi , i = 3, . . . , n A, have ranges contained in V . This proves the aforementioned claim.

In order to show that all the states ρi are identical, we further introduce, for each 16
k 6 nB , some nB-dimensional subspace V (k) containing the eigenvectors associated to the k
highest eigenvalues λ1 > · · · > λk of ρ1, the other eigenvectors being orthogonal to V (k) (then
V (nB) = V). We also choose a nB-dimensional subspace W (k)

⊂H orthogonal to V (k) such that
W (k)

⊕V (k) ⊃ V . Let {5
(k)
i }

n A
i=1 be an orthogonal family of projectors of rank nB such that 5(k)

1

and 5(k)
2 are the projectors onto V (k) andW (k), respectively. Then

1>
∑

i

tr(5(k)
i ρi)= tr(5(k)

1 ρ1)+ tr[(1 −5
(k)
1 )ρ2] = 1 + λ1 + · · · + λk − tr(5(k)

1 ρ2), (A.1)
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where we used
∑

i 5
(k)
i = 1 and ρiH⊂W (k)

⊕V (k) in the first equality. By virtue of the min-
max theorem, tr(5(k)

1 ρ2) is smaller than the sum of the k highest eigenvalues of ρ2 (including
degeneracies). By (A.1), this sum is larger than the sum λ1 + · · · + λk of the k highest eigenvalues
of ρ1. By exchanging the roles of ρ1 and ρ2, we obtain the reverse equality. Since moreover
k is arbitrary between 1 and nB , it follows that ρ1 and ρ2 have identical eigenvalues. By
using (A.1) again, tr(5(k)

1 ρ2) is equal to the sum of the k highest eigenvalues of ρ2. Hence
the k corresponding eigenvectors of ρ2 are contained in the k-dimensional subspace V (k) ∩V .
Since k is arbitrary, this proves that ρ1 and ρ2 have identical eigenspaces. Therefore ρ1 = ρ2.
Repeating the same argument for the other states ρi , i > 3, we obtain ρ1 = · · · = ρn A .
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